

Managing Versions of Web Documents
in a Transaction-time Web Server

Curtis Dyreson, Hui-Ling Lin, and Yingxia Wang
Washington State University

School of Electrical Engineering and Computer Science
Pullman, WA, USA
+1 509 335 0903

{ cdyr eson, ywang, hl i n3} @eecs. wsu. edu

ABSTRACT
This paper presents a transaction-time HTTP server, called ���

Apache that supports document versioning. A document often
consists of a main file formatted in HTML or XML and several
included files such as images and stylesheets. A change to any of
the files associated with a document creates a new version of that
document. To construct a document version history, snapshots of
the document’s files are obtained over time. Transaction times are
associated with each file version to record the version's lifetime.
The transaction time is the system time of the edit that created the
version. Accounting for transaction time is essential to supporting
audit queries that delve into past document versions and
differential queries that pinpoint differences between two
versions.

���
Apache performs automatic versioning when a

document is read thereby removing the burden of versioning from
document authors. Since some versions may be created but never
read,

���
Apache distinguishes between known and assumed

versions of a document.
���

Apache has a simple query language
to retrieve desired versions. A browser can request a specific
version, or the entire history of a document. Queries can also
rewrite links and references to point to current or past versions.
Over time, the version history of a document continually grows.
To free space, some versions can be vacuumed. Vacuuming a
version however changes the semantics of requests for that
version. This paper presents several policies for vacuuming
versions and strategies for accounting for vacuumed versions in
queries.

Categories and Subject Descriptors
H.3.5 [Online Information Services]: Web-based services—HTTP
server; H.2.4 [Database Management Miscellaneous] Temporal—
Document versioning, transaction-time databases

General Terms
Design, Performance.

Keywords
Observant system, versioning, transaction time

1. INTRODUCTION
The World-wide Web is the largest, most frequently used, text-
based information resource. The web currently has several million
servers providing access to several billion documents. The web is

also dynamically changing. Hundreds of thousands of documents
are added, moved, updated, and deleted daily. Recent studies

have investigated the lifetime of documents [2,4,19]. Cho and
Garcia-Molina suggest that documents at . com sites change
rapidly and have short lifetimes, while those in . edu and . gov
domains change slowly and live longer. In the study, more than
40% of documents in the . com domain changed every day, but
more than 50% of documents in . edu and . gov domains were
unchanged for at least four months. Many of the documents
available on the web conform to the HyperText Markup Language
(HTML), but in the near future, the Extensible Markup Language
(XML) [27] is expected to gain in importance as a mark-up
language for web documents.

The database research community has been active in applying
database concepts and techniques to the web [10]. Over the past
two decades there has been a substantial amount of research on
extending databases to support time [23,25]. This research has, in
part, developed the field of transaction-time databases [15,17,21].
Transaction time is the time when a particular fact is stored in a
database and considered current, i.e., the time between when it is
inserted and deleted (an update is modeled as a deletion followed
by an insertion). Very briefly, a transaction-time database stores
all of the past states of a database and allows queries, called
transaction timeslice, to retrieve any desired past state.
Transaction-time databases are useful when the history of a
database is needed, for instance when performing audits in
financial or legal applications. They also support unlimited undo
or rollback on (committed) data.

In this paper we apply concepts and strategies from transaction-
time databases to the web. Transaction time is a problematic
concept for the web because there are few update transactions.
Browsers and other consumers of web data have read access to
data, but rarely can insert, update, or delete data. Updates to web
data are irregular, ad-hoc, and hidden from readers of that data. To
remain current with a constantly evolving document, the
document must be re-read.

We call such a reader an observant system. An observant system
is a system that can observe documents but (generally) cannot
modify them. A web browser is an observant system. It reads
documents from the web but cannot update those documents
(however, a browser can submit information to a server for
update). A web server (an HTTP server) is also an observant
system. A web server responds to an HTTP GET by reading a file
from local storage, but it is usually uninvolved in an update of that
file. Observant systems are common on the web because they
facilitate the fast, easy, and cheap publication of data: data is
published by placing it at a location where it can be observed.

Although an observant system is uninvolved in an update, it can
detect that an update has occurred during a read by comparing the
current version with the last observed version of the same

Copyright is held by the author/owner(s).
WWW 2004, May 17–22, 2004, New York, New York, USA.
ACM 1-58113-844-X/04/0005.

422

document. A difference denotes that an update occurred
sometime since the previous read.

A transaction-time web server is an observant system that
archives document versions during HTTP requests to create a
complete history of the documents at a website [8]. The server
also processes transaction-time queries to fetch requested
versions from the archive. Internal to the server are an archive to
store past versions and a history table to record information about
the versions.

This paper describes an extension of the Apache web server,
called

���
Apache (Transaction-Time Apache), that provides

transaction-time support.
���

Apache makes the following
contributions.

No additional work for document authors  The extended
server automatically archives document versions during HTTP
GETs. Unlike other archives that store versions off-line or using
robots, we believe that the server itself can efficiently create and
manage versions during resource GETs.

HTTP-compatible quer ies  A simple “URL munging” scheme
to retrieve versions and version histories [8]. The scheme is very
inelegant, but is fully backwards-compatible with existing servers,
browsers, and standards. An Apache server can seamlessly
migrate to a

���
Apache server at any time without affecting

anything else on the web. Elsewhere we have proposed better
ways to express transaction-time queries, in for example XPath
[9], but more elegant solutions require making more substantive
changes [16].

Link rewr iting  Server-side rewrites of links and references to
other documents to point to archived documents [8]. This enables
a user to “ time-travel.” In time-travel the user defines their
perspective as of some past (or future) time and surfs the web (of ���

Apache servers) as it existed at that time.

Assumed versioning  Support for known vs. assumed versions.
Some versions of the document may be unobserved versions
because they were not requested from the server during their
lifetime. If the document has not been modified since the last
read, then it is known that the current version is under observation.
But if a document has been modified since the last read, then the
evolution of the document is unknown between the read time of
the previous observed version and the modification time of the
current observed version. One or more unobserved, transitory
versions may have existed. Hence the previously read version is
assumed but not known to have existed until the current version’s
modification time.

Vacuuming  The ability to expire documents from the archive
and maintain version history for files that are moved or change
names.

Efficient per formance  We give empirical measurements of
the extended functionality. We show that the server extensions
increase disk I/O in some HTTP sessions, which results in a
slightly slower average turnaround time. But the additional cost
would not adversely impact the performance of most servers.

