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ABSTRACT
Dividing web pages into fragments has been shown to provide sig-
nificant benefits for both content generation and caching. In order
for a web site to use fragment-based content generation, however,
good methods are needed for dividing web pages into fragments.
Manual fragmentation of web pages is expensive, error prone, and
unscalable. This paper proposes a novel scheme to automatically
detect and flag fragments that are cost-effective cache units in web
sites serving dynamic content. We consider the fragments to be
interesting if they are shared among multiple documents or they
have different lifetime or personalization characteristics. Our ap-
proach has three unique features. First, we propose a hierarchical
and fragment-aware model of the dynamic web pages and a data
structure that is compact and effective for fragment detection. Sec-
ond, we present an efficient algorithm to detect maximal fragments
that are shared among multiple documents. Third, we develop a
practical algorithm that effectively detects fragments based on their
lifetime and personalization characteristics. We evaluate the pro-
posed scheme through a series of experiments, showing the benefits
and costs of the algorithms. We also study the impact of adopting
the fragments detected by our system on disk space utilization and
network bandwidth consumption.

Categories and Subject Descriptors
H.3.0 [Information Systems]: Information Storage and Retrieval—
General

General Terms
Algorithms, Design, Performance

Keywords
Dynamic content caching, Fragment-based caching, Fragment de-
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1. INTRODUCTION
The amount of information on the World Wide Web continues to

grow at an astonishing speed. The number of dynamic web pages

∗Most of this work was done while Lakshmish was an intern at
IBM Research in the summers of 2002 and 2003.

Copyright is held by the author/owner(s).
WWW2004, May 17–22, 2004, New York, New York, USA.
ACM 1-58113-844-X/04/0005.

that are typically generated by programs executing at request time
is also increasing at a rapid pace. Web caching technologies to date
have been successful for efficient delivery of static web pages but
they have not been so effective for delivering dynamic web content
due to their frequent changing nature and their diversified freshness
requirements.

Several efforts have been made to address the problem of ef-
ficient serving of dynamic pages, among whichFragment-based
publishing and caching of web pages [2, 10, 11, 13] stands out;
it has been successfully commercialized in recent years. Concep-
tually, a fragment is a portion of a web page which has a distinct
theme or functionality and is distinguishable from the other parts of
the page. A web page has references to these fragments, which are
stored independently on the server and in caches. In the fragment-
based publishing scheme, the cacheability and the lifetime are spec-
ified at a fragment level rather than at the page level.

The advantages of the fragment-based schemes are apparent and
have been conclusively demonstrated [11, 13]. By separating the
non-personalized content from the personalized content and mark-
ing them as such, it increases the cacheable content of the web
sites. Furthermore, with the fragment-based solution, a whole web
page need not be invalidated when only a part of that page expires.
Hence the amount of data that gets invalidated at the caches is re-
duced. In addition, the information that is shared across web pages
needs to be stored only once, which improves disk space utilization
at the caches.

Fragment-based caching solutions typically rely on the web ad-
ministrator or the web page designer to manually fragment the
pages on the web site. Manual markup of fragments in dynamic
web pages is both labor-intensive and error-prone. More impor-
tantly, identification of fragments by hand does not scale as it re-
quires manual revision of the fragment markups in order to incorpo-
rate any new or enhanced features of dynamic content into an oper-
ational fragment-based solution framework. Furthermore, the man-
ual approach to fragment detection becomes unmanageable and un-
realistic for edge caches that deal with multiple content providers.
Thus there is a growing demand for techniques and systems that
can automatically detect “interesting” fragments in dynamic web
pages, and that are scalable and robust for efficiently delivering
dynamic web content. By interesting we mean that the fragments
detected are cost-effective for fragment-based caching.

Automatic detection of fragments presents two unique challenges.
First, compared with static web pages, dynamically generated web
pages have three distinct characteristics. On the one hand, dynamic
web pages seldom have a single theme or functionality and they
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Figure 1: Fragments in a Web Page

typically contain several pieces of information with varying fresh-
ness or sharability requirements. On the other hand, most of the
dynamic and personalized web pages are not completely dynamic
or personalized. Often the dynamic and personalized content are
embedded in relatively static web page templates [5]. Furthermore,
dynamic web pages from the same web site tend to share informa-
tion among themselves.

Figure 1 shows a dynamic web page generated through a fragment-
based publishing system. This Football Sport Today Page was one
of the web pages hosted by IBM for a sporting event. It con-
tains five interesting fragments that are cost-effective candidates
for fragment-based caching: (1) the latest football results on the
women’s final, (2) the latest medal tally, (3) a daily schedule for
women’s football, (4) the navigation menu with the IBM logo for
the sport site on the top of the page and (5) the sport links menu
on the left side of the page. These fragments differ from each other
in terms of their themes, functionalities, and invalidation patterns.
The latest results fragment changes at a different rate than the latest
medal tally fragment, which in turn changes more frequently than
the fragment containing the daily schedule. In contrast, the naviga-
tional menu on the top of the page and the sport links menu on the
left side of the page are relatively static and are likely to be shared
by many dynamic pages generated in response to queries on sport
events hosted from the web site.

Second, it is apparent from the above example that humans can
easily identify fragments with different themes or functionality based
on their prior knowledge in the domain of the content (such as
sports in this example). However, in order for machines and pro-
grams to automate the fragment detection process, we need mech-
anisms that on the one hand can correctly identify fragments with
different themes or functionality without human involvement, and
on the other hand are efficient and effective for detecting and flag-
ging such fragments through a cross-comparison of multiple pages
from a web site.

In this paper, we propose a novel scheme to automatically detect

and flag fragments in dynamic web pages which are cost-effective
for fragment-based caching. We analyze web pages with respect to
their information sharing behavior, personalization characteristics,
and the change frequencies over time. Based on this analysis, our
system detects and flags the “interesting” fragments in a web site.
We consider a fragment interesting if it has good sharability with
other pages served from the same web site or it has distinct lifetime
characteristics. This paper contains three original contributions:

• First, we propose an efficient fragment-aware data structure
to model dynamic web pages, including an augmented frag-
ment tree with shingles encoding and a fast algorithm for
computing shingles incrementally. This data structure forms
the first step towards the efficient detection of fragments.

