Automatic Detection of Fragments in Dynamically
Generated Web Pages

Lakshmish Ramaswamy y Arun lyengar 2 Ling Liu* Fred Douglis 2
! College of Computing, Georgia Tech 2 IBM T.J. Watson Research Center
801 Atlantic Drive P.O. Box 704
Atlanta GA 30332 Yorktown Heights, NY 10598
{laks, lingliu}@cc.gatech.edu {aruni, fdougli§ @us.ibm.com
ABSTRACT that are typically generated by programs executing at request time

Dividing web pages into fragments has been shown to provide sig-is also increasing at a rapid pace. Web caching technologies to date
have been successful for efficient delivery of static web pages but

nificant benefits for both content generation and caching. In order . L -
for a web site to use fragment-based content generation, howevertN€Y have not been so effective for delivering dynamic web content

good methods are needed for dividing web pages into fragments.due to their frequent changing nature and their diversified freshness
Manual fragmentation of web pages is expensive, error prone, angdreguirements.

unscalable. This paper proposes a novel scheme to automatically?_ _Several _effortsf have b_een made to addreﬁs the problem of ef-
detect and flag fragments that are cost-effective cache units in web 'C'ef‘t serving o dyr_lamlc pages, among whigfagmentbased .

sites serving dynamic content. We consider the fragments to bePuPlishing and caching of web pages [2, 10, 11, 13] stands out;
interesting if they are shared among multiple documents or they it has been succe§sfully cc_)mmerC|aI|zed In rece?“ years. C_on_cep-
have different lifetime or personalization characteristics. Our ap- [Yally, @ fragment is a portion of a web page which has a distinct

proach has three unique features. First, we propose a hierarchicafheme or functionality and is distinguishable from the other par.ts of
and fragment-aware model of the dynamic web pages and a dat he page. A web page has references to these fragments, which are

structure that is compact and effective for fragment detection. Sec-Stored independently on the server and in caches. In the fragment-
ond, we present an efficient algorithm to detect maximal fragments based publishing scheme, the cacheability and the lifetime are spec-

that are shared among multiple documents. Third, we develop aifire_Fihat adfragment Ie;/er: re}ther than l:?t thz paﬁe level. d
practical algorithm that effectively detects fragments based on their h eba vantagclas 0 tl e d ragment- a('jse 1 1501 emeBs are appa}renthan
lifetime and personalization characteristics. We evaluate the pro- ave been conclusively demonstrated [11, 13]. By separating the

posed scheme through a series of experiments, showing the beneﬂtgon-ﬂersonalizedhcc_)n_tent from thﬁ persc;]nalizled content a;n% mark-
and costs of the algorithms. We also study the impact of adopting ing them as such, it increases the cacheable content of the web

the fragments detected by our system on disk space utilization andSIt€S- Furthermore, with the fragment-based solution, a whole web
network bandwidth consumption. page need not be invalidated when only a part of that page expires.

Hence the amount of data that gets invalidated at the caches is re-
duced. In addition, the information that is shared across web pages

Categorles and SUbJeCt Descrlptors needs to be stored only once, which improves disk space utilization
H.3.0 [Information Systemsg: Information Storage and Retrieval— at the caches.
General Fragment-based caching solutions typically rely on the web ad-
ministrator or the web page designer to manually fragment the
General Terms pages on the web site. Manual markup of fragments in dynamic
) . web pages is both labor-intensive and error-prone. More impor-
Algorithms, Design, Performance tantly, identification of fragments by hand does not scale as it re-
quires manual revision of the fragment markups in order to incorpo-
Keywords rate any new or enhanced features of dynamic content into an oper-

Dynamic content caching, Fragment-based caching, Fragment de_ational fragment-based solution framework. Furthermore, the man-
tection, Shared fragments, L-P fragments ual approach to fragment detection becomes unmanageable and un-

realistic for edge caches that deal with multiple content providers.
Thus there is a growing demand for techniques and systems that
1. INTRODUCTION can automatically detect “interesting” fragments in dynamic web

The amount of information on the World Wide Web continues to pages, and that are scalable and robust for efficiently delivering
grow at an astonishing speed. The number of dynamic web pagesgynamic web content. By interesting we mean that the fragments
detected are cost-effective for fragment-based caching.

Automatic detection of fragments presents two unique challenges.
o First, compared with static web pages, dynamically generated web
Copyright is held by the authorfowner(s). pages have three distinct characteristics. On the one hand, dynamic

WWW2004May 17-22, 2004, New York, New York, USA. . . .
ACM 1-58113-844-X/04/0005. web pages seldom have a single theme or functionality and they

*Most of this work was done while Lakshmish was an intern at
IBM Research in the summers of 2002 and 2003.

443

Fragments -

Football Sport Today Page

Fragment-4
Header fragment l——]
Included in P O ST
many pages Apsiin Addwies Cosmbiles HEIEG Lot e Qasss Sqieep Kide Veeesd Blei P gegedi
- ERETT .rh cheows 5 apard ¥ choass ae gsani
...NVSLIV.frg 1 E 1-|_||:|‘I I]“ ” News/TE/sports/Ft.frg <-- No News Today Fragment
NVSCSS fra 09302030.frg F rag me nt_ 1
Fragment-5 bt A
rrag i L iy — Latest results
Side-bar fragment|) fragment
Included in waran'y Funal AR rgm
many pages |} Ofi F H Telsl fishs
¥ 1 [n e F] Surals
XXXXXX.frg [1] L [N L Ol \
H_W'I Bt] F] []] SETRLY
- 1] L - — -
Today's Behadule FTgeeepuuCSSDAY.frg Fragment_z
Fragment-3 Las bpdriea 2o 21 Mmy 0138 P40 Medal tally
Daily schedule tember 0 fragment
fragment -
1 /33 I0ICD WritenP'a Poudickll Pealiondumsed deasp 0 Silli [T TWA400902
i

Figure 1: Fragments in a Web Page

typically contain several pieces of information with varying fresh- and flag fragments in dynamic web pages which are cost-effective
ness or sharability requirements. On the other hand, most of thefor fragment-based caching. We analyze web pages with respect to
dynamic and personalized web pages are not completely dynamictheir information sharing behavior, personalization characteristics,
or personalized. Often the dynamic and personalized content areand the change frequencies over time. Based on this analysis, our
embedded in relatively static web page templates [5]. Furthermore, system detects and flags the “interesting” fragments in a web site.
dynamic web pages from the same web site tend to share informa-We consider a fragment interesting if it has good sharability with

tion among themselves.

other pages served from the same web site or it has distinct lifetime

Figure 1 shows a dynamic web page generated through a fragmemharacteristics. This paper contains three original contributions:

based publishing system. This Football Sport Today Page was one
of the web pages hosted by IBM for a sporting event. It con-
tains five interesting fragments that are cost-effective candidates
for fragment-based caching: (1) the latest football results on the
women'’s final, (2) the latest medal tally, (3) a daily schedule for
women’s football, (4) the navigation menu with the IBM logo for
the sport site on the top of the page and (5) the sport links menu
on the left side of the page. These fragments differ from each other
in terms of their themes, functionalities, and invalidation patterns.
The latest results fragment changes at a different rate than the latest
medal tally fragment, which in turn changes more frequently than
the fragment containing the daily schedule. In contrast, the naviga-
tional menu on the top of the page and the sport links menu on the
left side of the page are relatively static and are likely to be shared
by many dynamic pages generated in response to queries on sport
events hosted from the web site.