All of the new functionalities are designed to be backwards
compatible with existing protocols (e.g., HTTP) and standards
(e.g., HTML), so a site can become a vacuum-enhanced,
transaction-time web server at any time. This paper presents a
logical model for the design and URI-compatible syntax for
supporting the new functionality.

1.1 Related Work
In many situations “old” documents are still of use. Currently, the
de facto method for storing old documents is an archive. An
archive is a warehouse for deleted or modified documents. When
a document1 is modified, it is moved either manually or
automatically (often by a robot) into the archive. Each archive
has a specific interface to find an archived document, usually in a
few mouse clicks. At many sites, especially news-related sites, a
search engine-like retrieval mechanism is also available.
Archives can be site-specific or built for a number of sites, e.g.,
the Internet Archive [12]. Unlike the Internet Archive,

���
Apache

archives only the documents that it serves.

One problem with some archives is that the retrieval interface is
not standardized but instead varies widely from site to site. This
is problematic because when an old document is retrieved, the
(external) links on that document point to current information.
Furthermore, it is often the case that an archived document cannot
be displayed the same as when it was created because it includes
files such as inline images and links to external documents that
have subsequently been archived.

The Internet Archive uses the WayBack Machine to elegantly, and
correctly support transaction timeslice. When an archived page is
retrieved a JavaScript program is appended to the page to redirect
hyperlinks on the page to archived documents in the Internet
Archive as of the time the page existed. This allows the user to
surf the web, as it once existed, or at least the portion of the web
that is stored in the Internet Archive as of that past time.

iPROXY is a closely related system [20]. iPROXY is a personal
proxy server. One of the services it provides is archiving of the
documents it downloads. Hence a client can set up an iPROXY
server to create a proxy-side archive. The documents in the
proxy-side archive may originate at many different servers. ���

Apache, in contrast, maintains a server-side archive. It
archives only documents that it serves. One advantage of a
server-side archive is that all the clients share it. This does not
preclude documents in a server-side archive from being
additionally cached in proxy- or client-side archives. Like ���

Apache, iPROXY uses URL-munging to support transaction
timeslice, but without a link-rewriting component.
���

Apache provides much finer-grained versioning than iPROXY
or the Internet Archive.

���
Apache is a per-request archiver. In

contrast, the Internet Archive is a periodic archiver. The Internet
Archive robot only periodically visits a document. iPROXY is an
on-demand archiver. In on-demand archiving a document is
archived as the result of a specific user request. There are other
systems that do author-requested archiving, for instance with a
cgi-bin script [7].

Neither the Internet Archive nor iPROXY create document
version histories. So neither supports next or previous version
queries nor distinguishes between known and assumed versions. ���

Apache is also the only archiver to support vacuuming, which
allows users to control the growth of the archive.

In the context of transaction-time database, a semantic foundation
for vacuuming has been presented [22]. A vacuuming
specification is proposed that consists of a removal specification
part and a keep specification part that overrides the removal part.
Vacuuming impacts both database queries and updates. ��� Apache

1 We will use the terms ‘page’, ‘ resource’, and ‘document’

interchangeably in this paper.

423

supports only a removal specification, and correctly supports
vacuuming for both web queries (HTTP requests) and updates
(document edits).

Concurrent Versions System (CVS) is a widely-used version
control system for developers to maintain their source code [6].
CVS stores the version history of files in a repository, which is
built as a directory tree structure corresponding to the directories
in a working directory outside of the repository. The history of
each file keeps all versions of that file in the RCS file format that
only stores difference between versions [24]. ��� Apache stores
entire versions rather than the difference between versions.
Versions are committed to CVS via explicit command line
options. Besides version tracking, CVS provides functionalities
such as browsing histories, removing and renaming files and
directories.

The final related system is Xyleme [26]. Xyleme is a warehouse
for XML data. XML documents are periodically pulled from the
web and incorporated into the warehouse. Version information,
or rather, differences between versions of a document are
detected, stored, and can be queried. Efficient techniques for
isolating changes between versions have been developed [5].
Unlike Xyleme,

���
Apache is a very primitive versioner. ���

Apache does not compute changes between versions since the
versioning is done in the inner-loop of the server, potentially on
each request. Hence we need to keep the cost of versioning at a
minimum. In this paper we empirically demonstrate that our
extensions to Apache have little impact on server performance for
real-world conditions.

1.2 Motivating Functionality
A transaction-time web server provides HTTP-compatible queries
allowing online users to time-travel among different versions of
resource.

���
Apache supports version time-slice and version

history queries. A timeslice query retrieves the version of a
document as of a given time. A previous (next) version query
retrieves the requested version relative to the current version
(what is considered “current” depends on previous timeslice
queries). A history query returns the list of versions in a history.

We implemented a simple scheme for specifying such queries:
they are appended after a ‘?’ to a URL. The advantage of this
scheme is that requests to non-transaction-time servers will
function exactly as before since the query portion is ignored in
HTTP requests for static resources (queries for dynamic resources
are not-included in this strategy). We chose to use “URL
munging” because it requires no changes to existing browsers,
servers, or HTTP. A site can choose to use a

���
Apache web

server without adversely impacting current functionality.2

The following examples illustrate the strategy.

1) Retrieve the current version of spor t s. ht ml .

 spor t s. ht ml ?now

One could also specify that the links in the retrieved version be
rewritten to point to the current version. A comma character
separates the time-slice specification from the link-rewriting

2 URL munging is an inelegant solution, but can be implemented

in existing browsers, servers, and relevant W3C
recommendations (namely it fits within the HTTP protocol and
URI scheme). In future, we anticipate that web technology will
permit cleaner expression of transaction-time queries using
content negotiation, XLink, or XPointer.

specification. In the following query, both specifications are
“now”.

 spor t s. ht ml ?now, now

However, since the default fetch and rewrite are now the
following URL has the same effect, as both of the URLs given
above.

 spor t s. ht ml

2) Resurrect the previous version of spor t s. ht ml as though it
were the current version.

 spor t s. ht ml ?pr e

A non-transaction-time web server ignores the transaction time
part of the URL (for a static document) so it would fetch the
current document. A transaction-time web server will fetch the
predecessor, but will not restructure links in the predecessor. The
version two versions ago can also be requested by appending a
second pr e step to a pr e time-slice as illustrated below (a period
character is used append a step).

 spor t s. ht ml ?pr e. pr e

As can the version prior to 26-Sep-2003.

 spor t s. ht ml ?26- Sep- 2003. pr e

3) Retrieve the version as of 26- Sep- 2003, and time-travel on
links as of that time.

 spor t s. ht ml ?26- Sep- 2003, 26- Sep- 2003

The links are rewritten to time-travel within the selected timeslice.
If the version on the requested date is assumed, a 404 error is
generated.3 In previous and next version queries the link rewriting
time can be set to the time of the selected version.

 spor t s. ht ml ?next . next , t i meOf

4) Retrieve a list of the changes made in 2003 to spor t s. ht ml .

 spor t s. ht ml ?hi st or y(1- Jan- 2003,

 31- Dec- 2003)

The time interval of the history query is set to the entire year. The
query will return a page with a list of links to known and assumed
versions (the formatting of the page is part of the server
configuration).