• Second, we present an efficient algorithm for detecting frag-
ments that are shared amongM documents, which we call
the Shared Fragment Detection Algorithm. This algorithm
has two distinctive features: (1) it uses node buckets to speed
up the comparison and the detection of exactly or approxi-
mately shared fragments across multiple pages. (2) it intro-
duces sharing factor, minimum fragment size, and minimum
matching factor as the three performance parameters to mea-
sure and tune the performance and the quality of the algo-
rithm in terms of the fragments detected.

• Third, we present an effective algorithm for detecting frag-
ments that have different lifetime characteristics, which we
call theLifetime-Personalization based (L-P) Fragment De-
tection Algorithm. A unique characteristic of the L-P algo-
rithm is that it detects fragments which are most beneficial
to caching based on the nature and the pattern of the changes
occurring in dynamic web pages.

We discuss several performance enhancements to these basic algo-
rithms, and report our experiments for evaluation of the proposed
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fragment detection scheme, showing the effectiveness and the cost
of our approach.

2. CANDIDATE FRAGMENTS
Our goal for automatic fragment detection is to find interesting

fragments in dynamic web pages, which exhibit potential benefits
and thus are cost-effective as cache units. We refer to these inter-
esting fragments ascandidate fragmentsin the rest of the paper.

The web documents considered here arewell-formedHTML doc-
uments [8] although the approach can be applied to XML docu-
ments as well. Documents that are not well formed can be con-
verted to well-formed documents through document normalization,
for example using HTML Tidy [3].

Concretely, we introduce the notion of candidate fragments as
follows:

• Each Web page of a web site is a candidate fragment.

• A part of a candidate fragment is itself a candidate fragment
if any one of the two conditions is satisfied:

– The part is shared among “M” already existing candi-
date fragments, where M> 1.

– The part has different personalization and lifetime char-
acteristics than those of its encompassing (parent or an-
cestor) candidate fragment.

A formal definition of candidate fragments for web pages of a
web site is given below:

DEFINITION 1. (Candidate Fragment)
LetNW denote the set of web pages available on a web site S and
CF (x) denote the set of all the fragments contained in fragment
x. A fragmenty is referred to as an ancestor fragment of another
fragmentx iff y directly or transitively contains fragmentx. Let
AF (x) denote all the ancestor fragments of the fragmentx andFS
denotes the set of fragments corresponding to the set of documents
Di in NW , FS = ∪‖NW‖

i=1 CF (Di). For any documentD from
web siteS, a fragmentx in FS(D) is called a candidate fragment
if one of the following two conditions is satisfied:

1. x is a maximal Shared fragment, namely:

• x is shared amongM distinct fragmentsF1, . . . , FM ,
whereM > 1, Fi ∈ FS, and if i 6= j thenFi 6= Fj ;
and

• there exists no fragmenty such thaty ∈ AF (x), andy
is also shared among theM distinct fragmentsF1, . . . ,
FM .

2. x is a fragment that has distinct personalization and lifetime
characteristics. Namely,∀z ∈ AF (x), x has different per-
sonalization and lifetime characteristics thanz.

We observe that this is a recursive definition with the base con-
dition being that each web page is a fragment. It is also evident
from the definition that the two conditions are independent. These
conditions define fragments that benefit caching from two differ-
ent and independent perspectives. We call the fragments satisfying
Condition 1Shared fragments, and the fragments satisfying Con-
dition 2 L-P fragments (denoting Lifetime-Personalization based
fragments). Lifetime characteristics of a fragment govern the time
duration for which the fragment, if cached, would stay fresh (in
tune with the value at the server). The personalization characteris-
tics of a fragment correspond to the variations of the fragment in
relation to cookies or parameters of the URL.

It can be observed that the two independent conditions in the
candidate fragment definition correspond well to the two aims of
fragment caching. By identifying and creating fragments out of
the parts that are shared across more than one fragment, we aim
to avoid unnecessary duplication of information at the caches. By
creating fragments that have different lifetime and personalization
properties we not only improve the cacheable content but also min-
imize the amount and frequency of the information that needs to be
invalidated.

3. FRAGMENT DETECTION: THE BASICS
In this section we discuss the basic design of our automated frag-
ment detection system, including the system architecture, the effi-
cient fragment-aware data structure for automating fragment detec-
tion, and the important configurable parameters in our system.

3.1 System Overview
The primary goal of our system is to detect and flag candidate frag-
ments from dynamic pages of a given web site. The fragment de-
tection process is divided into three steps. First, the system is con-
ceived to construct anAugmented Fragment Tree(AF tree) for the
dynamic pages fed into the fragment detection system. Second, the
system applies the fragment detection algorithms on the augmented
fragment trees to detect the candidate fragments in the given web
pages. In the third step, the system collects statistics about the frag-
ments such as the size, how many pages share the fragment, access
rates, etc. These statistics aid the administrator in deciding whether
to enable fragmentation. Figure 2 gives a sketch of the system ar-
chitecture.

We provide two independent fragment detection algorithms: one
for detecting Shared fragments and the other for detecting Lifetime
Personalization based (L-P) fragments. Both algorithms can be col-
located with a server-side cache or an edge cache, and work on the
dynamic web page dumps from the web site.

Figure 2: Fragment Detection System Architecture

The algorithm for detecting Shared fragments works on a col-
lection of different dynamic pages generated from the same web
site, whereas the L-P fragment detection algorithm works on dif-
ferent versions of each web page, which can be obtained from a
single query being repeatedly submitted to the given web site. For
example, in order to detect L-P fragments, we need to locate parts
of a fragment that have different lifetime and personalization char-
acteristics. This can be done by comparing different versions of
the dynamic web page and detecting the parts that have changed
over time and the parts that have remained constant. While the in-
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put to the L-P fragment detection algorithm differs from the shared
fragment detection algorithm, both algorithms work directly on the
augmented fragment tree representation of its input web pages. The
output of our fragment detection algorithms is a set of fragments
that are shared among a given number of documents or that have
different lifetime or personalization characteristics. This fragmen-
tation information will then be served as recommendations to the
fragment caching policy manager or the respective web administra-
tor (see Figure 2).

3.2 Augmented Fragment Trees with Shingles
Encoding

Detecting interesting fragments in web pages requires efficient traver-
sal of web pages. Thus a compact data structure for representing the
dynamic web pages is critical to efficient and accurate fragment de-
tection. Of the several document models that have been proposed,
the most popular model is the Document Object Model (DOM) [1],
which models web pages using a hierarchical graph. However, the
DOM tree structure is less efficient for fragment detection for a
number of reasons. First, our fragment detection algorithms com-
pare pages to detect those fragments whose contents are shared
among multiple pages or whose contents have distinctive expira-
tion times. The DOM tree of a reasonably sized HTML page has a
few thousand nodes. Many of the nodes in such a tree correspond
to text formatting tags that do not contribute to the content-based
fragment detection algorithms. Second and more importantly, the
nodes of the DOM do not contain sufficient information needed for
fast and efficient comparison of documents and their parts. These
motivate us to introduce the concept of an augmented fragment tree
(AF tree), which removes the text formatting tag nodes in the frag-
ment tree and adds annotation information necessary for fragment
detection.