Second, it is apparent from the above example that humans can
easily identify fragments with different themes or functionality based
on their prior knowledge in the domain of the content (such as
sports in this example). However, in order for machines and pro-
grams to automate the fragment detection process, we need mech-
anisms that on the one hand can correctly identify fragments with
different themes or functionality without human involvement, and
on the other hand are efficient and effective for detecting and flag-
ging such fragments through a cross-comparison of multiple pages
from a web site.

In this paper, we propose a novel scheme to automatically detect

444

e First, we propose an efficient fragment-aware data structure

to model dynamic web pages, including an augmented frag-
ment tree with shingles encoding and a fast algorithm for
computing shingles incrementally. This data structure forms
the first step towards the efficient detection of fragments.

Second, we present an efficient algorithm for detecting frag-
ments that are shared among documents, which we call

the Shared Fragment Detection AlgorithnThis algorithm

has two distinctive features: (1) it uses node buckets to speed
up the comparison and the detection of exactly or approxi-
mately shared fragments across multiple pages. (2) it intro-
duces sharing factor, minimum fragment size, and minimum
matching factor as the three performance parameters to mea-
sure and tune the performance and the quality of the algo-
rithm in terms of the fragments detected.

Third, we present an effective algorithm for detecting frag-
ments that have different lifetime characteristics, which we
call theLLifetime-Personalization based (L-P) Fragment De-
tection Algorithm A unique characteristic of the L-P algo-
rithm is that it detects fragments which are most beneficial
to caching based on the nature and the pattern of the changes
occurring in dynamic web pages.

We discuss several performance enhancements to these basic algo-
rithms, and report our experiments for evaluation of the proposed

fragment detection scheme, showing the effectiveness and the cost It can be observed that the two independent conditions in the

of our approach.

2. CANDIDATE FRAGMENTS

Our goal for automatic fragment detection is to find interesting
fragments in dynamic web pages, which exhibit potential benefits

and thus are cost-effective as cache units. We refer to these inter

esting fragments asandidate fragment the rest of the paper.
The web documents considered herevee#-formedHTML doc-
uments [8] although the approach can be applied to XML docu-

ments as well. Documents that are not well formed can be con-

verted to well-formed documents through document normalization,
for example using HTML Tidy [3].

candidate fragment definition correspond well to the two aims of
fragment caching. By identifying and creating fragments out of
the parts that are shared across more than one fragment, we aim
to avoid unnecessary duplication of information at the caches. By
creating fragments that have different lifetime and personalization
properties we not only improve the cacheable content but also min-
imize the amount and frequency of the information that needs to be
invalidated.

3. FRAGMENTDETECTION: THE BASICS

In this section we discuss the basic design of our automated frag-
ment detection system, including the system architecture, the effi-

Concretely, we introduce the notion of candidate fragments as cient fragment-aware data structure for automating fragment detec-

follows:

e Each Web page of a web site is a candidate fragment.
e A part of a candidate fragment is itself a candidate fragment
if any one of the two conditions is satisfied:
— The part is shared among “M” already existing candi-
date fragments, where M 1.
— The part has different personalization and lifetime char-

acteristics than those of its encompassing (parent or an-

cestor) candidate fragment.

A formal definition of candidate fragments for web pages of a
web site is given below:

DEFINITION 1. (Candidate Fragmeni

tion, and the important configurable parameters in our system.

3.1 System Overview

The primary goal of our system is to detect and flag candidate frag-
ments from dynamic pages of a given web site. The fragment de-
tection process is divided into three steps. First, the system is con-
ceived to construct aAugmented Fragment TréAF tree) for the
dynamic pages fed into the fragment detection system. Second, the
system applies the fragment detection algorithms on the augmented
fragment trees to detect the candidate fragments in the given web
pages. In the third step, the system collects statistics about the frag-
ments such as the size, how many pages share the fragment, access
rates, etc. These statistics aid the administrator in deciding whether
to enable fragmentation. Figure 2 gives a sketch of the system ar-
chitecture.

Let NW denote the set of web pages available on a web site Sand We provide two independent fragment detection algorithms: one
CF(z) denote the set of all the fragments contained in fragment for detecting Shared fragments and the other for detecting Lifetime

x. A fragmenty is referred to as an ancestor fragment of another
fragmentz iff y directly or transitively contains fragment. Let
AF (x) denote all the ancestor fragments of the fragmeabd F'S

Personalization based (L-P) fragments. Both algorithms can be col-
located with a server-side cache or an edge cache, and work on the
dynamic web page dumps from the web site.

denotes the set of fragments corresponding to the set of documents

D; in NW, FS = UI"YIcF(D;). For any documenp from
web siteS, a fragmentz in F'S(D) is called a candidate fragment
if one of the following two conditions is satisfied:

1. z is a maximal Shared fragment, namely:

e z is shared amond// distinct fragmentdi, ..., Far,
whereM > 1, F; € FS, and ifi # j thenF; # F};
and

e there exists no fragmentsuch thaty € AF(z), andy
is also shared among the distinct fragmentd, . . .,
F]y[.

2. z is a fragment that has distinct personalization and lifetime
characteristics. Namelyz € AF(z), « has different per-
sonalization and lifetime characteristics than

We observe that this is a recursive definition with the base con-
dition being that each web page is a fragment. It is also evident
from the definition that the two conditions are independent. These

I3

Waeh ddTn &

Fragmanks Ay
-l
SYSTEM
.I
Welz Fages
Shiiziics :
:l
AFp wWs
e WD CACHE
SERNTR SERVID=E
Fik 5¥STCW

Figure 2: Fragment Detection System Architecture

The algorithm for detecting Shared fragments works on a col-

conditions define fragments that benefit caching from two differ- lection of different dynamic pages generated from the same web
ent and independent perspectives. We call the fragments satisfyingsite, whereas the L-P fragment detection algorithm works on dif-

Condition 1Shared fragments and the fragments satisfying Con-

ferent versions of each web page, which can be obtained from a

dition 2 L-P fragments (denoting Lifetime-Personalization based single query being repeatedly submitted to the given web site. For
fragments). Lifetime characteristics of a fragment govern the time example, in order to detect L-P fragments, we need to locate parts
duration for which the fragment, if cached, would stay fresh (in of a fragment that have different lifetime and personalization char-
tune with the value at the server). The personalization characteris-acteristics. This can be done by comparing different versions of
tics of a fragment correspond to the variations of the fragment in the dynamic web page and detecting the parts that have changed

relation to cookies or parameters of the URL.