5) By default only the known versions of the document are used.
The assumed keyword can be added to include the assumed
versions in the fetch (or rewrite) (Section 2.2 discusses the
differences between known and assumed versions). Fetch the
version prior to 26- Sep- 2003, even if that date specifies an
assumed version.

 spor t s. ht ml ?assumed. 26- Sep- 2003. pr e

6) Remove all the versions within the first year of the server’s
history (i.e., vacuum with a fixed time-window [begi n to
begi n+365] where begi n is the start time).

 spor t s. ht ml ?

vacuum(t - wi ndow, begi n, begi n+365)

The vacuuming works only on the file spor t s. ht ml . The
archived versions of included files (e.g., images) are not affected.
A vacuuming specification can be set only by an authorized user.

3 The default strategy can be modified in the server’s

configuration file to use assumed versions or to return the latest
known version prior to an assumed version.

424

7) Vacuum every other version of all files in the “spor t s”
directory. This specification uses a version window, which starts
at version 1, and applies to every 2nd version.

spor t s/ ?vacuum(v- wi ndow, 1, 2)

8) A query for the seventh version of sports.html will result in a
404 HTTP_NOT_FOUND error due to the previous vacuuming
specification. The web master prefers a more elegant interaction
with users of the site. She would like the server to repair the
query and return the previous document version as a reply for the
user’s request for a vacuumed version. She can achieve this as
follows.

spor t s. ht ml ?vacuum(r epai r =past)

9) If the history of the document is no longer needed, it can be
obliterated, removing it from the archive.

spor t s. ht ml ?obl i t er at e

1.3 Paper outline
This paper describes an efficient archive with a standard, simple
mechanism for retrieving past versions of documents.

���
Apache

archives documents during resource reads as described further in
Section 2. Section 3 gives a syntax for transaction-time queries
and describes the functionality of the server. We implemented the
archive as an extension of the Apache web server, as discussed in
Section 4. Creating document versions is potentially expensive
since it is done in the “ inner loop” of the server, and adds
processing to every request. We empirically measure the cost of
the extra processing in Section 5.

2. TIME MODEL
An observant system only occasionally observes a document.
Each observation yields information about the document, as it
exists at a single point in time, which we will call the read time.
The observation also yields meta-data about the document. In the
HTTP 1.1 protocol an important piece of meta-data is the
modification time of a file. The modification time is the time
when the file was last modified.

The read and modification times are kinds of transaction time.
Research in temporal databases has identified two primary,
distinct time dimensions: valid time and transaction time [13].
Valid time is the real-world time of a datum, whereas transaction
time is the system time when that datum exists on the system. A
file modification time is a transaction time. In this paper, the
transaction-time domain is a set of instants,

 T ��� = {begi nni ng, …, now, …, f or ever } .

The variable, now, represents the ever-changing current time [3].
In contrast to traditional temporal database research, the
transaction-time domain ends at forever thus permitting future
transaction times. This enables document authors to set future
expiration times for documents and to schedule documents for
future release. Example times in this paper will be represented
using Gregorian calendar conventions in the granularity of days,
so each instant in the transaction-time domain corresponds to a
day.

2.1 File versions
We will call each observed modification a new version of the file.
The read time and modification time can be used to infer

knowledge about unobserved states of the file. If the file has not
been modified since the last read, then it is known that the current
observed version is the version in existence since the modification
time. We will refer to this as the known lifetime or state of a
version. Each subsequent read on an unmodified version will
push the read time later. If the document has been modified since
the last read, then the evolution of the file is unknown between the
read time of the previous observed version and the modification
time of the current observed version. We will refer to the
unobserved lifetime of a version as its assumed lifetime, because
the observant system can only assume that the version existed. A
file version history is defined as follows.

Definition 1. [File version history] The version history of a file,
denoted V(f), is represented as a sequence of ordered triples, (m1,
r1, s1), …, (mn, rn, sn), where mi is the time of the file modification
that created version i, ri is the time at which that file was last
observed, and si is the HTTP status (OK, missing, or protected).
We assume that the version must have been observed at least
once, so mi ≤ ri for every version i.

�

A file version is created when a file is first read at time t. The
file’s modification time m1 is retrieved and the first version’s
information is (m1, t, s1). Each subsequent read, at time r1,
increases the last read time to (m1, r1, s1). Finally, during some
read, at time r2, it is observed that the file has been modified at
time m2. A new version is created with the information (m2, r2,
s2). The closed interval of time [m1, r1] is the known lifetime of
version 1 and the open interval of time (r1, m2) is the assumed
lifetime.

An observant system should include the history of observed
HTTP errors. Hence we record when a version is missing (a 404
error) or protected from observation (a 403 error).

2.2 Document versions
A document version history is derived from a set of file version
histories. A document consists of a main file and a set of included
files such as figures, inline image and stylesheets, which we will
call the included files. Over time, the main file may change or
any of the included files. Furthermore, the members in the set of
included files may vary. A new document version is created by a
change in either the main file or any of the included files.

Definition 2. [Document version history] The version history of a
web document is represented as a sequence of ordered tuples, (k1,
e1, a1, F1, s1), …, (kn, en, an, Fn, sn) where [ki, ei) is the known
lifetime of version i and [ei, ai) is the assumed lifetime. The
version must have some lifetime so either ki < ei or ei < ai. If ei =
ai then the version has only a known lifetime, or if ki = ei then the
version has only an assumed lifetime. Fi is the set of included
files for version i, and si is the HTTP status of the main file.