An augmented fragment (AF) tree with shingles encoding is a
hierarchical representation of a web (HTML or XML) document
with the following three characteristics: First, it is a compact DOM
tree with all the text-formatting tags (e.g.,<Big>, <Bold>, <I>)
removed. Second, the content of each node is fingerprinted with
Shingles encoding [6, 7, 18]. Shingles are fingerprints with the
property that if a document changes by a small amount, its Shin-
gles encoding also changes by a small amount. Third, each node is
augmented with additional information for efficient comparison of
different documents and different fragments of documents. Con-
cretely each node in theAF tree is annotated with the following
fields:

• Node Identifier (NodeID): A vector indicating the location of
the node in the tree.

• NodeValue: A string indicating the value of the node. The
value of a leaf node is the text itself, and the value of an
internal node is NULL (empty string).

• SubtreeValue: A string that is defined recursively. For a leaf
node, the SubtreeValue is equal to its NodeValue. For all in-
ternal nodes, the SubtreeValue is a concatenation of the Sub-
treeValues of all its children nodes and its own NodeValue.
The SubtreeValue of a node can be perceived as the fragment
(content region) of a web document anchored at this subtree
node.

• SubtreeSize: An integer whose value is the length of Sub-
treeValue in bytes. This represents the size of the structure in
the document being represented by this node.

• SubtreeShingles: An encoding of the SubtreeValue for fast
comparison. SubtreeShingles is a vector of integers repre-
senting the shingles of the SubtreeValue.

We use Shingles because they have the property that if a doc-
ument changes by a small amount, its Shingles also change by a
small amount. Other fingerprinting techniques such as MD5 do not
behave similarly. Figure 3 illustrates the high sensitivity of Shin-
gles by comparing it with the MD5 hash through an example of two
strings. The first and the second strings in Figure 3 are essentially
the same strings with small perturbations (the portions that differ in
the two strings have been highlighted). The MD5 hashes of the two
strings are totally different, whereas the shingles of the two strings
vary just by a single value out of the 8 values in the shingles set
(shingle values that are present in one set but are absent in the other
have been underlined in the diagram). This property of shingles has
made it popular in estimating the resemblance and containment of
documents [6].

Fragment based publishing of web pages improves the    scalability  of
web services. In this paper we provide   efficient   techniques  to
automatically detect   fragments in web pages. We believe that
automating fragment detection is   crucial   for the success of fragment
based web page publication.
MD5: 982f3bb69a174efb0aa4135c99e30d04
Shingles: { 801384, 896252, 1104260,   1329558, 1476690, 1569872,
1772039, 2001370 }

Fragment based publishing of web pages improves the    efficiency   of
web services. In this paper we provide   scalable   techniques  for
automatic detection of    fragments in web pages. We believe that
automating fragment detection is   critical   for the success of fragment
based web page publication.
MD5: 91d16c3e9aee060c82c626d7062d0165
Shingles: {801384, 896252, 1104260, 1476690, 1569872, 1772039,
2001370,  2033430}

Figure 3: Example of Shingles versus MD5

AF Tree Construction
The first step of our fragment detection process is to convert web

pages to their corresponding AF trees. The AF tree can be con-
structed in two steps. The first step is to transform a web docu-
ment to its DOM tree and prune the fragment tree by eliminating
the text formatting nodes. The result of the first step is a special-
ized DOM tree that contains only the content structure tags (e.g.,
like <TABLE>, <TR>, <P>). The second step is to annotate
the fragment tree obtained in the first step with NodeID, Node-
Value, SubtreeValue, SubtreeSize and SubtreeShingles. Once the
SubtreeValue is known, we can use a shingles encoding algorithm
to compute its SubtreeShingles. We briefly discuss the basic algo-
rithm [6] to compute the shingles for a given string.

The Basic Shingling Algorithm
Any string can be considered as a sequence of tokens. The tokens

might be words or characters. LetStr = T1T2T3...TN , whereTi

is a token and N is the total number of tokens inStr. Then a
shingles set of window lengthW and sample sizeS is constructed
as follows. The set of all subsequences of lengthW of the string
Str is computed.SubSq = {T1T2...TW , T2T3...TW+1, ...,
TN−W+1TN−W+2...TN}. Each of these subsequences is hashed
to a number between(0, 2K) to obtain a token-ID. A hash function
similar to Rabin’s function [23] could be employed for this purpose.
The parameterK governs the size of the hash value set to which
the subsequences are mapped. If the parameterK is set to a small
value many subsequences might be mapped to the same token-ID,
leading to collisions. Larger values ofK are likely to avoid these
collisions of subsequence, but increase the size of the hash value
set. We now have(N −W + 1) token-IDs, each corresponding to

446



one subsequence. Of these(N −W + 1) token-IDs, the minimum
S are selected as the(W, S) shingles of stringStr. The parameters
W , S, andK can be used to tune the performance and quality of
the shingles encoding.

The basic shingles computation algorithm is suitable for com-
puting shingles for two independent documents. However, comput-
ing the shingles on the SubtreeValues independently at each node
would entail unnecessary computations and is inefficient. This is
simply because the content of every node in anAF tree is also
a part of the content of its parent node. Therefore computing the
SubtreeShingles of each node independently leads to a much higher
cost due to duplicated shingles computation than computing the
SubtreeShingles of a parent node incrementally. We propose an in-
cremental shingles computation method and call it theHierarchical
Shingles Computing scheme (theHiSh scheme for short).

3.3 Efficient Shingles Encoding - The HiSh Al-
gorithm

In this section we describe a novel method to compute shingles
incrementally for strings with hierarchical structures such as trees.
By incremental we mean the HiSh algorithm reuses the previously
computed shingles in the subsequent computation of shingles.