445

over time and the parts that have remained constant. While the in-

put to the L-P fragment detection algorithm differs from the shared = We use Shingles because they have the property that if a doc-
fragment detection algorithm, both algorithms work directly on the ument changes by a small amount, its Shingles also change by a
augmented fragment tree representation of its input web pages. Thesmall amount. Other fingerprinting techniques such as MD5 do not
output of our fragment detection algorithms is a set of fragments behave similarly. Figure 3 illustrates the high sensitivity of Shin-
that are shared among a given number of documents or that havegles by comparing it with the MD5 hash through an example of two
different lifetime or personalization characteristics. This fragmen- strings. The first and the second strings in Figure 3 are essentially
tation information will then be served as recommendations to the the same strings with small perturbations (the portions that differ in
fragment caching policy manager or the respective web administra-the two strings have been highlighted). The MD5 hashes of the two
tor (see Figure 2). strings are totally different, whereas the shingles of the two strings
. . vary just by a single value out of the 8 values in the shingles set

3.2 AUgmented Fragment Trees with Shlngles (shingle values that are presentin one set but are absent in the other

EnCOdmg have been underlined in the diagram). This property of shingles has
Detecting interesting fragments in web pages requires efficient travemade it popular in estimating the resemblance and containment of
sal of web pages. Thus a compact data structure for representing thelocuments [6].
dynamic web pages is critical to efficient and accurate fragment de-
tection. Of the several document models that have been proposed

Fragment based publishing of web pages improves the scalability of

the most popular model is the Document Object Model (DOM) [1],

which models web pages using a hierarchical graph. However, the
DOM tree structure is less efficient for fragment detection for a

number of reasons. First, our fragment detection algorithms com-
pare pages to detect those fragments whose contents are share
among multiple pages or whose contents have distinctive expira-
tion times. The DOM tree of a reasonably sized HTML page has a
few thousand nodes. Many of the nodes in such a tree correspong
to text formatting tags that do not contribute to the content-based
fragment detection algorithms. Second and more importantly, the
nodes of the DOM do not contain sufficient information needed for

fast and efficient comparison of documents and their parts. These
motivate us to introduce the concept of an augmented fragment tree
(AF tree), which removes the text formatting tag nodes in the frag-

web services. In this paper we provide efficient techniques fo
automatically detect fragments in web pages. We believe that
automating fragment detection is crucial for the success of fragment
based web page publication.

MD5: 982f3bb69al74efb0aas4135c¢99e30d04

Shingles:{ 801384, 896252, 1104260, 1329558, 1476690, 1569872,
1772039, 2001370}

Fragment based publishing of web pages improves the efficiency of
web services. In this paper we provide scalable techniques for
automatic detection of ~ fragments in web pagesWe believe that
automating fragment detection is critical for the success of fragment
based web page publication.

MD5: 91d16c3e9aee060c82¢626d7062d0165

Shingles:{801384, 896252, 1104260, 1476690, 1569872, 1772039
2001370, 2033430}

ment tree and adds annotation information necessary for fragment
detection.

An augmented fragment (AF) tree with shingles encoding is a
hierarchical representation of a web (HTML or XML) document
with the following three characteristics: First, it is a compact DOM
tree with all the text-formatting tags (e.g:Big>, <Bold>, <I>)
removed. Second, the content of each node is fingerprinted wit
Shingles encoding [6, 7, 18]. Shingles are fingerprints with the
property that if a document changes by a small amount, its Shin-
gles encoding also changes by a small amount. Third, each node i
augmented with additional information for efficient comparison of
different documents and different fragments of documents. Con
cretely each node in thd F' tree is annotated with the following
fields:

Figure 3: Example of Shingles versus MD5

AF Tree Construction
The first step of our fragment detection process is to convert web

hpages to their corresponding AF trees. The AF tree can be con-

structed in two steps. The first step is to transform a web docu-
ment to its DOM tree and prune the fragment tree by eliminating
the text formatting nodes. The result of the first step is a special-
Yzed DOM tree that contains only the content structure tags (e.g.,
like <TABLE>, <TR>, <P>). The second step is to annotate
" the fragment tree obtained in the first step with NodelD, Node-

Value, SubtreeValue, SubtreeSize and SubtreeShingles. Once the

SubtreeValue is known, we can use a shingles encoding algorithm

to compute its SubtreeShingles. We briefly discuss the basic algo-

rithm [6] to compute the shingles for a given string.

Node Identifier (NodelD): A vector indicating the location of
the node in the tree.

NodeValue: A string indicating the value of the node. The o _

value of a leaf node is the text itself, and the value of an The Basic Shingling Algorithm

internal node is NULL (empty string). Any string can be considered as a sequence of tokens. The tokens
SubtreeValue: A string that is defined recursively. For a leaf might be words or characters. L6tr = T1T>T5...T~, whereT;

node, the SubtreeValue is equal to its NodeValue. For all in- IS a token and N is the total number of tok_ens_Str. Then a
ternal nodes, the SubtreeValue is a concatenation of the Sub-Shlngles set of window leng#¥” and sample siz# is construc_ted
treeValues of all its children nodes and its own NodeValue. as follows. The set of all subsequences of lerigftof the string
The SubtreeValue of a node can be perceived as the fragmen

tris ComputedSubSq = {TlTQ...Tw,TQTg.,.Tw+1, vy
(content region) of a web document anchored at this subtree N-w+1TN-w+2...Tn }. Each of these subsequences is hashed
node.

to a number betweeft, 2%) to obtain a token-ID. A hash function

. . . similar to Rabin’s function [23] could be employed for this purpose.
SubtreeSize: An integer whose value is the length of Sub- The parametefs governs the size of the hash value set to which
treeValue in bytes. This represents the size of the structure in ;¢ subsequences are mapped. If the paranfétierset to a small

the document being represented by this node. value many subsequences might be mapped to the same token-ID,
SubtreeShingles: An encoding of the SubtreeValue for fast leading to collisions. Larger values &f are likely to avoid these
comparison. SubtreeShingles is a vector of integers repre- collisions of subsequence, but increase the size of the hash value
senting the shingles of the SubtreeValue. set. We now havéN — W + 1) token-IDs, each corresponding to

446

one subsequence. Of theg€ — W + 1) token-IDs, the minimum
S are selected as th@V, S) shingles of stringstr. The parameters
W, S, and K can be used to tune the performance and quality of
the shingles encoding.

The basic shingles computation algorithm is suitable for com-
puting shingles for two independent documents. However, comput-

ing the shingles on the SubtreeValues independently at each node

would entail unnecessary computations and is inefficient. This is
simply because the content of every node inAR tree is also
a part of the content of its parent node. Therefore computing the

SubtreeShingles of each node independently leads to a much highe

cost due to duplicated shingles computation than computing the

SubtreeShingles of a parent node incrementally. We propose an in-

cremental shingles computation method and call iHherarchical
Shingles Computing scheme (th#Sh scheme for short).

3.3 Efficient Shingles Encoding - The HiSh Al-
gorithm

In this section we describe a novel method to compute shingles
incrementally for strings with hierarchical structures such as trees.
By incremental we mean the HiSh algorithm reuses the previously
computed shingles in the subsequent computation of shingles.
Consider a stringd = A1 A2As3...An Apnt1...Ap, With m to-
kens,m < 1. Let B andC be two non-overlapping substrings of
A such thatd is a concatenation dB andC'. Let B = A; As... A,
andC = Apy1An42...A,. Now we describe how to incremen-
tally compute the(W, S) shingles ofA, if (W, S) shingles ofB
and C are available. LetShng(A,W,S), Shng(B,W,S) and
Shng(C,W, S) denote the(W, S) shingles of the stringsl, B
and C respectively. We define th@verlapping Sequences be
those subsequences which begirBrand end inC. These are the

String B T String C

Automatic Detection of Fragments in Websites
N

Overlap

Shingles of String B Shingles of Overlap Shingles of String C
—{300, 434 1093, 2764} {193, 243, 1432, 3456 } {104, 470, 1956, 3464}—

r

{104, 193, 243, 300}
Shingles of Concatenated String

Figure 4: HiSh Algorithm

to distinct queries over a web site, l€tF; (1 < ¢ < N) de-

note the AF tree of the'" page. We call a fragmerf ¢ AF;

a maximal shared fragmerit it is shared amongV/(M < N)
distinct fragments (pages) and there is no ancestor fragment of
F which is shared by the sam¥& fragments (pages). Herk/

is a system-defined parameter. With this definition in mind, the
immediate question is how to efficiently detect such shared frag-
ments, ensuring that the fragments detected are cost-effective cache
units and beneficial for fragment-based caching. Our experiences
with fragment-based solutions show that any shared fragment de-

subsequences that are not completely present in either shingles ofection algorithm should address the following two fundamental
B or shingles ofC. Let the hashes of these subsequences be repre-challenges. First, one needs to define the measurement metrics of

sented by the s&vipHsh = {Hsh(A@—w12,n+1))s
Hsh(Am—wis,w+2))s -, Hsh(A(n ntw—1))}. Then we can ob-
tain the(W, S) shingles ofA as follows:

Shng(A,W,S) = Ming{Shng(B,W, S)|J Shng(C,W,S)
JOvlpHsh}

Here Mings(Z) represents the operation of selecting thenini-
mum values from values in s&t
As the shingles oB andC are available, the only extra compu-

tations needed are to compute the hashes of overlapping sequenceg.