�

We first give an example of constructing a document version
history, and then discuss the details. The known and assumed
lifetimes for a document version are derived from the times of the
file versions. Figure 1 shows the document version history of a
spor t s page document. The document consists of a main
file, spor t s. ht ml , and three included images, a. gi f , b. gi f ,
and c. gi f . The lifetime of each file version starts with the time

425

2

0 4 8

5 10

V1

V2

V1

V2

V1

V2

V1

V2

V3

V3

V1

V2

V3

V4

V5

V6 V7

sports page

1

c.gif

b.gif

a.gif

sports.html

4 5 6 7 8 10

7

0 6

1

0 2

0

4 6 8 10

4

2

6

7

9

9

8

10

10

now

Figure 1 Constructing a Document Version History

that the version was created (a file modification time, as indicated
by an arrow). The lifetime extends until the version was next
modified. During its lifetime the version was possibly read
several times. The time of the last read terminates the known time
of that version (indicated by the solid line below the version).
The assumed version of the file begins after the last read since the
file was unobserved from that time until it was next modified
(indicated by the dashed line below the version). For instance, the
file spor t s. ht ml has versions: V1 and V2. V1 was created at
time 1 and last read at time 6. At time 9 the file was read again.
An edit had taken place at 7, so V1’s lifetime was terminated and
V2’s lifetime begun. Between 6 and 7, V1 was not observed
and so its existence can only be assumed. It may have been
deleted and recreated or edited several times. The document
versions are derived from the underlying file versions. The
overall lifetime and status of the document is the same as that of
the main file. Each file version creates a new sports page version.
The sports page version has a known lifetime when all of the file
version’s lifetimes are known but an assumed lifetime when even
one file version is assumed.

The remainder of this section describes the construction process in
detail.

Definition 3. [Document version] Assume that a document, D has
a main file, M. For each version of M, let mi be the modification
time of the version, si be the status, and Fi be the set of included
files. Then the set of document modification times is given
below.

 Tmod = {m | ∃i[(mi, ri, si)∈V(M)
 and (m,r,s)∈V(f)
 and mi≤m<mi+1 and f∈Fi]
 or (m, r, s)∈V(M)}

Tmod is the set of modification times for the main file together with
the set of modification times for included file versions that have
the same lifetime as some main file version. Let

 Sort(Tmod) = (m1, m2, …, mj)

be a sorted list of modification times such that mi < mi+1. A
version vi = (ki, ei, a i, Fi, si) of D is constructed as follows.

• ki = mi

• ai = mi+1

• si is the status of M as of time ki

• Fi is the set of included files in M as of time ki

• ei = r where r earliest time, mi ≤ ei ≤ mi+1, for which
some file version (included or main) is assumed.

�

3. FUNCTIONALITY
This section discusses, from a user perspective, the functionality
that

���
Apache adds to the Apache web server. First, a

transaction-time server supports additional kinds of queries, called
transaction-time queries. There are transaction-time queries to
retrieve specific versions as well as entire version histories. Over
time the collection of archived versions will continue to grow.
But versions can be vacuumed from the archive to recover space.
We present several vacuuming strategies. It is also possible to
hide documents from

���
Apache, and forward version histories

when documents are forwarded.

426

3.1 Queries
In this section we present a syntax for transaction-time queries (to
conserve space we have omitted the syntax of vacuuming
specifications). Transaction-time queries consist of two parts: a
fetch and rewrite. The fetch part retrieves a particular version or
version history. The rewrite part specifies the formatting of
hyperlinks in the requested document. The BNF for a query is
given in Table 1. Table 2 lists the meanings of the keywords in
the BNF. The default for an empty fetch and rewrite is now.
Therefore, the default response of a transaction-time web server is
the same as that of a normal web server, i.e., return the current
version and do not rewrite links. The queries use only the
known versions by default, but the keyword assumed means that
a user wants to include the assumed versions as well.

Table 1 BNF for queries
	 �
� Query> : : = <fetch> [, <rewrite>]

<fetch> : : = <timeslice> | <history>

<timeslice> : : = �
| [assumed.]
 (
 pr e
 | next
 | <time> [.<timeslice>]
)

<history> : : = [<timeslice>.]
hi st or y [(<time>,<time>)]

<rewrite> : : = �
| [assumed.]
 (
 < time>
 | pr e
 | next
 | t i meOf [. <rewrite>]
)

<time> : : = <day>-<month>-<year>
 [/ <hour>:<min>:<second>]
| now | begi nni ng | f or ever

<day> : : = 01 | 02 | … | 31

<month> : : = Jan | Feb | … | Dec

<year> : : = 0000 | 0001 | … | 9999

<hour> : : = 00 | 01 | … | 23

<minute> : : = 00 | 01 | … | 59

<second> : : = 00 | 01 | … | 59

Table 2 Meaning of terms in a timeslice query

Term Description

� (empty) Request for the current version

pr e Request for the previous version

next Request for the next version

now Request for the current version

time literal Request version that existed at the specified time

t i meOf Restructure hyperlinks with the time which is the
same as that in the transaction-time query

assumed Use known and assumed versions.

3.2 Vacuuming
A primary concern in running and maintaining

���
Apache is that

the archive grows in size over time until it eventually exceeds the
storage capacity, since every modification of a main file or an
included file is stored as a new file version in the archive. To
restrict the archive’s growth, we can store the differences between
versions (thereby reducing the size of individual versions) or
eliminate versions. There are three primary options. One is to
store the difference between file versions with the difference
computed by comparing each file version with its predecessor
version. The second also stores the version differences, but the
difference is computed by comparing each file version with the
original file version. The third method is to eliminate versions,
with the archive storing the complete file versions.

A comparison of the three methods is shown in Table 3. In the
table, method (a) stores only the difference between successive
versions; therefore it makes the best usage of storage. Method (c)
stores entire file versions, thus occupying the most storage.
Method (b) is in between in the storage consumption. It stores the
difference between the version and the initial version (along with
a complete initial version). When processing a time-slice query,
method (c) can retrieve the queried version fastest; method (b)
would have to reconstruct the requested version from the initial
file version and the difference with the requested version; method
(a) has to reconstruct the queried version by accumulating all the
differences from the beginning, thus more time is needed. The
reconstruction in method (a) needs every file version so a file
version cannot be eliminated directly, however, a version can be
eliminated indirectly after first determining the difference from
the previous version to the next version (skipping the current
version). While in method (b) and (c), every stored difference or
file version is independent (or at most dependent on the initial
version), hence most of the versions can be eliminated. So
method (a) is not amenable to vacuuming.

���
Apache implements

storage method (c), which provides faster query responsiveness
than (b).