Consider a stringA = A1A2A3...AnAn+1...Am with m to-
kens,m ≤ 1. Let B andC be two non-overlapping substrings of
A such thatA is a concatenation ofB andC. LetB = A1A2...An

andC = An+1An+2...Am. Now we describe how to incremen-
tally compute the(W, S) shingles ofA, if (W,S) shingles ofB
and C are available. LetShng(A,W, S), Shng(B, W, S) and
Shng(C, W, S) denote the(W,S) shingles of the stringsA, B
andC respectively. We define theOverlapping Sequencesto be
those subsequences which begin inB and end inC. These are the
subsequences that are not completely present in either shingles of
B or shingles ofC. Let the hashes of these subsequences be repre-
sented by the setOvlpHsh = {Hsh(A(n−W+2,n+1)),
Hsh(A(n−W+3,W+2)), ..., Hsh(A(n,n+W−1))}. Then we can ob-
tain the(W,S) shingles ofA as follows:

Shng(A,W,S) = MinS{Shng(B, W,S)
S

Shng(C,W,S)S
OvlpHsh}

HereMinS(Z) represents the operation of selecting theS mini-
mum values from values in setZ.

As the shingles ofB andC are available, the only extra compu-
tations needed are to compute the hashes of overlapping sequences.
This is the central idea of the HiSh algorithm. Figure 4 illustrates
the working of the HiSh scheme on an example string. In this exam-
ple, (8, 4) shingles of the stringB and stringC are pre-computed
and available, and we want to compute the(8, 4) shingles of the
concatenation of the two strings. The HiSh algorithm computes the
overlapping subsequences between the two strings (which is shown
as Overlap in the figure) and computes the shingles on this overlap-
ping string. Finally, the algorithm selects the minimum 4 values
from all the three strings to yield the shingles of the entire string.

Our experiments (see Section 6.4) indicate that the HiSh opti-
mization can reduce the number of hashes computed in construct-
ing the AF tree by as much as 9 times and improve the shingles
computation time by about 6 times for 20-Kbyte documents, when
compared to the basic algorithm. The performance gain will be
greater for larger documents.

4. DETECTING SHARED FRAGMENTS
This section discusses our algorithm to detect shared fragments.

Given a collection ofN dynamic web pages generated in response

Automatic Detection of Fragments in Websites
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Figure 4: HiSh Algorithm

to distinct queries over a web site, letAFi (1 ≤ i ≤ N ) de-
note the AF tree of theith page. We call a fragmentF ∈ AFi

a maximal shared fragmentif it is shared amongM(M < N)
distinct fragments (pages) and there is no ancestor fragment of
F which is shared by the sameM fragments (pages). HereM
is a system-defined parameter. With this definition in mind, the
immediate question is how to efficiently detect such shared frag-
ments, ensuring that the fragments detected are cost-effective cache
units and beneficial for fragment-based caching. Our experiences
with fragment-based solutions show that any shared fragment de-
tection algorithm should address the following two fundamental
challenges. First, one needs to define the measurement metrics of
sharability. In a dynamic web site it is common to find web pages
sharing portions of content that are similar but not exactly the same.
In many instances the differences among these portions of content
are superficial (e.g., they have only formatting differences). Thus a
good automatic fragment detection system should be able to detect
these approximately shared candidate fragments. Different quan-
tifications of what is meant by “shared” can lead to different quality
and performance of the fragment detection algorithms. The second
challenge is the need for an efficient and yet scalable implementa-
tion strategy to compare the fragments (and the pages) and identify
the maximal shared fragments.

Approximate Sharability Measures
The Shared fragment detection algorithm operates on various web
pages from the same web site and detects candidate fragments that
are “approximately” shared. We introduce three measurement pa-
rameters to define the appropriateness of such approximately shared
fragments. These parameters can be configured based on the needs
of a specific application. The accuracy and the performance of the
algorithm are dependent on the values of these parameters.

• Minimum Fragment Size(MinFragSize): This parame-
ter specifies the minimum size of the detected fragment.

• Sharing Factor(ShareFactor): This indicates the mini-
mum number of pages that should share a segment in order
for it to be declared a fragment.

• Minimum Matching Factor (MinMatchFactor): This pa-
rameter specifies the minimum overlap between the SubtreeSh-
ingles to be considered as a shared fragment.
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The parameterMinFragSize is used to exclude very small seg-
ments of web pages from being detected as candidate fragments.
This threshold on the size of the documents is necessary because
the overhead of storing the fragments and composing the page would
be high if the fragments are too small. The parameterShareFactor
defines the threshold on the number of documents that have shared
each candidate fragment. Finally, we use the parameter
MinMatchFactor to model the significance of the difference be-
tween two fragments being compared. Two fragments being com-
pared are considered as sharing significant content if the overlap
between their SubtreeShingles is greater than or equal to
MinMatchFactor.

Detecting Shared Fragments with Node Buckets
The shared fragment detection algorithm detects the shared frag-
ments in two steps as shown in Figure 5. First, the algorithm cre-
ates a sorted pool of the nodes in the AF trees of all the web pages
examined using node buckets. Then, the algorithm groups those
nodes that are similar to each other together and runs the condi-
tion test for maximal shared fragments. If the number of nodes
in the group exceeds the minimum number of pages specified by
the ShareFactor parameter, and the corresponding fragment is
indeed a maximal shared fragment, the algorithm declares the node
group as a shared fragment and assigns it a fragment identifier.

Step 1: Putting Nodes into a sorted pool of node buckets
More concretely, our algorithm uses thebucketstructures to cre-
ate a sorted pool of nodes. The algorithm createsNB buckets.
Each bucketBkti is initialized with bucket sizeBsi, and is as-
sociated with a pre-assigned range of the SubtreeSizes, denoted
as (MinSize(Bkti), MaxSize(Bkti)). The AF trees are pro-
cessed starting from the root of each tree, and a node is placed into
an appropriate bucket based on its SubtreeSize, such that the Sub-
treeSizes of all nodes in bucketBkti are between
MinSize(Bkti) andMaxSize(Bkti). If in the process of putting
nodes into buckets, a bucket grows out of its current sizeBsi, it will
be split into two or more buckets. Similarly, if the first step results
in a pool of buckets with uneven distribution of nodes per bucket,
a merge operation will be used to merge two or more buckets into
one.

After all the AF trees have been processed and the nodes entered
into their corresponding buckets, each buckets is sorted based on
the SubtreeSize of the nodes in the bucket. At the end of the process
we have a set of buckets containing nodes, each of which is sorted
based on the SubtreeSize of the node. The STEP 1 in Figure 5
shows the working of this step on two AF treesA andB. The nodes
of the two trees are put into 5 buckets based on their SubtreeSizes.
The buckets are sorted, and the bucketsBT3, BT4 andBT5 are
merged to obtain a set of sorted buckets.