This is the central idea of the HiSh algorithm. Figure 4 illustrates
the working of the HiSh scheme on an example string. In this exam-
ple, (8, 4) shingles of the strind3 and stringC' are pre-computed
and available, and we want to compute tf8e4) shingles of the
concatenation of the two strings. The HiSh algorithm computes the

overlapping subsequences between the two strings (which is showrf"®
as Overlap in the figure) and computes the shingles on this overlap-

ping string. Finally, the algorithm selects the minimum 4 values
from all the three strings to yield the shingles of the entire string.

Our experiments (see Section 6.4) indicate that the HiSh opti-
mization can reduce the number of hashes computed in construct
ing the AF tree by as much as 9 times and improve the shingles
computation time by about 6 times for 20-Kbyte documents, when
compared to the basic algorithm. The performance gain will be
greater for larger documents.

4. DETECTING SHARED FRAGMENTS

This section discusses our algorithm to detect shared fragments.

Given a collection ofV dynamic web pages generated in response

447

sharability. In a dynamic web site it is common to find web pages
sharing portions of content that are similar but not exactly the same.
In many instances the differences among these portions of content
are superficial (e.g., they have only formatting differences). Thus a
good automatic fragment detection system should be able to detect
these approximately shared candidate fragments. Different quan-
tifications of what is meant by “shared” can lead to different quality
and performance of the fragment detection algorithms. The second
challenge is the need for an efficient and yet scalable implementa-
on strategy to compare the fragments (and the pages) and identify
the maximal shared fragments.

Approximate Sharability Measures

The Shared fragment detection algorithm operates on various web
pages from the same web site and detects candidate fragments that
“approximately” shared. We introduce three measurement pa-
rameters to define the appropriateness of such approximately shared
fragments. These parameters can be configured based on the needs
of a specific application. The accuracy and the performance of the
algorithm are dependent on the values of these parameters.

e Minimum Fragment Size(MinFragSize): This parame-
ter specifies the minimum size of the detected fragment.

e Sharing Factor(ShareFactor): This indicates the mini-
mum number of pages that should share a segment in order
for it to be declared a fragment.

e Minimum Matching Factor (MinM atchFactor): This pa-
rameter specifies the minimum overlap between the SubtreeSh-
ingles to be considered as a shared fragment.

The parameteMinFragSize is used to exclude very small seg- level of the AF trees would be larger than the number of nodes at
ments of web pages from being detected as candidate fragmentsa higher level. Second, the SubtreeSizes of the nodes at the lower
This threshold on the size of the documents is necessary becaustevel is expected to be smaller than the SubtreeSizes of the nodes
the overhead of storing the fragments and composing the page woulth the higher levels of the AF tree. Therefore, we encourage having

be high if the fragments are too small. The param&tetre Factor smaller ranges for the buckets at the lower end of the size spectrum,
defines the threshold on the number of documents that have sharednd gradually increase the range of the buckets at the higher end of
each candidate fragment. Finally, we use the parameter the size spectrum.

MinMatchFactor to model the significance of the difference be-
tween two fragments being compared. Two fragments being com-
pared are considered as sharing significant content if the overlap
between their SubtreeShingles is greater than or equal to
MinMatchFactor.

Detecting Shared Fragments with Node Buckets

The shared fragment detection algorithm detects the shared frag
ments in two steps as shown in Figure 5. First, the algorithm cre-
ates a sorted pool of the nodes in the AF trees of all the web pages
examined using node buckets. Then, the algorithm groups those
nodes that are similar to each other together and runs the condi-
tion test for maximal shared fragments. If the number of nodes
in the group exceeds the minimum number of pages specified by
the ShareFactor parameter, and the corresponding fragment is
indeed a maximal shared fragment, the algorithm declares the node
group as a shared fragment and assigns it a fragment identifier. Sorted Buckets

> — (o]

Similar Node Group

Step 1: Putting Nodes into a sorted pool of node buckets

More concretely, our algorithm uses tbacketstructures to cre-
ate a sorted pool of nodes. The algorithm credigs buckets.
Each bucketBkt; is initialized with bucket sizeBs;, and is as- ~ Step 2: Identifying maximal shared fragments through grouping of
sociated with a pre-assigned range of the SubtreeSizes, denote§imilar nodes) _ _ _

as (MinSize(Bkt;), MaxSize(Bkt;)). The AF trees are pro- The output of the first step is a sorted pool of buckets in descending
cessed starting from the root of each tree, and a node is placed int@®rder of the ranges of buckets, and each bucket contains a list of
an appropriate bucket based on its SubtreeSize, such that the Supodes sorted by their SubtreeSizes. The task of the second step is

Figure 5: Shared Fragment Detection Algorithm

treeSizes of all nodes in buckBtkt; are between to compare nodes and group nodes that are similar to each other
MinSize(Bkt;) andMaxSize(Bkt;). Ifinthe process of putting ~ together and then identify those groups of nodes that satisfy the
nodes into buckets, a bucket grows out of its current Bize it will definition of maximally shared fragments. This step processes the

be split into two or more buckets. Similarly, if the first step results nodes in the buckets in decreasing order of their sizes. It starts
in a pool of buckets with uneven distribution of nodes per bucket, With the node having the largest SubtreeSize, which is contained
a merge operation will be used to merge two or more buckets into in the bucket with the highest/axSize value. For each node
one. being processed, the algorithm compares the node against a subset
After all the AF trees have been processed and the nodes entere@f the other nodes. This subset is constructed as follows. If we are
into their corresponding buckets, each buckets is sorted based oProcessing a nodd;, then the subset of nodes thatis compared
the SubtreeSize of the nodes in the bucket. At the end of the proces§dainst should include all nodes whose sizes are larger f#jan
we have a set of buckets containing nodes, each of which is sorted®f the SubtreeSize ofl;, whereP ranges from0% to 100%. Let
based on the SubtreeSize of the node. The STEP 1 in Figure 5CSet(A;:) denote the subset of nodes with respect to nédeNe
shows the working of this step on two AF treésndB. The nodes c¢an use the following formula to computéSet(A4;).
of the two trees are put into 5 buckets based on their SubtreeSizes.
The buckets are sorted, and the buckBfg, BT, and BT5 are) P x SubtreeSize(A;
merged to obtain a set of sorted buckets. CSet(Ai) = {A;|SubtreeSize(4;) 2 100 ()}
There are three system-supplied parameters: (.1) the number OfIt is important to note that the value setting of the paramgtéas
Eﬂgtgis;zg)(:ge)n:ﬁéoy:ndg;ngtzgcﬂugﬁ(?;;{iézs)ig;?;g) of each imp_lications on both the _pc_arformance and the accuracy of _the al-
MaxS%ze(Bkti)). Various factors may affect the decisi70n on how gorithm. If P is too low, it increases the number of comparisons