Table 3 A compar ison of three storage control methods

Store Version
Difference

(Reference Chosen)

Measured
Aspect

Previous
Version (a)

Initial
Version (b)

Store Entire
Version (c)

Storage
utilization

Smallest Medium Largest

Time-slice
efficiency

Slowest Medium Fastest

Can eliminate? Indirect Yes Yes

The archive keeps file versions for all documents at the website,
but each document author should be able to express their
preference for which file versions are to be vacuumed. For
instance, one author may want to remove versions older than two
years, while another would like to keep only versions that are
significantly different. Hence, each deletion should be predefined
under some policy. File versions are deleted according to
vacuuming policies specified by document authors or a site
administrator.

427

Time Line

After
vacuum:

Before
vacuum:

return this version

After
vacuum:

Before
vacuum:

Current time

V1 V2 V3 V4

V1 V2 V3 V4

Vacuumed version Un-vacuumed version HTTP read request

Time Line
Current time

V1 V2 V3 V4

return HTTP_NOT_FOUND

V1 V2 V3 V4

Policy 1: Vacuum old versions:
V1 and V2

Policy 2: Vacuum the first out of two:
V1 and V3

Figure 2 Vacuuming Example

Vacuuming, in a transaction-time database, means to physically
delete records of past states [13]. A transaction-time database
maintains past database states, thus making it possible to access
any past state. If no information is physically deleted, a
transaction-time database will grow forever, and will eventually
outgrow the storage capacity. Vacuuming is a way to remove
unwanted data when more space is needed for other data. The
TSQL2 temporal query language offers a basic vacuuming
functionality: when a particular date is specified, only data that is
prior to the date should be physically deleted [14].

In a transaction-time web server that archives document versions,
vacuuming works to restrict the growth of the archive. Compared
with the data stored in a transaction-time database, the archive
size increases much faster since web documents are much larger
than database records. Each modified or deleted document, e.g.
HTML file or image file, is stored in the archive. In general, a
web server has a large number of web documents. Vacuuming is
applied to reduce the size of the fast-growing archive. Old or
seldom needed document versions or incremental document
versions having small changes are vacuumed under specified
vacuuming policies.

For example, suppose the file spor t s. ht ml has four file
versions in the archive: V1, V2, V3, and V4. If we apply the
policy that older versions are no longer needed (e.g., V1 and V2
are “older” versions), then they are vacuumed from the archive.
Policy 1 in the left half of Figure 2 shows the older versions being
vacuumed. However, Policy 2 in the right half of Figure 2 shows
the policy of vacuuming every other version; therefore, V1 and
V3 will be vacuumed. A query for V3 will result in an
HTTP_NOT_FOUND error (or the query can be repaired to the
next or previous version).

Vacuuming policies are specified in the server configuration file
on a per-directory basis, or can be dynamically specified by
authorized users.

• periodic sieve - This policy vacuums every nth version,
e.g., a 1,2-sieve will vacuum every other version.

• version-window sieve – This policy vacuums a moving
window of versions, e.g., vacuum all versions older than
the fifth previous version, in other words, keep only the
most recent five versions.

• time-window sieve – This policy vacuums versions
within a fixed time window (e.g., Jan-1-2001 – Dec-31-
2001) or a moving time window (e.g., now – 1 year).

• percent-difference sieve - This policy vacuums every
version that is less than n% different from the previous
version. The idea is to keep only versions that have
“significantly” changed. The diff utility is used to
compute the size of the difference.

• composite sieve – The previous sieves can be combined,
e.g., in the previous year (a time-window sieve) vacuum
every other version (a periodic sieve).

No matter which vacuuming policy is used, notification should be
given to a user who queries a vacuumed version. The query-
repair strategy is specified along with a vacuuming strategy on a
per-directory basis.

• Redirect to previous version – A timeslice on a
vacuumed version is redirected to the closest, previous,
non-vacuumed version.

• Redirect to next version – Similar to previous, but the
query is redirected to the closest, next, non-vacuumed
version.

• Return vacuumed icon – An appropriate vacuum “ icon”
is returned by the server. For example, an request for a
vacuumed HTML page could return a page reporting
that the “Page has been vacuumed” along with a link to
the previous and next non-vacuumed versions.

3.3 Additional functionality
Not all documents should be versioned in the archive. The server
configuration includes options to specify the default policy for the
entire site (archive everything or archive nothing). Individual
directory trees and documents can be excluded (or included) in the
archiving by editing the t r ansact i onTi me. cnf file
appropriately. Furthermore, an archived document (or directory
tree) can be permanently removed from the archive by executing
an obliteration specification.

Files are sometimes moved on disk to new locations. When a file
is moved, the history of that file, unfortunately, does not move
with it, since the file move is performed by the operating system,

428

not the web server.
���

Apache has a forwarding query to let
authors advise

���
Apache that a file has been moved and the

history of that file should be logically extended to the new
location.

4. SERVER ARCHITECTURE
Figure 3 depicts a transaction-time server architecture. It works in
much the same way as a normal server, but has some extended
functionality to archive files during an HTTP GET and to respond
to

���
Queries.

A client requests a document by passing a URL to
���

Apache.
Just like a normal server, the URL is converted to an absolute path
to a file located somewhere on the server’s file system, and the
requested file is read from disk and sent to the client. Unlike a
normal server,

���
Apache maintains the file version history in the

history table. The history table is a database of file modification
and read time information. There are three possible actions when
a file is read.

1) No history exists - A new tuple is created to store the
information relevant to the first version.

2) The history is out-of-date - A new version has been
created since the previous GET. If the latest tuple in the
history is earlier than the modification time of the file,
then the current version’s lifetime is terminated and a
new tuple for the new version is added to the history
table.

���
Apache also creates an archived version of the

file as shown as gray block arrow in Figure 3.

3) The history is current - If the latest tuple stores the same
file modification time as the current file, then no
changes have been made since the previous GET
however, the read time in the tuple is updated to the
current time.

To process a transaction-time query, the history table is also
consulted. First,

���
Apache retrieves the requested file from the

disk. It has to parse the file to determine which other files are part
of the document (i.e., image files and stylesheet files). Currently
it parses only HTML files. Once it determines the set of files for
the document, the server then retrieves all of the tuples relating to
all of the files and constructs the document version history as
outlined in Section 2. Next the query itself is evaluated with
respect to the created document version history. The requested
version is retrieved from the archive and links are rewritten as
specified by the rewrite part of the transaction-time query. Finally,
the server sends the requested document to the client.