There are three system-supplied parameters: (1) the number of
buckets (NB) employed for this purpose, (2) the sizeBi of each
bucket, and (3) the range of each bucket (MinSize(Bkti),
MaxSize(Bkti)). Various factors may affect the decision on how
to set these parameters, including the number of AF trees exam-
ined, the average number of nodes in each AF tree and the range
of the SubtreeSizes of all the nodes. The performance of this step
would be better if the nodes are evenly distributed in all the avail-
able buckets. One way to achieve such balanced distribution of
nodes across all buckets is to set the ranges of the buckets at the
lower end of the size spectrum to be smaller, and let the range of the
buckets progressively increase for the buckets at the higher end of
the size spectrum. This strategy is motivated by the following ob-
servations. First, it is expected that the number of nodes at a lower

level of the AF trees would be larger than the number of nodes at
a higher level. Second, the SubtreeSizes of the nodes at the lower
level is expected to be smaller than the SubtreeSizes of the nodes
in the higher levels of the AF tree. Therefore, we encourage having
smaller ranges for the buckets at the lower end of the size spectrum,
and gradually increase the range of the buckets at the higher end of
the size spectrum.
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Figure 5: Shared Fragment Detection Algorithm

Step 2: Identifying maximal shared fragments through grouping of
similar nodes
The output of the first step is a sorted pool of buckets in descending
order of the ranges of buckets, and each bucket contains a list of
nodes sorted by their SubtreeSizes. The task of the second step is
to compare nodes and group nodes that are similar to each other
together and then identify those groups of nodes that satisfy the
definition of maximally shared fragments. This step processes the
nodes in the buckets in decreasing order of their sizes. It starts
with the node having the largest SubtreeSize, which is contained
in the bucket with the highestMaxSize value. For each node
being processed, the algorithm compares the node against a subset
of the other nodes. This subset is constructed as follows. If we are
processing a nodeAi, then the subset of nodes thatAi is compared
against should include all nodes whose sizes are larger thanP%
of the SubtreeSize ofAi, whereP ranges from0% to 100%. Let
CSet(Ai) denote the subset of nodes with respect to nodeAi. We
can use the following formula to computeCSet(Ai).

CSet(Ai) = {Aj |SubtreeSize(Aj) ≥ P × SubtreeSize(Ai)

100
}

It is important to note that the value setting of the parameterP has
implications on both the performance and the accuracy of the al-
gorithm. If P is too low, it increases the number of comparisons
performed by the algorithm. IfP is very close to 100, then the
number of comparisons decrease; however, it might lead the com-
parison process to miss some nodes that are similar. In practice we
have found a value of90% to be appropriate for most web sites.

When comparing the node being processed with the nodes in its
CSet, the algorithm compares the SubtreeShingles of the nodes.
All such nodes whose shingles overlap more than the minimal match-
ing factor specified byMinMatchFactor with the shingles of
the node being processed are grouped together. Step 2 of Fig-
ure 5 demonstrates the comparison and grouping of the nodes in
the sorted buckets.
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If this group has at leastShareFactor nodes then we have the
possibility of detecting it as a fragment. However before we declare
the group as a candidate fragment, we need to ensure that the frag-
ment corresponding to this group of nodes is indeed a maximally
shared fragment and not a trivial fragment. To ease the decision
on whether a group of nodes with similar shingles is a maximally
shared fragment, we mark the descendent of each declared frag-
ment with the fragment-ID assigned to the fragment. When similar
nodes are detected, we check whether the ancestors of all of the
nodes belong to the same fragment. If so, we reject the node group
as a trivial fragment. Otherwise we declare the node group as a
candidate fragment, assign it a fragment-ID and mark all of the
descendant nodes with the fragment-ID. Once we declare a node-
group as a candidate fragment, we remove all the nodes belonging
to that group from the buckets. The algorithm proceeds by process-
ing the next largest node in the node group in the same manner.

5. DETECTING L-P FRAGMENTS
The L-P fragments are lifetime personalization based fragments.

Typically, the L-P fragments have different lifetime and personal-
ization characteristics than their encompassing (parent) fragment.
One way to detect the L-P fragments is to compare various ver-
sions of the same web page and track the changes occurring over
different versions of the web page. The nature and the pattern of
the changes may provide useful lifetime and personalization infor-
mation that is helpful for detecting the L-P fragments.

The first challenge in developing an efficient L-P fragment de-
tection algorithm is to identify the logical units in a given web page
that may change over different versions, and to discover the nature
of the change. Web pages can undergo a variety of changes between
versions. Parts of a web page might be deleted or moved around in
the web page, and new parts may be added. Therefore a simple al-
gorithm that only compares the parts appearing at the same relative
position in different versions of the web page is unlikely to yield
accurate fragments.

The second challenge is to detect candidate fragments that are
most beneficial to caching. Suppose we have a structure such as
a table in the web page being examined. Suppose the properties
of the structure remain constant over different versions of the web
page, but the contents of the structure have changed over different
versions. Now there are two possible ways to detect fragments: Ei-
ther the whole table (structure) can be made a fragment or the sub-
structures in the table (structure) can be made fragments. Which of
these would be most beneficial to caching depends upon what per-
centages of the substructures are changing and how they are chang-
ing (frequency and amount of changes).

In the design of our L-P fragment detection algorithm, we take a
number of steps to address these two challenges. First, we augment
the nodes of each AF tree with an additional fieldNodeStatus,
which takes one value from the set of three choices{UnChanged,
V alueChanged, PositionChanged}. Second, we provide a
shingles-based similarity function to compare different versions of
a web page, and determine the portions of a web page that have
distinct lifetime and personalization characteristics. Third, we con-
struct the Object Dependency Graph (ODG) [11] for each web doc-
ument examined on top of all candidate fragments detected. An
Object Dependency Graph is a graphical representation of the con-
tainment relationship between the fragments of a web site. The
nodes of the ODG correspond to the fragments of the web site and
the edges denote the containment relationship among them. Fi-
nally, we propose to use the following configurable parameters to
measure the quality of the L-P fragments in terms of cache benefit
and to tune the performance of the algorithm:

• Minimum Fragment Size(MinFragSize): This parame-
ter indicates the minimum size of the detected fragment.

• Child Change Threshold(ChildChangeThreshold): This
parameter indicates the minimum fraction of children of a
node that should change in value before the parent node it-
self can be declared asV alueChanged. This parameter can
take a value between0.0 and1.0.

