
Securing Web Application Code by
Static Analysis and Runtime Protection

Yao-Wen Huang+*, Fang Yu*, Christian Hang#, Chung-Hung Tsai+, D. T. Lee+*, Sy-Yen Kuo+

{ywhuang, yuf, dtlee}@iis.sinica.edu.tw, christian.hang@web.de, sykuo@cc.ee.ntu.edu.tw

+Department of Electrical Engineering,

National Taiwan University
Taipei 106, Taiwan.

*Institute of Information Science,
Academia Sinica

Taipei 115, Taiwan

Department of Computer Science,
RWTH Aachen

Aachen, Germany

ABSTRACT
Security remains a major roadblock to universal acceptance of the
Web for many kinds of transactions, especially since the recent
sharp increase in remotely exploitable vulnerabilities has been
attributed to Web application bugs. Many verification tools are
discovering previously unknown vulnerabilities in legacy C
programs, raising hopes that the same success can be achieved
with Web applications. In this paper, we describe a sound and
holistic approach to ensuring Web application security. Viewing
Web application vulnerabilities as a secure information flow
problem, we created a lattice-based static analysis algorithm
derived from type systems and typestate, and addressed its
soundness. During the analysis, sections of code considered
vulnerable are instrumented with runtime guards, thus securing
Web applications in the absence of user intervention. With
sufficient annotations, runtime overhead can be reduced to zero.
We also created a tool named WebSSARI (Web application
Security by Static Analysis and Runtime Inspection) to test our
algorithm, and used it to verify 230 open-source Web application
projects on SourceForge.net, which were selected to represent
projects of different maturity, popularity, and scale. 69 contained
vulnerabilities and their developers were notified. 38 projects
acknowledged our findings and stated their plans to provide
patches. Our statistics also show that static analysis reduced
potential runtime overhead by 98.4%.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software / Program Verification –
class invariants, formal methods; D.4.6 [Operating Systems]:
Security and Protection – information flow controls, correctness
proofs, formal methods; K.6.5 [Computing Milieux]: Security
and Protection – invasive software, unauthorized access.

General Terms
Security, Verification.

Keywords
Web application security, security vulnerabilities, program
security, verification, type systems, information flow,
noninterference.

1. INTRODUCTION
As more and more services are provided via the World Wide Web,
efforts from both academia and industry are striving to create
technologies and standards that meet the sophisticated
requirements of today’s Web applications and users. In many
situations, security remains a major roadblock to universal
acceptance of the Web for all kinds of transactions. According to
a Symantec report released earlier this year, over the preceding 12
months in 2002, there was an 81.5% increase in documented
vulnerabilities, with the majority associated with a handful of very
severe vulnerabilities [36]. The report’s authors suggested that the
driving force behind this trend is “the rapid development and
deployment of remotely exploitable Web applications.” They
reported that the total number of Web application vulnerabilities
discovered in 2002 was 178% higher than in 2001, that 95 percent
of these were remotely exploitable, and that 99 percent were
considered highly or moderately severe.

Scott and Sharp [62] [63] have asserted that Web application
vulnerabilities are a) inherent in Web application programs; and b)
independent of the technology in which the application in
question is implemented, the security of the Web server, and the
back-end database. Current technologies such as anti-virus
software programs and network firewalls offer comparatively
secure protection at the host and network levels, but not at the
application level [17]. However, when network and host-level
entry points are relatively secure, the public interfaces of Web
applications become the focus of attacks [46] [17].

The recognition of this problem is reflected by the recent burst of
efforts that aim to improve Web application security via numerous
different approaches. Scott and Sharp proposed the use of a
gateway that filters invalid and malicious inputs at the application
level; Sanctum’s AppShield [58], Kavado’s InterDo [43], and a
number of commercial products now offer similar strategies. Most
of the leading firewall vendors are also using deep packet
inspection [24] technologies in their attempts to filter application-
level traffic. According to a recent Gartner report [67], those that
don't offer application-level protection will eventually “face
extinction.”

Although application-level firewalls offer immediate assurance of
Web application security, they have at least two drawbacks: they
require careful configuration [12], and they only offer Web
application protection (that is, they don’t identify errors). Huang
et al. [38] designed a Web application security assessment
framework that offers black-boxed testing for identifying Web
application vulnerabilities. However, testing processes cannot

Copyright is held by the author/owner(s).
WWW 2004, May 17–22, 2004, New York, New York, USA.
ACM 1-58113-844-X/04/0005.