4.1 Apache
We implemented a transaction-time web server as an extension of
the Apache web server. The Apache web server was chosen
because it is widely-used, open source, free, and extensible.
According to Netcraft, a British market research company,
Apache servers now run on over 50 percent of the Internet’s web
server [18]. Our new features: the document history table and ���

Query parsing and evaluation are implemented in the server’s
inner loop, which is the code to process incoming requests. The
Apache web server uses a pre-forking model. It forks child
processes to do the actual work of accepting incoming requests. A
child process serves multiple connections in its lifetime. The
parent process forks a new child process or kills an old one based
on the load of the server. The advantage of this pre-forking model
is robustness. If a child crashes the server can keep going.

4.2 Using BerkeleyDB for the history table
We chose BerkeleyDB for management of the history table.
BerkeleyDB is an open source, database library that provides a
simple function-call API for data access and management.
BerkeleyDB is robust and fast. Since multiple processes are
accessing the database (requests are handled in Apache by child
processes) we implemented all database operations within
transactions. We used BerkeleyDB’s lock manager to support
transaction aborts, commits, and concurrency control.
BerkeleyDB uses deadlock detection and recovery in the lock
manager rather than deadlock avoidance so we additionally
checked all transactions to recover from potential deadlocks.

Current Documents Archived Documents

History Table

�
�
Query or URL

response

archive

update

Client
�
�

Apache

document

Figure 3 A ��� Server Model

5. EMPIRICAL ANALYSIS ���
Apache is implemented as an extended Apache web server.

The extension supports user requests for specific document
versions and histories. This section describes how the additional
functionality impacts performance. Performance is an important
concern for most web users [11]. There is always an overhead on
performance when additional functionality is added to an
application. In this section we empirically measure the overhead
in a series of experiments. We discuss the goals and designs of
the experiments in Section 5.1 and Section 5.2, respectively. The
results are presented in Section 5.3.

5.1 Factors in measuring overhead
The goal of the experiments is to determine the amount of
overhead imposed by the transaction-time functionality. The
overhead could manifest itself in several, related ways. First, a
longer turnaround time is expected. The turnaround time is the
interval of time, at the client side, between the submission of an
HTTP request and its completion. Second, disk I/O will be more
frequent.

���
Apache has to additionally manage the history table

and to create archival copies of files. The increased frequency of
disk I/O will result in a longer turnaround time. Third, memory
usage might increase. Memory is consumed by the file system
cache, virtual memory, the kernel, and server processes. Since

429

���
Apache reads and writes more files than the normal Apache

server, the file system cache will be more heavily used. As
memory usage increases, swapping of virtual memory will also
increase. So, the amount of memory used will (indirectly) effect
the turnaround time. Fourth, CPU efficiency could decrease. If a
process is waiting for disk I/O, the CPU will be idling for that
process. A low CPU efficiency is an indicator of longer
turnaround time.

One factor that influences the amount of overhead is the rate at
which files are updated. On a request to a file that has been
updated,

���
Apache has to update the history table and archive a

file. This effectively doubles or triples the disk I/O compared
with the normal Apache web server. Hence it will be important to
test a range of file update rates to determine how the update rate
changes the overhead.

The size of a requested file is also an important factor in
determining the amount of overhead because a larger file takes
more time to backup. In addition, the size of a main resource file
is related to the performance of creating a version history since it
is necessary to parse a file to figure out how many inline images
are included before generating a list of all possible versions (a
cost that is similar to allowing sever-side includes). We will
experiment with different file sizes to determine how the file size
impacts the cost.

The final factor is the percentage of
���

Queries in all requests.
We anticipate that transaction-time queries will have a greater
overhead because several database reads may occur during a
request. We will test several ratios of

���
Queries to normal

requests.

5.2 Design of the experiments
We designed a series of experiments to independently test how the
page update rate, the page size, and the percentage of

���
Queries

affect the overhead. The experiments are “peak load tests” that
artificially maximize the load on the server by inundating it with
requests. This strategy is the same as that used by the Apache
Benchmark tool [1]. We spawned five concurrent users to make
requests. However, in contrast to other tools, we tried to force
requests to go to the disk to read files rather than to find files in
the system’s file cache. If all the files are cached in memory, ���

Apache will be almost as fast as Apache. So we want to force ���
Apache to read and write files from disk and minimize the

effects of file caching by the system. The system we are using to
run the tests has a single disk with a random block I/O time of
approximately 10 milliseconds, consequently, if all of our requests
force at least one disk read, at best we can process about 100
requests per second.

Overall, every test for a single data point within an experiment
consists of the following steps.

1. Start ��� Apache from an initially empty state – We
create a new, empty database and a new, empty archive
to ensure that all tests start in an identical, empty state.

2. Pre-fetch 3000 documents - Before applying the actual
tests, we pre-fetch some of the available documents
(there are 3000 documents at the test site). The purpose
of this step is to populate the file system cache thereby
reaching the memory condition of a normally active
web server before starting the first run.

3. Per form multiple runs - We perform five runs for each
data point. Each run randomly makes 3000 requests.
The data collection methods vary. For timings, we

record the turnaround time from the beginning of a run
to the end of that run, and then take the average over all
the runs. For disk and memory usage statistics, we
aggregate the measurements, collected using vmst at ,
over all the runs.

4. Shut down ��� Apache - We shut down
���

Apache when
the last request of the last run is completed.

���
Apache

will be restarted (Step1) for a new test.

The general experiment is tailored to test three specific factors,
file update rate, file size, and percentage of

���
Queries. One factor

is the rate at which files are updated. An update is implemented
by “ touching” a file just prior to requesting it. We decided to test
file update rates of 0%, 1%, 2%, 5%, 7%, 10%, 15%, 50% and
100%. The percentage is the probability that a page will be
updated. For instance, in a 2% test, there is a .02 probability that
the test code will update the requested file. We measured the
overhead for each update rate using the experimental procedure
outlined above. Another factor is the file size. We performed
experiments with large files, 60KBs, and small ones, 1KB. A third
factor is the percentage of

���
Queries. We decided to test four

percentages of
���

Queries, 1%, 5%, 20% and 80%. For example,
a test with 1%

���
Queries means that there are 99% normal

Apache requests (non-transaction-time queries) and 1% ���
Queries. The

���
Query applied in a test covers four kinds, pr e,

26- Sep- 2003, pr e. pr e. pr e, and hi st or y. The
���

Query
was picked randomly from these four up to the percentage of ���

Queries.