. ; _performed by the algorithm. IP is very close to 100, then the
to set these parameters, including the number of AF trees exam number of comparisons decrease; however, it might lead the com-

eparison process to miss some nodes that are similar. In practice we
Phave found a value df0% to be appropriate for most web sites.

of the SubtreeSizes of all the nodes. The performance of this ste
would be better if the nodes are evenly distributed in all the avail- When comparing the node being processed with the nodes in its

able buckets. One way to achieve such balanced distribution OfC’Set, the algorithm compares the SubtreeShingles of the nodes.

nodes across all buckets is to set the ranges of the buckets at the, g,y noges whose shingles overlap more than the minimal match-
lower end of the size spectrum to be smaller, and let the range of the,

buckets progressively increase for the buckets at the higher end O]gng factor specified byMinMatchFactor with the shingles of

) . . . ; the node being processed are grouped together. Step 2 of Fig-
the size spectrum. .Th's strategy is motivated by the following ob ure 5 demonstrates the comparison and grouping of the nodes in
servations. First, it is expected that the number of nodes at a lower

the sorted buckets.

448

If this group has at leasihareFactor nodes then we have the e Minimum Fragment Size(MinFragSize): This parame-
possibility of detecting it as a fragment. However before we declare ter indicates the minimum size of the detected fragment.

the group as a candidate fragment, we need to ensure that the frag-)) o

ment corresponding to this group of nodes is indeed a maximally ~ ® Child Change ThresholdChildChangeT hreshold): This

shared fragment and not a trivial fragment. To ease the decision parameter indicates the minimum fraction of children of a
node that should change in value before the parent node it-

on whether a group of nodes with similar shingles is a maximally X
shared fragment, we mark the descendent of each declared frag- self can be declared aSalucChanged. This parameter can
take a value betwedn0 and1.0.

ment with the fragment-ID assigned to the fragment. When similar
nodes are detected, we check whether the ancestors of all of the The L-p fragment detection algorithm works on the AF trees
nodes belong to the same fragment. If so, we reject the node groupt gitferent versions of web pages. It installs the first version (in
as a trivial fragment. Otherwise we declare the node group as @chronological order) available as thase version The algorithm
candidate fragment, assign it a fragment-ID and mark all of the ¢ompares each subsequent version to the base version and identi-
descendant nodes with the fragment-ID. Once we declare a nodevjeg candidate fragments. A new base version is installed whenever
group as a candidate fragment, we remove all the nodes belongingne web page undergoes a drastic change when compared with the
to that group from the buckets. The algorithm proceeds by process-¢rrent base version. In each step, the algorithm executes in two
ing the next largest node in the node group in the same manner. phases. In the first phase the algorithm marks the nodes that have
changed in value or in position between the two versions of the AF
5. DETECTING L-P FRAGMENTS tree. In the second phase the algorithm outputs the L-P fragments
The L-P fragments are lifetime personalization based fragments. which are then merged to obtain the object dependency graph.
Typically, the L-P fragments have different lifetime and personal-
ization characteristics than their encompassing (parent) fragment.Phase 1: Comparing the AF trees and detecting the changes
One way to detect the L-P fragments is to compare various ver- Concretely, if we have two AF tree$ and B corresponding to two
sions of the same web page and track the changes occurring overersions of a web page, our algorithm compares each node of the
different versions of the web page. The nature and the pattern oftree B, to a node from4 which is most similar to it. We employ
the changes may provide useful lifetime and personalization infor- the SubtreeShingles of the nodes for similarity comparison. Let
mation that is helpful for detecting the L-P fragments. ShingleSimd;, B;) denote the similarity function based on simi-
The first challenge in developing an efficient L-P fragment de- larity of shingles of4; andB;. We can compute ShingleSin(, B;)
tection algorithm is to identify the logical units in a given web page Using the following formula:
that may change over different versions, and to discover the nature _ .
of the change. Web pages can undergo a variety of changes betweehingleSim(A;, B;) = iﬁiﬁiﬁﬁﬁiz;fﬁjiﬁﬁ;DEZZZZZEZZZZZE%
versions. Parts of a web page might be deleted or moved around in
the web page, and new parts may be added. Therefore a simple al- If we are processing nodg; from AF tree B, we obtain a node
gorithm that only compares the parts appearing at the same relatived: from treeA such thatShingleSim(A;, B;) > OvlpThrshld,
position in different versions of the web page is unlikely to yield and there exists nd;, such that
accurate fragments.
The second challenge is to detect candidate fragments that are ShingleSim(An, Bj) > ShingleSim(As, B;)
most beneficial to caching. Suppose we have a structure such asvhereOvlpT hrshld denotes a user-specified threshold for the quan-
a table in the web page being examined. Suppose the propertiedity ShingleSim, which can take a value betweemnd1.0. If no
of the structure remain constant over different versions of the web such node is found in tred, then it means that there is no node
page, but the contents of the structure have changed over differenin A that is similar to the nodé;. This means that this node cor-
versions. Now there are two possible ways to detect fragments: Ei-responds to a part that has been added in this version. Hence, the
ther the whole table (structure) can be made a fragment or the sub-nodeB; is marked a3/ alueChanged.
structures in the table (structure) can be made fragments. Which of If a node A; is found similar to nodeB;, the algorithm begins
these would be most beneficial to caching depends upon what percomparing nodeB; with node A;. The algorithm compares the
centages of the substructures are changing and how they are changubtreeValues and the NodelDs of the two nodes. If both Subtree-
ing (frequency and amount of changes). Value and NodelD of the two nodes exactly match then the node
In the design of our L-P fragment detection algorithm, we take a is markedUnChanged. If the NodelDs of the two nodes differ,
number of steps to address these two challenges. First, we augmerthen it means that the node has changed its position in the tree and

the nodes of each AF tree with an additional fidNddeStatus, hence it is marked aBositionChanged.
which takes one value from the set of three choidéa Changed, If the SubtreeValues of the nodds and B; do not exactly match
ValueChanged, PositionChanged}. Second, we provide a then the algorithm checks whether they are leaf nodes. If so, they

shingles-based similarity function to compare different versions of are marked a% alueChanged. Otherwise, the algorithm recur-

a web page, and determine the portions of a web page that havesively processes each child node Bf in the same manner de-
distinct lifetime and personalization characteristics. Third, we con- scribed above marking them &ailueChanged,

struct the Object Dependency Graph (ODG) [11] for each web doc- PositionChanged or UnChanged.

ument examined on top of all candidate fragments detected. An The algorithm addresses the second issue of discovering the frag-
Object Dependency Graph is a graphical representation of the con-ments based on the extent of changes itis undergoing by calculating
tainment relationship between the fragments of a web site. The the fraction of B;’s children that are marked a8alueChanged.
nodes of the ODG correspond to the fragments of the web site andIf this fraction exceeds a preset threshold, which we call the

the edges denote the containment relationship among them. Fi-ChildChangeT hreshold, thenB; itself is marked as

nally, we propose to use the following configurable parameters to ValueChanged. The algorithm recursively marks all the nodes in
measure the quality of the L-P fragments in terms of cache benefitthe tree in the first phase.

and to tune the performance of the algorithm:

449

(http://www.internetnews.com) and Slashdot
(http://www.slashdot.org) and created a web ‘dump’ for each web
site. While most of these sites share information across their web
pages and hence are good candidates for Shared fragment detec-
tion, the Slashdot web page forms a good candidate for L-P frag-
ment detection for reasons explained in Section 6.2.