40

guarantee identification of all bugs, and they cannot provide
immediate security for Web applications in the same manner that
Scott and Sharp’s solution can. In the present project, we tried to
create an approach that simultaneously provides immediate
security for Web applications and identifies all vulnerabilities
within their code.

As we will discuss in the next section, a major challenge
associated with Web applications is that their most critical
vulnerabilities are often the results of insecure information flow,
against which neither encryption nor traditional Web access
control models [55] offer any protection [57]. Sabelfeld and
Myers [57] recently published a comprehensive survey on
language-based techniques for specifying and enforcing
information-flow policies. Among them, sound type systems [70]
based on the lattice model of Denning [22] appear most promising.
Banerjee and Naumann [7] proposed such a system for a Java-like
language, and Pottier and Simonet [56] proposed one for ML.
Myers [50] went a step further to provide an actual JIF
implementation—a secure information flow verifier for the Java
language. However, even though these languages can guarantee
secure information flow, many consider them too strict;
furthermore, they require considerable effort in terms of
additional annotation in order to reduce false positives. Another
problem is that most Web applications today are not developed in
JIF or Java, but in script languages (e.g., PHP, ASP, Perl, and
Python) [40]. Using a type qualifier theory [27], Shankar et al.
[65] detected insecure information flow within legacy code with
little additional annotation. Using metacompilation-based
checkers [33], Ashcraft and Engler [3] were also able to detect
insecure information flow in Linux and OpenBSD code without
additional annotation. However, checkers are unsound, and both
addressed only commonly found insecure information flow
problems in C. To our knowledge, no comparable efforts have
been made for Web applications, which involve different
languages and unique information flow problems.

In contrast to compile-time techniques, run-time protection
techniques are attractive because of their accuracy in detecting
errors. A typical run-time approach is to instrument code with
dynamic guards during the compilation phase. Cowan's
Stackguard [15] is representative of this approach; its low
overhead and high accuracy has led to its inclusion in a variety of
commercial software packages. Immunix Secured Linux 7+ is a
commercial distribution of Linux (RedHat 7.0) that has been
compiled to incorporate Stackguard instrumentation. Microsoft
also includes a feature very similar to Stackguard in its latest
release of the Visual C++ .NET compiler [47].

Our project goal is to use a mix of static and runtime features to
establish a holistic and practical approach to ensuring Web
application security. To achieve this, we have created a tool that a)
statically verifies existing Web application code without any
additional annotation effort; and b) after verification,
automatically secures potentially vulnerable sections of the code.

This paper has the following contributions:

1. We have shown that most Web application security problems
arise from data integrity violations caused by insecure
information flow, and that mechanisms are needed to express
and enforce noninterference policies [30].

2. For specifying and verifying noninterference policies, we have
proposed a type system based on Denning's axioms [22] and

Strom’s typestate [68]. The system’s advantages are twofold:
first, it captures information-flow semantics more precisely than
static systems, resulting in lower false positive rates; second, it
requires no annotation effort on the part of programmers.

3. Our proposed system acts as an extension to a language’s
existing type system. We have implemented WebSSARI (Web
application Security by Static Analysis and Runtime Inspection)
as a framework for extending existing script languages with our
system. Currently, WebSSARI supports PHP—the most widely
used Web application programming language [40]. Given the
corresponding grammar, WebSSARI can also support other
languages used for Web application programming.

4. WebSSARI automatically inserts runtime guards in potentially
insecure sections of code, meaning that a piece of PHP code
will be secured immediately after WebSSARI processing even
in the absence of programmer intervention. Induced overhead is
low because the number of insertions is reduced to a minimum
when information gathered from static analysis is utilized.
Users can add annotations to further reduce this number,
possibly to zero.

5. We have implemented our algorithm into WebSSARI. We used
it to verify 230 open-source Web application projects on
SourceForge.net, which were selected to represent projects of
different maturity, popularity, and scale. 69 projects, among
which many were widely-used, contained vulnerabilities.
Numerous discovered vulnerabilities allowed remote attackers
to completely compromise machines running the software.
Upon notification, developers of 38 projects acknowledged our
findings and stated their plans to provide patches. Our statistics
also show that static analysis reduced potential runtime
overhead by 98.4%.

To the best of our knowledge, such a tool has never been provided
for and experimented with real-world Web application code.