5.3 Experiment Environment
We conducted the experiments on a Pentium PC (Dell Precision
340). It has an Intel® Pentium® 4 CPU 1700MHz, 256MB RAM
and 37.2GB disk space. The PC runs Linux RedHat 7.2. We
installed Apache v1.3.19 and BerkeleyDB v4.0.14 for testing. We
isolated the machine for testing. Only the test program and normal
background processes are running during the testing period.

5.4 Results
Figure 4 shows the effect of the file size on turnaround times at
nine update rates, 0%, 1%, 2%, 5%, 7%, 10%, 15% and 100%.
Four columns marked as Apache_1KB,

���
Apache_1KB,

Apache_60KB and
���

Apache_60KB are compared for each
update rate. The label such as ‘Apache_1KB’ indicates an
experiment involving 1KB files with the normal Apache web
server. In the small file (1KB) experiments the performance of
Apache and

���
Apache are very close up to an update rate of 15%.

However, in the large file (60KB) experiments the performance of
Apache and

���
Apache are similar only at update rates below 5%.

The larger file size slows down
���

Apache when the update rate is
above 5%, and the times increases substantially when the update
rate is over 50% (half of the requests create archived files). At
100% update (every request archives a file) the turnaround time of ���

Apache_60KB is approximately twice that of the
Apache_60KB. We should note that we anticipate that most
servers would realistically have update rates of less than 1% (one
in every 100 requests is for a new version).

Recall that these are “peak load tests” of 3000 requests. So, at 0%
update rate, there are approximately 100 and 52 requests per
second handled for a 1-kilobyte page and 60-kilobyte page,
respectively. From 0% up to about 5%, there is effectively no
difference between

���
Apache and Apache. At update rates of

50% or above
���

Apache is twice as slow for large files. So the

430

cost of data management in
���

Apache (updating a history table
and archiving) is within 10% of Apache when the update rate is
less than 5%. At a 100% update rate, Apache handles about 73
and 42 requests per second for a 1-kilobyte page and 60-kilobyte
page, respectively. Whereas,

���
Apache handles about 50 and 20

requests per second for a 1-kilobyte page and 60-kilobyte page,
respectively. If an average frequency of a site is below 20
requests per second,

���
Apache can perform the additional

functionality of the data management without sacrificing its
performance even though large pages are requested, and even
though the update rate is 100%, that is, files are modified on every
request.

0% 1% 2% 5% 7% 10
%

15
%

50
%

1
00

%

0

20

40

60

80

100

120

140

160

T
im

e
fo

r
30

00
 r

eq
u

es
ts

(s

ec
o

n
d

s)

Update rate

Apache_1KB

TTApache_1KB

Apache_60KB

TTApache_60KB

Figure 4 The effect of file size at different update rates

To understand the difference in turnaround time, we measured the
amount of disk I/O.

���
Apache does more disk I/O than Apache.

Depending on the update rate, the amount of disk I/O could triple.
Consider an update rate of 100%. Each HTTP GET in Apache
will trigger a file read (assuming that the server does not
implement an internal cache). In

���
Apache, there may be an

additional file write to create the archived copy. Also, the history
table will have to be updated triggering another disk write
operation. The additional disk I/O may further reduce the
effectiveness of the file system cache since more files are being
read and written. Figure 5 shows the cumulative disk I/O for
different update rates for 1KB files. The region labeled ‘apache’
represents Apache. The other regions show the cumulative disk
I/O for

���
Apache at different update rates. Surprisingly, ���

Apache at a 0% update rate has twice as much disk I/O as
Apache. This is due to the additional database management
system reads and writes and the lesser effectiveness of the disk
cache. At a 100% update rate, the disk I/O use is ten times as
great, rather than three times as we might expect. This is an
artifact of the file system cache. Apache is doing fewer disk
writes than

���
Apache, so files remain in the file system cache

longer. Figure 6 shows the disk I/O for larger files. Since the file
size is now much larger than the size of a database read or write,
Apache and

���
Apache at low update rates perform about the same

amount of I/O. But at 100%,
���

Apache performs triple the I/O as
expected. Note that the disk I/O activity in the 60KB experiment
is many times greater than the 1KB experiment. Both
experiments show the cumulative disk I/O is proportional to the
update rate. Since the update rate will usually be quite low
(below 2%) as a rule of thumb,

���
Apache will increase disk I/O

by 5% to 25%.

� �
� �
� �
� �
� �
� �
� �
� �
� �

� �
� �
� �
� �
� �
� �

� �
� �
� �
� �

� �
� �
� �
� �

� �
� �
� �
� �

� �
� �
� �
� �

� �
� �
� �
� �

� �
� �
� �

� �
� �
� �
� �
� �0

20000

40000

60000

80000

100000

120000

Number of requests

� � � �
� � � � 100%� � � �

50%� � � �
15%� � � �
10%� � � �
7%

� � � �
� � � � 5%
 2%! ! ! !

1%" " " "
0%# # #
apache

1000 2000 3000

C
u

m
u

la
ti

ve
 d

is
k

I/O
 (

in
 b

lo
ck

s)

Figure 5 Cumulative disk I /O for several update rates (1 KB)

$ $
$ $
$ $
$ $
$ $
$ $
$ $
$ $
$ $

% %
% %
% %
% %
% %
% %
% %

& &
& &
& &
& &
& &

' '
' '
' '
' '
' '

((
((
((
((
((

))
))
))
))
))

* *
* *
* *
* *
* *

+ +
+ +
+ +
+ +

, ,
, ,
, ,
, ,
, ,

- -
- -
- -
- -

0

500000

1000000

1500000

2000000

2500000

Number of requests

. . . .
100%/ / / /
50%0 0 0 0
15%1 1 1 1
10%

2 2 2 2
2 2 2 2 7%3 3 3 3
3 3 3 3 5%4 4 4 4
4 4 4 4 2%5 5 5 5
5 5 5 5 1%6 6 6 6

0%7 7 7
apache

C
u

m
u

la
ti

ve
 d

is
k

I/O
 (

in
 b

lo
ck

s)

1000 2000 3000

Figure 6 Cumulative disk I /O for several update rates (60 KB)

The last measurement concerns the overhead in processing
transaction-time queries. These queries will be less efficient since
they incur some additional processing and disk reads. Figure 7
shows different ratios of

���
Queries (mix rates) on turnaround

times for the nine update rates in a 3-D plot.