The L-P fragment detection algorithm works on the AF trees
of different versions of web pages. It installs the first version (in
chronological order) available as thebase version. The algorithm
compares each subsequent version to the base version and identi-
fies candidate fragments. A new base version is installed whenever
the web page undergoes a drastic change when compared with the
current base version. In each step, the algorithm executes in two
phases. In the first phase the algorithm marks the nodes that have
changed in value or in position between the two versions of the AF
tree. In the second phase the algorithm outputs the L-P fragments
which are then merged to obtain the object dependency graph.

Phase 1: Comparing the AF trees and detecting the changes
Concretely, if we have two AF treesA andB corresponding to two
versions of a web page, our algorithm compares each node of the
treeB, to a node fromA which is most similar to it. We employ
the SubtreeShingles of the nodes for similarity comparison. Let
ShingleSim(Ai, Bj) denote the similarity function based on simi-
larity of shingles ofAi andBj . We can compute ShingleSim(Ai, Bj )
using the following formula:

ShingleSim(Ai, Bj) =
SubtreeShingles(Ai)∩SubtreeShingles(Bj)

SubtreeShingles(Ai)∪SubtreeShingles(Bj)

If we are processing nodeBj from AF tree B, we obtain a node
Ai from treeA such thatShingleSim(Ai, Bj) ≥ OvlpThrshld,
and there exists noAh such that

ShingleSim(Ah, Bj) > ShingleSim(Ai, Bj)

whereOvlpThrshld denotes a user-specified threshold for the quan-
tity ShingleSim, which can take a value between0 and1.0. If no
such node is found in treeA, then it means that there is no node
in A that is similar to the nodeBj . This means that this node cor-
responds to a part that has been added in this version. Hence, the
nodeBj is marked asV alueChanged.

If a nodeAi is found similar to nodeBj , the algorithm begins
comparing nodeBj with nodeAi. The algorithm compares the
SubtreeValues and the NodeIDs of the two nodes. If both Subtree-
Value and NodeID of the two nodes exactly match then the node
is markedUnChanged. If the NodeIDs of the two nodes differ,
then it means that the node has changed its position in the tree and
hence it is marked asPositionChanged.

If the SubtreeValues of the nodesAi andBj do not exactly match
then the algorithm checks whether they are leaf nodes. If so, they
are marked asV alueChanged. Otherwise, the algorithm recur-
sively processes each child node ofBj in the same manner de-
scribed above marking them asV alueChanged,
PositionChanged or UnChanged.

The algorithm addresses the second issue of discovering the frag-
ments based on the extent of changes it is undergoing by calculating
the fraction ofBj ’s children that are marked asV alueChanged.
If this fraction exceeds a preset threshold, which we call the
ChildChangeThreshold, thenBj itself is marked as
V alueChanged. The algorithm recursively marks all the nodes in
the tree in the first phase.
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Figure 6: L-P Fragment Detection Algorithm

Phase 2: Detecting and labeling the L-P fragments
In the second phase, the algorithm scans the tree again from the
root and outputs the nodes that are marked asV alueChanged
or PositionChanged. In this pass the algorithm descends into
a node’s children if the node is marked asPositionChanged or
UnChanged. If the node is marked asV alueChanged, the al-
gorithm outputs it as a L-P fragment, but does not descend into its
children. This ensures that we detect maximum-sized fragments
that change between versions.

Figure 6 demonstrates the execution of one step in the L-P frag-
ment detection algorithm. In the figure we compare the nodes of
the AF tree of version 2 with the appropriate nodes of the AF tree
of version 1. For example the nodeB7 is compared withA7 al-
though these nodes appear at different positions in the two AF trees.
We also indicate theNodeStatus of each node in version 2. In
this example we set theChildChangeThreshold to be 0.5. The
nodeA6 is marked asV alueChanged as both of its children have
changed in value. The figure also indicates the fragments discov-
ered in the second pass of the algorithm.

In summary, our L-P fragment detection algorithm detects the
parts of a web page that change in value and parts of web pages
changing their position between versions. Only the nodes that have
changed in value are counted when deciding about the status of the
parent node. The nodes that have changed only in position are as
good as being unchanged for this purpose. This is because when
a node just changes its relative position within its parent node, the
value of the parent node would not change to a considerable extent.

6. EXPERIMENTAL EVALUATION
We have performed a range of experiments to evaluate our au-

tomatic fragment detection scheme. In this section we report four
sets of experiments. The first and second sets of experiments test
the two fragment detection algorithms, showing the benefits and
effectiveness of the algorithms. The third set studies the impact
of the fragments detected by our system on improving the caching
efficiency, and the fourth set of experiments evaluates the Hierar-
chical Shingles computation scheme.

The input to the schemes is a collection of web pages including
different versions of each page. Therefore we periodically fetched
web pages from the web sites of BBC (http://news.bbc.co.uk), IBM’s
portal for marketing (http://www.ibm.com/us), Internetnews

(http://www.internetnews.com) and Slashdot
(http://www.slashdot.org) and created a web ‘dump’ for each web
site. While most of these sites share information across their web
pages and hence are good candidates for Shared fragment detec-
tion, the Slashdot web page forms a good candidate for L-P frag-
ment detection for reasons explained in Section 6.2.

6.1 Detecting Shared Fragments
In our first set of experiments, we study the behavior of our Shared
fragment detection algorithm. The data sets used in this experimen-
tal study were web page dumps from BBC, Internet news and IBM.
Due to space limitations, we primarily report the results obtained
from our experiments on the BBC web site.

BBC is a well-known news portal. Primarily, the web pages on
the BBC web site can be classified into two categories: web pages
reporting complete news and editorial articles (henceforth referred
to as the ‘article’ pages) and the ‘lead’ pages listing the top news
of the hour under different categories such as ‘World’, ‘Americas’
‘UK’ etc. We observed that there is considerable information shar-
ing among the lead pages. Therefore, the BBC web site is a good
case study for detecting shared fragments.

Our data set for the BBC web site was a web dump of 75 distinct
web pages from the web site collected on14th July 2002. The web
dump included 31 ‘lead’ pages and 44 ‘article’ pages.