2. WEB APPLICATION
VULNERABILITIES
In this section we will give several brief examples of Web
application vulnerabilities. Since we will only provide brief
descriptions of the most widely exploited vulnerability—script
injection—readers are referred to Scott and Sharp [62] [63],
Curphey et al. [17], Curphey et al. [54] [17], and Meier et al. [46]
for more details.

2.1 Cross-Site Scripting (XSS)
Cross-site scripting (XSS) is perhaps the most common Web
application vulnerability. Figure 1 gives an example of an XSS
bug we identified in SquirrelMail, a popular Web-based e-mail
application.

$month=$_GET['month']; $year=$_GET['year'];
$day=$_GET['day'];
echo "<a href=\"day.php?year=$year&"
echo "month=$month&day=$day\">";

Figure 1. An XSS vulnerability found in SquirrelMail.

Values for the variables $month, $day, and $year come from
HTTP requests and are used to construct HTML output sent to the
user. An example of an attacking URL would be:

41

http://www.target.com/event_delete.php?year=><script>malicious
_script();</script>

Attackers must find ways to make victims open this URL. One
strategy is to send an e-mail containing javascript that secretly
launches a hidden browser window to open this URL. Another is
to embed the same javascript inside a Web page; when victims
open the page, the script executes and secretly opens the URL.
Once the PHP code shown in Figure 1 receives an HTTP request
for the URL, it generates the compromised HTML output shown
in Figure 2.

<script>malicious_script();</script>

Figure 2. Compromised HTML output.

In this strategy, the compromised output contains malicious script
prepared by an attacker and delivered on behalf of a Web server.
HTML output integrity is hence broken and the Javascript Same
Origin Policy [62] is violated. Since the malicious script is
delivered on behalf of the Web server, it is granted the same trust
level as the Web server, which at minimum allows the script to
read user cookies set by that server. This often reveals passwords
or allows for session hijacking; if the Web server is registered in
the Trusted Domain of the victim’s browser, other rights (e.g.,
local file system access) may be granted as well.

2.2 SQL Injection
Considered more severe than XSS, SQL injection vulnerabilities
occur when untrusted values are used to construct SQL commands,
resulting in the execution of arbitrary SQL commands given by an
attacker. The example below is based on a vulnerability we
discovered in ILIAS Open Source, a popular Web-based learning
management system.

$sql="INSERT INTO tracking_temp ".
"VALUES('$HTTP_REFERER');"; mysql_query($sql);

Figure 3. A simplified SQL injection vulnerability found in ILIAS
Open Source.

In Figure 3, $HTTP_REFERER is used to construct a SQL
command. The referrer field of a HTTP request is an untrusted
value given by the HTTP client; an attacker can set the field to:

');DROP TABLE ('users

This will cause the code in Figure 3 to construct the $sql variable
as:

INSERT INTO tracking_temp VALUES('');
DROP TABLE ('users');

Table “users” will be dropped when this SQL command is
executed. This technique, which allows for the arbitrary
manipulation of backend database, is responsible for the majority
of successful Web application attacks. During our
experimentation with WebSSARI, we found that developers who
acknowledged that variables from HTTP requests should not be
trusted tend to forget that the same holds true for the referrer field,
user cookies, and other types of information collected from HTTP
requests.

2.3 General Script Injection
General script injection vulnerabilities are considered the most
severe of the three types discussed in this paper. They occur when
untrusted data is used to call functions that manipulate system

resources (e.g., in PHP: fopen(), rename(), copy(), unlink(), etc)
or processes (e.g., exec()). Figure 4 presents a simplified version
of a general script injection vulnerability we found in
eGroupWare, a widely-adopted Web-based groupware suite
sponsored by Toshiba. The HTTP request variable “csvfile” is
used as an argument to call fopen(), which allows arbitrary files to
be opened. A subsequent code section delivers the opened file to
the HTTP client, allowing attackers to download arbitrary files.

$csvfile = $_POST['csvfile'];
if($_POST['action'] == 'download') $fp=fopen($csvfile,'rb');

Figure 4. A general script injection bug found in eGroupWare.

A more severe example of this vulnerability type—a bug we
found in the PHP Surveyor online survey management system—is
shown in Figure 5.

exec("htpasswd.exe -b .htpasswd".
"{$_POST['user']} {$_POST['pass']}");

Figure 5. A general script injection bug found in PHP Surveyor.