6.1 Detecting Shared Fragments

In our first set of experiments, we study the behavior of our Shared
fragment detection algorithm. The data sets used in this experimen-
tal study were web page dumps from BBC, Internet news and IBM.

@ Due to space limitations, we primarily report the results obtained
L-P Fragments from our experiments on the BBC web s_.ite. _
@ @ @ @ BBC is a well-known news portal. Primarily, the web pages on
the BBC web site can be classified into two categories: web pages

| Object Dependency Graph | reporting complete news and editorial articles (henceforth referred
to as the ‘article’ pages) and the ‘lead’ pages listing the top news
of the hour under different categories such as ‘World’, ‘Americas’
_ .) ‘UK’ etc. We observed that there is considerable information shar-
Figure 6: L-P Fragment Detection Algorithm ing among the lead pages. Therefore, the BBC web site is a good
case study for detecting shared fragments.
Our data set for the BBC web site was a web dump of 75 distinct

Phase 2: Detecting and labeling the L-P fragments) web pages from the web site collectedlefi* July 2002. The web

In the second phase, the algorithm scans the tree again from thedump included 31 ‘lead’ pages and 44 ‘article’ pages.

root and outputs the nodes that are marked/asucChanged Figure 7 illustrates the number of Shared fragments detected at
or Posztzon_Changed. In thls_pass the algo.rlt.hm descends into o different values ofMlinFragSize and MinMatchFactor

a node’s children if the node is marked BesitionChanged or (recall thatMinFragSize is the minimum size of the detected
UnChanged. If the node is marked agalueChanged, the al- fragment andMinM atchFactor is the minimum percentage of

gorithm outputs it as a L-P fragment, but does not descend into its shingles overlap). WhenlinFragSize was set to 30 bytes and

children. This ensures that we detect maximum-sized fragments j ;... rotch Factor was set ta70%, the number of fragments de-

that change between versions. _) tected was 350. The number of fragments increased to 358 when
Figure 6 demonstrates the execution of one step in the L-P frag- ine prin i ateh Factor was set to 90% and to 359 when the

ment detection algorithm. In the figure we compare the nodes of j ;... rroich Factor was set to 100%. In all of our experiments

the AF tree of version 2 with the appropriate nodes of the AF tree |y gpserved an increase in the number of detected fragments with

of version 1. For example the nod®; is compared withA7 al- increasingMinMatchFactor.

though these nodes appear at different positions in the two AF trees.

We also indicate théVodeStatus of each node in version 2. In

this example we set th€hildChangeT hreshold to be 0.5. The A0

nodeAs is marked a3/ alueChanged as both of its children have

changed in value. The figure also indicates the fragments discov-

ered in the second pass of the algorithm. ALh
In summary, our L-P fragment detection algorithm detects the

parts of a web page that change in value and parts of web pages

changing their position between versions. Only the nodes that have :I!-'M

changed in value are counted when deciding about the status of the 5

Mumibser of Dsiciiod Fragminis

B Minimum Fragmenl Size: 30 Bybes
asnt I Minisus Fragmes] S S0 Bylas

parent node. The nodes that have changed only in position are as Ez:n
good as being unchanged for this purpose. This is because when S a0
a node just changes its relative position within its parent node, the - !
value of the parent node would not change to a considerable extent.

£

b ————————————————

6. EXPERIMENTAL EVALUATION

We have performed a range of experiments to evaluate our au- Wrich Facior
tomatic fragment detection scheme. In this section we report four
sets of experiments. The first and second sets of experiments test Figure 7: Number of Fragments Detected for BBC Data set
the two fragment detection algorithms, showing the benefits and
effectiveness of the algorithms. The third set studies the impact This phenomenon can be explained as follows. When
of the fragments detected by our system on improving the caching MinMatchFactor is set to a high value, the algorithm looks for
efficiency, and the fourth set of experiments evaluates the Hierar- (almost) perfect matches. Suppose we had a node A in the AF tree
chical Shingles computation scheme. of one document, with children B, C and D. Suppose the same node
The input to the schemes is a collection of web pages including is present in the AF tree of another document, but in this case it has
different versions of each page. Therefore we periodically fetched children B, C and E. Obviously, the nodes in the two trees don’t
web pages from the web sites of BBC (http://news.bbc.co.uk), IBM’smatch perfectly. IfMinMatchFactor of the algorithm were set
portal for marketing (http://www.ibm.com/us), Internetnews to 90%, then the nodes B and C would be detected as fragments.

450

If on the other handV/inMatchFactor were set ta70%, then 6.2 Detecting L-P Fragments

the parent node A would be detected as one single fragment. SO we now present the experimental evaluation of the L-P fragment
when theMinMatchFactor is set to higher values, the number getection algorithm. Though we experimented with a number of
of fragments detected increases. However, the size of the detectegyep sites, due to space limitations, we restrict our discussion to the

fragments falls with increasing/in M atch Factor. web site from Slashdot (http://www.slashdot.org).
Slashdot is a well known web site providing IT, electronics and
6000 Maximum Size of Detected Fragments business news. The front page of the Slashdot web site carries
— [Match Factor: 70% headlines and synopses of the articles on the site. The page in-

5500F [Match Factor: 90%] .

s000k 1 B Match Factor: 100% || dlc_ates the number of comments posted by other' users ur_1der each
| article. _Thus, as new comments are_added to existing artlc!es and
2 new articles are added to the web site, the page changes in small
= tor] ways relative to the entire content of the page. It therefore forms a
% 35001 T good case for L-P fragment detection, as well as other techniques
g ao0or 1 that identify similarity across pages. The same Slashdot data set has
B 25000 1 been used in another study of similarity across pages at the level of
%’ 2000}] unstructured bytes, finding that different versions of the Slashdot
5 1500k] home page within a short time frame are extremely compressible
2 ol relative to each other [17].

sook | This web page provides a good case study to detect L-P frag-
, ments for a number of reasons. First, this web page is highly dy-
BBC INTERNET NEWS 1BM namic. Not only are there parts of the page that change every few

Data Sets . . .
minutes, the web page experiences major changes every couple of

hours. Second, various portions of the web page have different
lifetime characteristics. Third, the web page experiences many dif-
ferent kinds of changes like additions, deletions, value updates etc.
Furthermore, there are parts of the web page that are personalized
to each user.

. Table 1 provides a synopsis of the results of the L-P fragment
detection experiments. A total of 79 fragments were detected when
the ChildChangeT hreshold was set to 0.50, and 285 fragments
were detected whe@'hildChangeT hreshold was set to 0.70.

We observe that higher numbers of fragments are detected when
ChildChangeT hreshold is set to higher values.

Figure 8: Maximum Size of the Detected Fragments

Figure 8illustrates this effect. The graph indicates the maximum
size of the detected fragments for various data sets when
MinMatchFactor was set t670% and90% . For the BBC web
site, the change in the size of the largest detected fragment is rathe
drastic. The size falls from 5633 bytes to 797 bytes when
MinMatchFactor increases from 70% to 90%.