Figure 7 illustrates the number of Shared fragments detected at
two different values ofMinFragSize andMinMatchFactor
(recall thatMinFragSize is the minimum size of the detected
fragment andMinMatchFactor is the minimum percentage of
shingles overlap). WhenMinFragSize was set to 30 bytes and
MinMatchFactor was set to70%, the number of fragments de-
tected was 350. The number of fragments increased to 358 when
theMinMatchFactor was set to 90% and to 359 when the
MinMatchFactor was set to 100%. In all of our experiments
we observed an increase in the number of detected fragments with
increasingMinMatchFactor.

Figure 7: Number of Fragments Detected for BBC Data set

This phenomenon can be explained as follows. When
MinMatchFactor is set to a high value, the algorithm looks for
(almost) perfect matches. Suppose we had a node A in the AF tree
of one document, with children B, C and D. Suppose the same node
is present in the AF tree of another document, but in this case it has
children B, C and E. Obviously, the nodes in the two trees don’t
match perfectly. IfMinMatchFactor of the algorithm were set
to 90%, then the nodes B and C would be detected as fragments.
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If on the other handMinMatchFactor were set to70%, then
the parent node A would be detected as one single fragment. So
when theMinMatchFactor is set to higher values, the number
of fragments detected increases. However, the size of the detected
fragments falls with increasingMinMatchFactor.
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Figure 8: Maximum Size of the Detected Fragments

Figure 8 illustrates this effect. The graph indicates the maximum
size of the detected fragments for various data sets when
MinMatchFactor was set to70% and90% . For the BBC web
site, the change in the size of the largest detected fragment is rather
drastic. The size falls from 5633 bytes to 797 bytes when
MinMatchFactor increases from 70% to 90%.

The pie chart in Figure 9 indicates the percentage of fragments
according to the number of pages sharing the fragments for the
BBC data set. We see a large number of fragments (a little over
50%) are being shared by exactly two pages.13% of the fragments
were shared among exactly 3 pages, and 11% of the pages were
shared by 10 pages or more. All 75 pages shared one fragment, and
3 fragments were shared by 69 pages. The mean of the number of
pages sharing each of the detected fragments was13.8.

Fragments Shared 
by 2 Pages: 52%

Fragments Shared 
by 3 Pages: 13%

Fragments 
Shared by

4−5 Pages: 11%

Fragments 
Shared by

6−10 Pages: 13%

Fragments 
Shared by

>10 Pages: 11%

Figure 9: Distribution of Fragment Sharing for the BBC Data
set

A similar type of behavior was observed in all three data sets. A
large percentage of the detected fragments were shared by a small
number of pages, but a few fragments were shared by almost all the
web pages of the site.

6.2 Detecting L-P Fragments
We now present the experimental evaluation of the L-P fragment

detection algorithm. Though we experimented with a number of
web sites, due to space limitations, we restrict our discussion to the
web site from Slashdot (http://www.slashdot.org).

Slashdot is a well known web site providing IT, electronics and
business news. The front page of the Slashdot web site carries
headlines and synopses of the articles on the site. The page in-
dicates the number of comments posted by other users under each
article. Thus, as new comments are added to existing articles and
new articles are added to the web site, the page changes in small
ways relative to the entire content of the page. It therefore forms a
good case for L-P fragment detection, as well as other techniques
that identify similarity across pages. The same Slashdot data set has
been used in another study of similarity across pages at the level of
unstructured bytes, finding that different versions of the Slashdot
home page within a short time frame are extremely compressible
relative to each other [17].

This web page provides a good case study to detect L-P frag-
ments for a number of reasons. First, this web page is highly dy-
namic. Not only are there parts of the page that change every few
minutes, the web page experiences major changes every couple of
hours. Second, various portions of the web page have different
lifetime characteristics. Third, the web page experiences many dif-
ferent kinds of changes like additions, deletions, value updates etc.
Furthermore, there are parts of the web page that are personalized
to each user.

Table 1 provides a synopsis of the results of the L-P fragment
detection experiments. A total of 79 fragments were detected when
theChildChangeThreshold was set to 0.50, and 285 fragments
were detected whenChildChangeThreshold was set to 0.70.
We observe that higher numbers of fragments are detected when
ChildChangeThreshold is set to higher values.
ChildChangeThreshold indicates the threshold for the percent-
age of the children to change in value before the parent itself is
flagged as changed. If this threshold is set at higher values, it
is more likely that nodes that are located deeper in the tree are
flagged as fragments. As there are more nodes deeper in the tree,
the number of fragments detected is higher. Equivalently, the av-
erage size of the fragment decreases asChildChangeThreshold
increases. Therefore we note that whenChildChangeThreshold
is set at higher values, larger numbers of small fragments are de-
tected. When it is set to lower values, fewer numbers of large frag-
ments are detected.

In both cases, the depth of fragmentation was 3. When
ChildChangeThreshold was set to0.50, the number of frag-
ments detected at depths 1, 2 and 3 were respectively 10, 7 and 62.

ChildChangeThreshold 0.50 0.70
Total Fragments 79 285

Average Fragment Size 822 219
Depth of Fragmentation 3 3

Table 1: Statistics for L-P Fragment Detection

6.3 Impact on Caching
Having discussed the experimental evaluation of our fragment

detection system with regard to its accuracy and efficiency, we now
study the impact of fragment caching on the performance of the
cache, the server and the network when web sites incorporate frag-
ments detected by our system into their respective web pages.
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We start out by studying the savings in the disk space require-
ments of a fragment cache when the web pages incorporate the
fragments discovered by our fragment detection system in com-
parison to a page cache that stores entire pages. Earlier we had ex-
plained the experimental evaluation of our shared fragment detec-
tion system on the BBC data set. We now compare the disk space
needed to store the web pages in the data set when they are stored at
the page granularity with disk space requirements for storing these
web pages when they are fragmented as determined by our system.
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Figure 10: Total Storage Requirements for Page and Fragment
Caches

Figure 10 indicates the total storage requirements as a function
of the number of pages both for page caches and fragment caches.
The graph shows that caching at the fragment level requires22% to
31% less disk space than the conventional page level caching. The
graph also shows that the improvements are higher when
MinMatchFactor is set to low values. This is because when
MinMatchFactor is set to low values, larger size fragments are
discovered. When they are stored only once rather than being repli-
cated, the savings obtained in terms of the disk space are higher.

Next we study the effects of L-P fragments detected by our sys-
tem on the load on the network connecting the cache and the server.
As we discussed in Section 2, incorporating L-P fragments into web
pages reduces the amount of data invalidated at the caches, which
in turn reduces the load on the origin servers and the backbone net-
work. In order to study the impact of the L-P fragments on the
server and network load, we use the L-P fragments detected by our
algorithm on the Slashdot web site.