The intent for this code is to allow survey administrators to
change user passwords for system access. However, since the
“user” and “pass” variables are untrusted, the code permits the
execution of arbitrary system commands. For instance, if a
malicious survey administrator sends an HTTP request with:
user="; NET USER foo /ADD" and pass="", the actual
command becomes:

htpasswd.exe -b .htpasswd; NET USER FOO /ADD

This results in creation of new user “foo” with logon rights.

2.4 Modeling Web Application Vulnerabilities
The primary objectives of information security systems are to
protect confidentiality, integrity, and availability [60]. From our
examples, it is obvious that for Web applications, compromises in
integrity are the main causes of compromises in confidentiality
and availability. The relationship is illustrated in Figure 6.
Untrusted data is used to construct trusted output without
sanitization, resulting in data integrity violations. This leads to
escalation of access rights, which then results in compromises in
availability and confidentiality. There is clearly a need for a
mechanism that specifies and enforces secure information flow
policies within Web application programs.

Figure 6. A model of common Web application vulnerabilities.

3. INFORMATION FLOW SECURITY
Type systems have proven useful for specifying and checking
program safety properties. By means of programmer-supplied

Web Application Attacker

Integrity Violation

Confidentiality Violation

Untrusted Data Trusted Data

Public Data Secret Data
Access Rights
Violation !

!

!

Insecure Information Flow ! Security Violation

42

annotations, both proof-carrying codes (PCC) [51] and typed
assembly languages (TAL) [49] are designed to provide safety
proofs for low-level compiler-generated programs. We also used a
type system to verify program security, but we targeted a high-
level language (PHP) and tried to avoid additional annotations.

Many previous security verification efforts have focused on
temporal safety properties related to control flow. Schneider [61]
proposed formalizing security properties using security automata,
which define the legal sequences of program actions. Walker [73]
proposed a TAL extension which uses security policies expressed
in Schneider’s automata to derive its type system. Jensen et al. [41]
proposed using a temporal logic for specifying a program’s
security properties based on its control flow, and offered a model
checking technique for verification. In a similar effort, Chen and
Wagner [13] looked for vulnerabilities in real C programs by
model checking for violations of a program’s temporal safety
properties. Though their main focus was not on security, Ball and
Rajamani [5] adopted a similar approach for their SLAM project
and successfully applied it to Windows XP device drivers.

3.1 Type-Based Analysis
Since vulnerabilities in Web applications are primarily associated
with insecure information flow, we focused our effort on ensuring
proper information flow rather than control flow. The first widely
accepted model for secure information flow was given by Bell and
La Padula [9]. They stated two axioms: a) a subject cannot access
information classified above its clearance, and b) a subject cannot
write to objects classified below its clearance. Their original
model only dealt with confidentiality; Biba [10] is credited with
adding the concept of integrity.

Denning [22] established a lattice model for analyzing secure
information flow in imperative programming languages based on
a program abstraction (similar to Cousot and Cousot’s [14]
abstract interpretation) derived from an instrumented semantics
of a language. Andrews and Reitman [2] used an axiomatic logic
to reformulate Denning’s model and developed a compile-time
certification method using Hoare’s logic; in both cases, soundness
was only addressed intuitively (a more formal treatment of
Denning’s soundness can be found in Mizuno and Schmidt [48]).
Orbaek [53] proposed a similar treatment, but addressed the
secure information flow problem in terms of data integrity instead
of confidentiality. Volpano et al. [70] argued that both works
proved soundness with respect to some instrumented semantics
whose validity was open to question; no means was offered for
proving that the instrumented semantics correctly reflect
information flow within a standard language semantics. To base
directly on standard language semantics, Volpano et al. showed
that Denning’s axioms can be enforced using a type system in
which program variables are associated with security classes that
allow inter-variable information flow to be statically checked for
correctness. Soundness was proven by showing that well-typed
programs ensure confidentiality in terms of noninterference, a
property introduced by Goguen and Meseguer [30] for expressing
information flow policies. Recently, fully functional type systems
designed to ensure secure information flow have been offered for
high-level, strong-typed languages such as ML [56] and Java [50]
[7]. Based on Foster’s theory of type qualifiers [27], Shankar et al.
[65] used a constraint-based type inference engine for verifying
secure information flow in C programs, and detected several
format string vulnerabilities in some real C programs that they
were previously unaware of.