The pie chart in Figure 9 indicates the percentage of fragments
according to the number of pages sharing the fragments for the
BBC data set. We see a large number of fragments (little over ChildChangeT hreshold indicates the threshold for the percent-

50%) are being shared by exactly two pages¥ of the fragments age of the children to change in value before the parent itself is
were shared among exactly 3 pages, and 11% of the pages wer%

shared by 10 pages or more. All 75 pages shared one fragment, an agged as changed. If this threshold is set at higher values, it

3 fragments were shared by 69 pages. The mean of the number o more likely that nodes that are located deeper in the tree are
pages sharing each of the detected fragmentsiBis lagged as fragments. As there are more nodes deeper in the tree,

the number of fragments detected is higher. Equivalently, the av-
erage size of the fragment decrease€'asldChangeT hreshold

Fenared by increases. Therefore we note that wiiéildChangeT hreshold
Fragments Shared >10 Pages: 11% is set at higher values, larger numbers of small fragments are de-
by 2 Pages: 52% tected. When it is set to lower values, fewer numbers of large frag-
Fragments ments are detected.

Shared by

6-10 Pages: 13% In both cases, the depth of fragmentation was 3. When

ChildChangeT hreshold was set t00.50, the number of frag-
ments detected at depths 1, 2 and 3 were respectively 10, 7 and 62.

Fragments

4t Pagee 196 ChildChangeThreshold | 0.50] 0.70
Total Fragments 79 | 285

Average Fragment Size | 822 | 219

Depth of Fragmentation | 3 3

Fragments Shared
by 3 Pages: 13%

Table 1: Statistics for L-P Fragment Detection

Figure 9: Distribution of Fragment Sharing for the BBC Data
set .
6.3 Impact on Caching
A similar type of behavior was observed in all three data sets. A Haying discussed the experimental evaluation of our fragment
large percentage of the detected fragments were shared by a smafietection system with regard to its accuracy and efficiency, we now
number of pages, but a few fragments were shared by almost all thestudy the impact of fragment caching on the performance of the
web pages of the site. cache, the server and the network when web sites incorporate frag-
ments detected by our system into their respective web pages.

451

We start out by studying the savings in the disk space require-

Bytes transfered between cache and server

N 100M
ments of a fragment cache when the web pages incorporate the
fragments discovered by our fragment detection system in com- J—
parison to a page cache that stores entire pages. Earlier we had ex- 1omf emmmo T -
plained the experimental evaluation of our shared fragment detec- o B aat
tion system on the BBC data set. We now compare the disk space A
needed to store the web pages in the data set when they are stored at § i
the page granularity with disk space requirements for storing these &
i 2 .4
web pages when they are fragmented as determined by our system. Bt o e aaa--aeeoho-ar]
4 - N . A N A N .
>
Disk Space Requirements o
40 ¥ T T T T i i 10KH 5~ Page Cache: Invalidation Rate = 0.1
A~ Page Caching K3 X i _
—A— Fragment Caching: MinMatchFactor = 0.9 A/' _:j Eggemce;(t:rfegcl:Sé:iz\ézléc:]a;E;TeR:atoeo—og.l
$5[.—e= Fragment Caching: MinMatchFactor = 0.7 K | —A— Fragment Cache: Invalidation Rate = 0.001
/‘/ lKlK ZIK 3;(4IK SIK 6IK 7IK 8;(9IK 10K
3.0 ,A Number of Requests
a L
2,4 o
g Figure 11: Bytes Transferred between Server and Cache
Z’ 20 e
° -~
o Rd
5 15 & indicates the number of accesses and the Y-axis indicates the total
5 Lol number of bytes transferred, on log scale.
o L 1 The number of bytes transferred for page-level caching is always
0sl] higher than for fragment-level caching. When the invalidation rates
2 are high, this effect is more pronounced. This experiment demon-
o m - - m o -) strates the effectiveness of caching the fragments discovered by our
Total Number of Pages fragment detection system in reducing the load on the network con-

necting the cache to the origin server.

Figure 10: Total Storage Requirements for Page and Fragment
Caches
6.4 Improving Fragment Detection Efficiency
Figure 10 indicates the total storage requirements as a function [N this section we evaluate the performance enhancements pro-
of the number of pages both for page caches and fragment cacheg?0sed by us. We have proposed a number of techniques to improve

The graph shows that caching at the fragment level reqi#sto the performance of the fragment detection process including an in-
31% less disk space than the conventional page level caching. Thecremental scheme to compute thiebtreeShingles of the nodes

graph also shows that the improvements are higher when in the AF trees (HiSh algorithm). Due to space constraints, we
MinMatchFactor is set to low values. This is because when restrict our discussion to the experimental evaluation of the HiSh

MinMatchFactor is set to low values, larger size fragments are algorithm.
discovered. When they are stored only once rather than being repli-
cated, the savings obtained in terms of the disk space are higher. i 4

Next we study the effects of L-P fragments detected by our sys- 170H B Direct Computation
tem on the load on the network connecting the cache and the server. 1coff I HiSh Algorithm
As we discussed in Section 2, incorporating L-P fragments into web [
pages reduces the amount of data invalidated at the caches, which
in turn reduces the load on the origin servers and the backbone net-
work. In order to study the impact of the L-P fragments on the
server and network load, we use the L-P fragments detected by our
algorithm on the Slashdot web site.

To study the load on the network we also need the access and the
invalidation patterns of the web pages. As we did not have accurate
traces indicating the patterns of access and invalidations, we make
certain assumptions, which aid us to create a model for accesses
and invalidations of these web pages.

First, we assume that the requests for web pages arrive according

. A 1.7K 3.8k 5.0K 11.5K 19K
to aPoisson processs supported by past analysis [19]. We assume Size of the Document String
the request arrival rate to be 100 requests per second. Second, we
also model the invalidation processes of individual fragments as Figure 12: Number of Hashes Computed in Direct and HiSh
Poisson processes. We assume that the invalidation process of eackchemes
fragment is independent of any other fragment in the web page. The
invalidation rates in our experiments vary from 0.0001 invalidations Figure 12 shows the total number of hash computations involved
per second to 5 invalidations per second. in constructing the AF tree. For a document with 1.7K charac-

Figure 11 indicates the total bytes transferred as a function of ters in its content string, the number of hash computations needed
the number of requests arriving at the cache, at fragment invalida-for the HiSh scheme is 2.6 times less than the number of hashes
tion rates of 0.001 and 0.1 invalidations per second. The X-axis computed in the direct computation. For a document whose con-

Number of Hash Calculations for Shingle Computation

452

tent string is 19K characters, the number of hashes computed in theB. CONCLUSIONS

HiSh scheme is almost 8.5 times less than the number of hashes There has been heavy demand for technologies to ensure timely
computed in the direct computation. We note that the benefits of gelivery of fresh dynamic content to end-users [9, 10, 11]. Fragment-

the HiSh algorithm are greater for larger documents. based generation and caching of dynamic web content is widely
recognized as an effective technique to address this problem. How-
7. RELATED WORK ever, past work in the area has not adequately addressed the prob-