0% 2% 7%

15
%

10
0% 0%

5% 80
%

0

20

40

60

80

100

120

140

T
im

e
fo

r
30

00
 r

eq
u

es
ts

(s

ec
)

Update rate Ratio

Figure 7 Measuring the cost of transaction-time queries

There are two trends to observe. First, within a mix rate the
turnaround time increases as the update rate increases as we
would expect from the previous experiments. Second, the

431

turnaround time slows as the percentage of 8�8 Queries increases.
At an 80% mix rate the turnaround times are two to three times
that of the Apache web server. In practice, we anticipate that mix
rates of below 10% will be common. We do not expect most
queries to be transaction-time queries; if they are, this
performance penalty may be significant.

6. CONCLUSIONS
A transaction-time web server provides transaction-time related
services. In this paper we sketched a strategy to add transaction-
time functionality to the Apache web server. We call the
extended server 8�8 Apache. There are five benefits to the
extension. First, 8�8 Apache performs automatic versioning when a
document is read. This removes the burden of versioning from
document authors. Second, 8�8 Apache allows users to request a
desired document version or a document history in a URL. This
increases the usability of archived documents. Additionally, users
are able to restructure links in the requested document. Third,
8�8 Apache can distinguish between known and assumed versions
of a document. Fourth, the size of the archive can be controlled
by vacuuming versions that are not needed. Fifth, the cost of the
additional functionality is modest under expected usage
conditions. We built and tested an extended Apache web server
that uses BerkeleyDB to manage version information. There is
always an overhead on performance when additional functionality
is added to an application. Our experiments showed that there is
some additional cost with 8�8 Apache, but that for low update rates
(which we believe is the scenario common to most web sites), the
overhead is inconsequential.

REFERENCES
[1] Apache HTTP Server Version 1.3. Manual Page: ab.

www.apache.org/docs/programs/ab.html. Current as of
7/8/2002.

[2] Brewington, B. and G. Cybenko. “How Dynamic is the Web?”
in Proceedings of the 9th Intl. WWW Conference,
Amsterdam, Netherlands, May 2000, pp. 257-276.

[3] Clifford, J, Dyreson, C., Isakowitz, T., Jensen, C. and R. T.
Snodgrass. On the Semantics of Now in Temporal Databases.
ACM Transactions on Database Systems, 22(2), June 1997,
pp. 215-254.

[4] Cho, J. and H. Garcia-Molina, “The Evolution of the Web and
Implications for an Incremental Crawler”, In Proceedings of
VLDB Conference, Cairo, Egypt, Sep. 2000, pp. 200-209.

[5] Cobena, C., Abiteboul, S., and A. Marian, “Detecting
Changes in XML Documents,” in Proceedings of ICDE
Conference, Heidelberg, Germany, April 2002, pp. 41-52.

[6] Concurrent Versions System, http://www.cvshome.org.
Current as of April, 2003.

[7] F. Douglis, “Server-side tracking of new documents,” in
Proceedings of the 1st International Workshop on Web Site
Evolution, Atlanta, GA, 1999.

[8] C. E. Dyreson, “Towards a Temporal World-wide Web: A
Transaction-time Server,” in Proceedings of the Australian
Database Conference, Gold Coast, Australia, January 2001,
pp. 169-175.

[9] C. E. Dyreson, “Observing Transaction-time Semantics with
8�8 XPath” , In WISE2001, Kyoto, Japan, December 2001, pp.
193-202.

[10] Florescu, D., Levy, A. and A. Mendelzon. Database
Techniques for the World-Wide Web: A Survey. SIGMOD
Record, 27(3):59–74, September 1998.

[11] Graphic, Visualization, and Usability Center. GVU’s Tenth
WWW User Survey (October 1998).
http://www.cc.gatech.edu/gvu/user_surveys/survey-1998-
10/graphs/use/q11.htm.

[12] The Internet Archive. www.archive.org. Current as of
February, 2003.

[13] Jensen, C. and C. Dyreson (eds.). A Consensus Glossary of
Temporal Database Concepts - February 1998 Version, pages
367–405. Springer-Verlag, 1998.

[14] C. Jensen, C. S. “Vacuuming,” in The TSQL2 Temporal
Query Language, R. T. Snodgrass, editor, Chapter 23, pp.
451-462. Kluwer Academic Publishers, 1995.

[15] Lomet, D. and B. Salzberg. “Transaction-Time Databases,”
in Temporal Databases: Theory, Design, and
Implementation. Chapter 16, pp. 388–417.
Benjamin/Cummings, 1993.

[16] Marian, A., Abiteboul, S., Cobena, G. and L. Mignet,
“Change-Centric Management of Versions in an XML
Warehouse” . in Proceedings of the Very Large Data Bases
(VLDB) Conference, (Roma, Italy, 2001), Morgan
Kaufmann, 581-590.

[17] McKenzie, E. and R. T. Snodgrass, “Extending the Relational
Algebra to Support Transaction Time”. In Proceedings of
SIGMOD Conference, San Francisco, CA, May 1987, pp.
467–478.

[18] Netcraft Web Server Survey. www.netcraft.com/survey/.
Current as of May, 2002.

[19] Padmanabhan, V. N. and L. Qiu, “The Content and Access
Dynamics of a Busy Web Site: Findings and Implications”.
In Proceedings of SIGCOMM, Stockholm, August 2000.

[20] Rao, H., Chen, Y., and M. Chen, “A Proxy-Based Web
Archiving Service” , Middleware Symposium, Portland, OR,
July, 2000. www.research.att.com-/~iproxy/archive, Current
as of February, 2003.

[21] Roddick, J. and R. T. Snodgrass. “Transaction Time
Support,” in The TSQL2 Temporal Query Language, R. T.
Snodgrass, editor, Chapter 17, pp. 319–325. Kluwer
Academic Publishers, 1995.

[22] Skyt, J., C. S. Jensen, and L. Mark. “A Foundation for
Vacuuming Temporal Databases,'' Transactions on Data and
Knowledge Engineering, 44(1), December 2002, pp. 1-29.

[23] Soo, M. D. Bibliography on Temporal Databases. SIGMOD
Record, 20(1):14–23, Mar. 1991.

[24] W. F. Tichy, RCS–A System for Version Control, Software–
Practice & Experience, 15(7), July 1985, 637-654.

[25] Tsotras, A. K. Temporal Database Bibliography Up-date.
SIGMOD Record, 25(1):41–63, March 1996.

[26] Xyleme, enabling intelligent access to XML content.
www.xyleme.com. Current as of February, 2003.

[27] W3C-XML, 2002. Extensible Markup Language (XML) 1.0
(Second Edition). www.w3.org/TR/REC-xml. Current as of
7/8/2002.

432