Type-based approaches to static program analysis are attractive
because they prove program correctness without unreasonable
computation efforts. Their main drawback is their high false
positive rate, which often makes them impractical for real-world
use. Regardless of whether security classes are assigned through
manual annotations or through inference rules, they are statically
bound to program variables in conventional type systems. It is
important to keep in mind that the security class of a variable is a
property of its state, and therefore varies at different points or call
sites in a program. For example, in Myers’ JIF language [50],
each program variable is associated with a fixed security label. A
value assumes the label of the variable in which it is stored. When
a value is assigned to a variable, the value loses its original label
and assumes the label of the new variable to which it is assigned.
Therefore, an assignment causes a re-labeling of the security label
of the assigned value. JIF ensures security by only allowing more
restrictive re-labeling. However, to precisely capture information
flow, values should be associated with fixed labels, and variables
should assume the labels of values they currently store—in other
words, assignments should result in the re-labeling of variables
rather than values. In JIF and similar type-based systems, variable
labels become increasingly restrictive during computation,
resulting in high false positive rates. JIF addresses this problem by
giving programmers the power to declassify variables—that is, to
explicitly relax variable labels.

3.2 Dataflow Analysis
False positives resulting from static verification of secure
information flow fall into two categories. Class 1 false positives
arise from the imprecise approximation of temporal variable
properties. The problem described in the preceding paragraph and
Doh and Shin’s [25] forward recovery and backward recovery
definitions serve as examples. In fact, most of the Denning-based
systems suffer from class 1 errors because the security class of
their variables remains constant throughout program execution.
Class 2 false positives result from runtime information
manipulation or validation. For example, untrusted data can be
sanitized before being used, with the original security label no
longer applicable. This kind of false positive is more commonly
associated with verifications that focus on integrity.

Class 1 errors can be reduced by making more precise
approximations of the run-time information flow. Andrews and
Reitman [2] first established an approach in which dataflow is
semantically characterized in terms of program logic. By applying
flow axioms, one can derive flow proofs that specify a program’s
effect on the information state. This allows the security classes of
variables to change during execution. Banatre et al. [6] have
offered a comparable approach plus a proof checking method that
resembles dataflow analysis techniques associated with optimizing
compilers. Joshi and Leino [42] examined various logical forms
for representing information flow semantics, leading to a
characterization containing Hoare triples. Darvas et al. [18] went
a step further in offering characterizations in dynamic logic,
which allows the use of general purpose verifications tools (i.e.,
theorem provers) to analyze secure information flow within
deterministic programs.

A similar approach involving flow-sensitive analysis techniques
used by optimizing compilers has have been extensively
researched starting from the early works of Allen and Cocke [1]
and followed by the works of Hecht and Ullman [34], Graham and
Wegman [31], Barth [8], and others. These methods yield more

43

accurate runtime state predictions than the other methods
mentioned above. However, flow-sensitivity comes at a price—
every branch in a program’s control flow doubles the verifier’s
search space and therefore limits scalability. ESP, the verification
tool recently developed by Das et al. [19], is representative of this
approach; the contribution is distinctive because ESP allows for
flow-sensitive verification that scales to large programs. It is
based on the assumption that most program branches do not affect
the information flow property that is being checked. Unlike ESP,
Guyer et al.’s [32] approach has a specific security focus. It used
the flow-sensitive, context-sensitive, interprocedural data flow
analysis framework provided by their Broadway optimizing
compiler to check for format string vulnerabilities of real C
programs.

3.3 Flow-Sensitive Type-Based Analysis
A third approach emphasizes more accurate or expressive types in
type systems. In their trust analysis of C programs, Shankar et al.
[65] introduced the concept of type polymorphism in their type
qualifier framework, and showed how it can help reduce false
positives. Others have considered extending types with state
annotations. The most well known approach of this kind is Strom
and Yemini’s typestate [68], which is a refinement of types.
According to their definition, an object’s type determines a set of
allowable operations, while its typestate determines a subset
allowable under specific contexts. Because it allows the flow-
sensitive tracking of variable states, it serves as a technique
applicable to reduce the number of class 1 errors that type-based
information flow systems suffer. Inspired by typestate, DeLine
and Fahndrich [21] extended C types in their Vault programming
language with predicates (named type guards) that describe legal
conditions on the use of the type. In other words, types determine
valid operations, while type guards determine these operations’
valid times of use. In a recent project, Foster et al. [28] extended
their original, flow-insensitive type qualifier system for C with
flow-sensitive type qualifiers. Using their CQual tool, they
demonstrated the effectiveness of their system by discovering a
number of previously unknown locking bugs in the Linux kernel.