Fragment-based publishing, delivery and caching of dynamic lem of how to divide web pages into fragments. Manual fragmen-
data have received considerable attention from the research comfation of web pages by a web administrator or web page designer is
munity in recent years [11, 13]. Edge Side Includes [2] is a markup €Xpensive and error-prone; it also does not scale well.
language to define web page components for page assembly at the [N this paper we have presented a novel scheme to automatically
edge caches. ESI provides mechanisms for specifying the cacheabifiétect and flag “interesting” fragments in dynamically generated
ity properties at fragment level. Mohapatra et al. [21] discuss a Web pages that are cost-effective cache units. A fragment is con-
fragment-based mechanism to manage quality of service for dy- Sidered to be interesting if it is shared among multiple pages or if it
namic web content. Chan and Woo [12] use the structural similar- has distinct lifetime or personalization characteristics. This scheme
ity existing among various pages of a single site to efficiently delta- 1S based on analysis of the web pages dynamically generated at
encode multiple web pages over time. Naaman et al. [22] presentdiven web sites with respect to their information sharing behav-
analytical and simulation based studies to compare ESI and deltaOr, Personalization properties and change patterns. Our approach
encoding, finding that ESI has potential performance advantageshas three unique features. First, we propose a hierarchical and
due to its ability to deliver only changing fragments. In addition to fragment-aware model of the dynamic web pages and a data struc-
the above work, there is a considerable amount of literature in the ture that is compact and effective for fragment detection. Second,
more general area of the generation, delivery and caching of dy-We present an efficient algorithm to detect maximal fragments that
namic content [9, 10]. None of these previous papers addresses th&'e shared among multiple documents. Third, we develop an algo-
problem of how to automatically detect fragments in web pages, fithm that effectively detects fragments based on their lifetime and
however. personalization characteristics. We evaluate the proposed scheme

The work of Bar-Yossef and Rajagopalan [5] is related to our re- through gseries of experiments, showing the bgnefits and costs of
search on automated fragment detection, although the authors weréhe algorithms. We also report our study on the impact of adopting
addressing a different problem. They discuss the problem of tem- the fragments detected by our system on disk space utilization and
plate detection through discovery phgeletsin the web pages. ~ hetwork bandwidth consumption.

However, our work differs from the work on template detection

both in context and content. First, the work on template detectionis 9. REFERENCES

aimed towards improving the precision of search algorithms. Our [1] Document Object Model - W3C Recommendation.
work is aimed at detecting fragments that are most beneficial to http://www.w3.0rg/DOM.

caching and content generation. Second, the syntactic definition of [2] Edge Side Includes - Standard Specification.

a pagelet in their paper is based on the number of hyperlinks in the http://lwww.esi.org.

HTML parse tree elements. They define a pagelet as an HTML el- [3] HTML TIDY. http://www.w3.org/People/Raggett/tidy/.
ement in the parse tree of a web page such that none of its children [4] H. Bahn, H. Lee, S. H. Noh, S. L. Min, and K. Koh.

have at leasf hyperlinks and none of its ancestors is a pagelet. Replica-Aware Caching for Web ProxigSomputer

This definition is very different from our working definition of a Communications25(3), 2002.

candidate fragment provided in Section 2. Further, their definition [5] Z. Bar-Yossef and S. Rajagopalan. Template Detection via
of pagelets forbids recursion. In contrast we permit embedded frag- Data Mining and its Applications. IRroceedings of

ments. Third, our system has two algorithms: one to detect Shared WWW-2002May 2002.
fragments and another to detect L-P fragments. Both of these detect
embedded fragments.

There has been significant work in identifying web objects that
are identical, either at the granularity of entire pages or images [4,
16, 20] or pieces of pages [24], using MD5 or SHA-1 hashes to
detect and eliminate redundant data storage and transfer. While
the motivations of these researches are similar to that of the shared (8!) i
fragment detection algorithm, they are more restrictive in the sense System for the World Wide Web. IRroceedings of
that they work on full HTML pages and can only detect and elim- ICDCS-20012001.)
inate pages (or byte-blocks) which are exact replicas. Pages that [9] K.S. Candan, D. Agrawal, W.-S. Li, O. Po, and W.-P.
are similar at the level of entire web pages [25, 14] or pieces of Hsiung. View Invalidation for Dynamic Content Caching in
web pages [17] can be identified using resemblance detection [6] Multi tiered Architectures. IProceedings of VLDB-2002
and then delta-encoded. While these techniques have the potential ~ September 2002.
to reduce transfer sizes, decomposing web pages into separatelf10] J. Challenger, A. lyengar, and P. Dantzig. A Scalable System
cached fragments accomplishes similar reductions in size without for Consistently Caching Dynamic Web Data. In
the need for exp“cit version management. Proceedings Of IEEE INFOCOM 199March 1999.

In addition to these, discovering and extracting objects from web [11] J. Challenger, A. lyengar, K. Witting, C. Ferstat, and P. Reed.
pages has received considerable attention from the research com- Publishing System for Efficiently Creating Dynamic Web
munity [8, 15]. While these projects aim at extracting objects based Content. InProceedings of IEEE INFOCOM 200May

[6] A. Broder. On resemblance and Containment of Documents.
In Proceedings of SEQUENCES;9P97.

[7] A.Broder, S. C. Glassman, M. S. Manasse, and G. Zweig.

Syntactic Clustering of the Web. Proceedings of WWW:6

April 1997.

D. Buttler and L. Liu. A Fully Automated Object Extraction

on the nature of the information they contain, our work concen- 2000.
trates on discovering fragments based on their lifetime, personal-[12] M. C. Chan and T. W. C. Woo. Cache-Based Compaction: A
ization and sharing characteristics. New Technique for Optimizing Web Transfer. In

453

Proceedings of INFOCOM-1999 [19] J. Mogul. Network Behavior of a Busy Web Server and its

[13] A. Datta, K. Dutta, H. Thomas, D. VanderMeer, Suresha, and Clients. Technical report, DEC Western Research
K. Ramamritham. Proxy-Based Accelaration of Dynamically Laboratories, 1995.

Generated Content on the World Wide Web: An Approach [20] J. Mogul, Y. Chan, and T. Kelly. Design, Implementation,
and Implementation. IRroceedings of SIGMOD-2002une and Evaluation of Duplicate Transfer Detection in HTTP. In
2002. Proceedings of NSDI 'Q4Varch 2004. To appear.

[14] F. Douglis and A. lyengar. Application-Specific Delta [21] P. Mohapatra and H. Chen. A Framework for Managing QoS
Encoding Via Resemblance Detection Rroceedings of the and Improving Performance of Dynamic Web Content. In
USENIX Annual Technical Conferendeine 2003. Proceedings of GLOBECOM-20p8ovember 2001.

[15] X.-D. Gu, J. Chen, W.-Y. Ma, and G.-L. Chen. Visual Based [22] M. Naaman, H. Garcia-Molina, and A. Paepcke. Evaluation
Content Understanding towards Web Adaptation. In of ESl and Class-Based Delta EncodingPlimceedings of
Proceedings of AH-2002002. WCW - 2003

[16] T. Kelly and J. Mogul. Aliasing on the World Wide Web: [23] M. O. Rabin. Fingerprinting by Random Polynomials.
Prevalence and Performance ImplicationsPioceedings of Technical report, Center for Research in Computing
the 11th International World Wide Web Conferengkay Technology, Harvard University, 1981.

2002. [24] S. C. Rhea, K. Liang, and E. Brewer. Value-Based Web

[17] P. Kulkarni, F. Douglis, J. LaVoie, and J. Tracey. Caching. InProceedings of 2 WWW Confereng@003.
Redundancy Elimination Within Large Collections of Files. [25] T. Suel, P. Noel, and D. Trendafilov. Improved File
In Proceedings of the USENIX Annual Technical Conference Synchronization Techniques for Maintaining Large
June 2004. To appeatr. Replicated Collections Over Slow Networks.Pmoceedings

[18] U. Manber. Finding Similar Files in a Large File System. In of ICDE 2004 March 2004. To appeatr.

Proceedings of USENIX-1994anuary 1994.

454