To study the load on the network we also need the access and the
invalidation patterns of the web pages. As we did not have accurate
traces indicating the patterns of access and invalidations, we make
certain assumptions, which aid us to create a model for accesses
and invalidations of these web pages.

First, we assume that the requests for web pages arrive according
to aPoisson process, as supported by past analysis [19]. We assume
the request arrival rate to be 100 requests per second. Second, we
also model the invalidation processes of individual fragments as
Poisson processes. We assume that the invalidation process of each
fragment is independent of any other fragment in the web page. The
invalidation rates in our experiments vary from 0.0001 invalidations
per second to 5 invalidations per second.

Figure 11 indicates the total bytes transferred as a function of
the number of requests arriving at the cache, at fragment invalida-
tion rates of 0.001 and 0.1 invalidations per second. The X-axis
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Figure 11: Bytes Transferred between Server and Cache

indicates the number of accesses and the Y-axis indicates the total
number of bytes transferred, on log scale.

The number of bytes transferred for page-level caching is always
higher than for fragment-level caching. When the invalidation rates
are high, this effect is more pronounced. This experiment demon-
strates the effectiveness of caching the fragments discovered by our
fragment detection system in reducing the load on the network con-
necting the cache to the origin server.

6.4 Improving Fragment Detection Efficiency
In this section we evaluate the performance enhancements pro-

posed by us. We have proposed a number of techniques to improve
the performance of the fragment detection process including an in-
cremental scheme to compute theSubtreeShingles of the nodes
in the AF trees (HiSh algorithm). Due to space constraints, we
restrict our discussion to the experimental evaluation of the HiSh
algorithm.
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Figure 12: Number of Hashes Computed in Direct and HiSh
schemes

Figure 12 shows the total number of hash computations involved
in constructing the AF tree. For a document with 1.7K charac-
ters in its content string, the number of hash computations needed
for the HiSh scheme is 2.6 times less than the number of hashes
computed in the direct computation. For a document whose con-
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tent string is 19K characters, the number of hashes computed in the
HiSh scheme is almost 8.5 times less than the number of hashes
computed in the direct computation. We note that the benefits of
the HiSh algorithm are greater for larger documents.

7. RELATED WORK
Fragment-based publishing, delivery and caching of dynamic

data have received considerable attention from the research com-
munity in recent years [11, 13]. Edge Side Includes [2] is a markup
language to define web page components for page assembly at the
edge caches. ESI provides mechanisms for specifying the cacheabil-
ity properties at fragment level. Mohapatra et al. [21] discuss a
fragment-based mechanism to manage quality of service for dy-
namic web content. Chan and Woo [12] use the structural similar-
ity existing among various pages of a single site to efficiently delta-
encode multiple web pages over time. Naaman et al. [22] present
analytical and simulation based studies to compare ESI and delta-
encoding, finding that ESI has potential performance advantages
due to its ability to deliver only changing fragments. In addition to
the above work, there is a considerable amount of literature in the
more general area of the generation, delivery and caching of dy-
namic content [9, 10]. None of these previous papers addresses the
problem of how to automatically detect fragments in web pages,
however.

The work of Bar-Yossef and Rajagopalan [5] is related to our re-
search on automated fragment detection, although the authors were
addressing a different problem. They discuss the problem of tem-
plate detection through discovery ofpageletsin the web pages.
However, our work differs from the work on template detection
both in context and content. First, the work on template detection is
aimed towards improving the precision of search algorithms. Our
work is aimed at detecting fragments that are most beneficial to
caching and content generation. Second, the syntactic definition of
a pagelet in their paper is based on the number of hyperlinks in the
HTML parse tree elements. They define a pagelet as an HTML el-
ement in the parse tree of a web page such that none of its children
have at leastK hyperlinks and none of its ancestors is a pagelet.
This definition is very different from our working definition of a
candidate fragment provided in Section 2. Further, their definition
of pagelets forbids recursion. In contrast we permit embedded frag-
ments. Third, our system has two algorithms: one to detect Shared
fragments and another to detect L-P fragments. Both of these detect
embedded fragments.

There has been significant work in identifying web objects that
are identical, either at the granularity of entire pages or images [4,
16, 20] or pieces of pages [24], using MD5 or SHA-1 hashes to
detect and eliminate redundant data storage and transfer. While
the motivations of these researches are similar to that of the shared
fragment detection algorithm, they are more restrictive in the sense
that they work on full HTML pages and can only detect and elim-
inate pages (or byte-blocks) which are exact replicas. Pages that
are similar at the level of entire web pages [25, 14] or pieces of
web pages [17] can be identified using resemblance detection [6]
and then delta-encoded. While these techniques have the potential
to reduce transfer sizes, decomposing web pages into separately
cached fragments accomplishes similar reductions in size without
the need for explicit version management.

In addition to these, discovering and extracting objects from web
pages has received considerable attention from the research com-
munity [8, 15]. While these projects aim at extracting objects based
on the nature of the information they contain, our work concen-
trates on discovering fragments based on their lifetime, personal-
ization and sharing characteristics.

8. CONCLUSIONS
There has been heavy demand for technologies to ensure timely

delivery of fresh dynamic content to end-users [9, 10, 11]. Fragment-
based generation and caching of dynamic web content is widely
recognized as an effective technique to address this problem. How-
ever, past work in the area has not adequately addressed the prob-
lem of how to divide web pages into fragments. Manual fragmen-
tation of web pages by a web administrator or web page designer is
expensive and error-prone; it also does not scale well.

In this paper we have presented a novel scheme to automatically
detect and flag “interesting” fragments in dynamically generated
web pages that are cost-effective cache units. A fragment is con-
sidered to be interesting if it is shared among multiple pages or if it
has distinct lifetime or personalization characteristics. This scheme
is based on analysis of the web pages dynamically generated at
given web sites with respect to their information sharing behav-
ior, personalization properties and change patterns. Our approach
has three unique features. First, we propose a hierarchical and
fragment-aware model of the dynamic web pages and a data struc-
ture that is compact and effective for fragment detection. Second,
we present an efficient algorithm to detect maximal fragments that
are shared among multiple documents. Third, we develop an algo-
rithm that effectively detects fragments based on their lifetime and
personalization characteristics. We evaluate the proposed scheme
through a series of experiments, showing the benefits and costs of
the algorithms. We also report our study on the impact of adopting
the fragments detected by our system on disk space utilization and
network bandwidth consumption.
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