Interestingly, the authors of ESP [19], which tracks information
flow using dataflow analysis, describe it as “merely a typestate
checker for large programs.” It appears that as type systems are
refined with states and incorporates flow-sensitive checking,
fewer differences will exist between type systems and dataflow
analysis methods for verifying information flow. Our approach for
reducing class 1 errors is based primarily on typestate.

3.4 Static Checking
The goal of static checking is simply to find software bugs rather
than to prove that one does not exist [3]. In other words, checkers
are unsound. A pioneering work was that of Bishop and Dilger
[11], which checked for “time-of-check-to-time-of-use”
(TOCTTOU) race conditions. One recent exciting result is that of
Ashcraft and Engler [3], who used their metacompilation [33]
technique to find over 100 vulnerabilities in Linux and OpenBSD,
over 50 of which resulted in kernel patches. The technique makes
use of a flow-sensitive, context-sensitive, interprocedural data
flow checking framework that requires no additional annotations.
In contrast, Flanagan et al.’s ESC/Java [26] (designed to check
the correctness of Java programs) requires additional annotations
from programmers.

Most efforts to develop checkers have resulted in publicly
available tools [16], including BOON by Wagner et al. [71],
RATS by Secure Software [64], FlawFinder by Wheeler [75],
PScan by DeKok [20], Splint by Larochelle and Evans [44], and
ITS4 by Viega et al. [69]. All these unsound checkers search for
specific error patterns. Splint is the only one that requires user
annotations. With the exception of ESC/Java, they are all
designed for use with C programs.

3.5 A Comparison
Most previous type-based static verification methods are provided
as extensions to existing languages (e.g., Pottier and Simonet [56],
Banerjee and Naumann [7], and Myers [50]) and designed to
support secure program development, while our algorithm
attempts to verify existing code in the absence of user intervention.
Checkers (e.g., MC [3], RATS [64], and ITS4 [69]) also perform
dataflow analysis without additional annotations, but their
analyses are considered unsound. Another difference is that
WebSSARI ensures security by inserting runtime guards, while
the other tools are limited to providing verification.

 Focus App Snd Anno Lang Dec
WebSSARI S. I.F. Type Yes Optional PHP Auto
CQual S. I.F. Type Yes Some C Manual
JIF S. I.F. Type Yes Required Java Manual
Vault Gen. Type Yes Required C Manual
ESP Gen. D.A. Yes No need C None
Broadway S. I. F. D.A. Yes No need C None
MC S. I.F. D.A. No No need C Auto
BOON S. D.A. No No need C None
ESC/Java Gen. D.A. No Required Java Manual
Splint S. L.A.. No Required C Manual
ITS4 S. L.A. No No need C Auto
MOPS S. Modl Yes No need C None

App—Approach
Anno—Annotation effort
Dec—Declassification support
I.F.—Focus on information flow
Type—Type system
L.A.—Lexical analysis

Snd—Soundness
Lang—Supported language
S.—Focus on security
Gen.—General verification
D.A.—Dataflow analysis
Modl—Model checking

Figure 7. A comparison with related work.
WebSSARI, MC and ITS4 are the only approaches that support
automated declassification, defined as the process of identifying
changes in a variable’s security class resulting from runtime
sanitization or validation. Automated declassification helps reduce
the number of class 2 false positives. MC was designed to detect
sections of code that validate user-submitted integers. If the code
makes both upper bound and lower bound validations on an
untrusted value, it is assumed that validation has been performed;
the security class of the validated value is then changed from
untrusted to trusted. This approach is based on the unsound
assumption that as long as an untrusted value passes a certain kind
of validation, it is actually safe. Therefore, false positives are
reduced at the cost of introducing false negatives that compromise
verification soundness. In the case of ITS4, its attempt to reduce
class 2 false positives (while detecting C format string
vulnerability) involves using lexical analysis to identify
sanitization routines based on unsound heuristics.

When verifying information flow in Web applications, one deals
with strings instead of integers, and most Web programming

44

languages (e.g., PHP, ASP, and Perl) provide standard string
sanitization functions. By accepting all string values processed by
these functions as trusted, we first reduced a considerable number
of class 2 false positives. For cases in which custom sanitization is
provided by the programmer, we proposed type-aware qualifiers,
which resulted in a more expressive security lattice than the
simple tainted-untainted lattice used by other efforts (e.g.,
Ashcraft and Engler [3] and Shankar et al. [65]), and achieved a
further reduction in the number of class 2 errors.

To provide a clear representation of how our efforts compare with
those of others, we have defined six criteria for classifying static
analyzers: focus of scope, approach, soundness, additional
annotation effort, supported language, and declassification
support. A comparison based on these criteria is presented in
Figure 7.

3.6 Runtime Protection
In many situations, it is difficult for static analysis to offer
satisfactory runtime program state approximation; one strategy is
to delay parts of the verification process until runtime. A good
example of this practice is Perl’s “tainted mode” [72], which
ensures system integrity by tracking tainted data submitted by the
user at runtime. Similarly, Myers [50] also leaves some JIF
security label checking operations until runtime. In dynamically
typed languages such as Lisp and Scheme, a common approach is
to perform runtime type checking for objects whose types were
undeterminable at compile-time. These kinds of dynamic checks
are extremely expensive, resulting in the creation of such static
optimization techniques as dynamic typing [35] and soft typing
[77] to reduce the number of runtime checks.

WebSSARI takes a similar approach—that is, by applying static
analysis, it pinpoints code requiring runtime checks and inserts
the checks. A similar process is found in Necula et al.’s CCured
[52]. Though not specifically focused on security, this scheme
combines type inference and run-time checks to ensure type safety
for existing C programs. A major difference is that our inserted
guards perform sanitization tasks rather than runtime type
checking—in other words, we insert sanitization routines in
vulnerable sections of code that use untrusted information. When
inserted at the proper locations, their execution time cannot be
considered real overhead because the action is a necessary
security check; WebSSARI will have simply inserted lines of code
omitted by a careless (or security-unaware) programmer.

3.7 Existing Web Application Security
Mechanisms
Scott and Sharp [62] [63] used an application proxy to abstract
Web application protection; the proxy validates user input, thus
preventing untrustworthy input from entering Web applications.
Commercial products such as AppShield [58] and InterDo [43]
use a similar approach. However, even though it provides
immediate assurance of Web application security, it requires the
correct identification of and validation policy for each individual
entry point to a Web application. As Bobbitt notes, this is a
difficult security task that requires careful configuration by
“highly technical, experienced individuals” [12]. Another
limitation is that this approach protects Web applications at the
deployment phase instead of trying to eliminate bugs during the
development phase.

In light of these deficiencies, Huang et al. proposed an assessment
framework for Web application security that they call WAVES
(Web Application Vulnerability and Error Scanner) [38]. Their
framework uses black-boxed testing to identify Web application
vulnerabilities. Similar approaches are adopted by commercial
projects such as AppScan [59], WebInspect [66], and ScanDo [43].
While this approach can be used to identify errors early in the
development cycle, it does not provide immediate Web
application protection as offered by Scott and Sharp’s solution.
Here we have tried to design an approach that retains the
advantages of both while also eliminating their disadvantages.

4. VERIFICATION ALGORITHM
In PHP (an imperative, deterministic programming language), sets
of functions affect system integrity. For example, exec()
executes system commands, and echo() generates output. These
functions must be called with trusted arguments. We refer to such
functions as sensitive functions; vulnerabilities result from tainted
(untrustworthy) data used as arguments in sensitive function calls.
We intuitively derived a trust policy (expressed as a precondition
of the function), which states the required trust level for each of
the function’s arguments. We considered all values submitted by a
user as tainted, and checked their propagation against a set of
predefined trust policies.

4.1 Information Flow Model
To characterize data trust levels, we followed Denning’s [22]
model and made the following assumptions:
1. Each variable is associated with a security class (trust level).
2. T = {τ , τ , ..., τ }1 2 n is a finite set of security classes.
3. T is partially ordered by ≤, which is reflexive, transitive, and

antisymmetric. For ,1 2 Tτ τ ∈ ,

 iff and 1 2 1 2 2 1τ τ τ τ τ τ= ≤ ≤ ,

and iff and 1 2 1 2 1 2τ τ τ τ τ τ< ≤ ≠ .

4. T forms a complete lattice with a lower bound ⊥ such that
T, τ τ∀ ∈ ≤⊥ , and an upper bound • such that
T, τ τ∀ ∈ ≤• .

These assumptions imply that a greatest lower bound operator and
a least upper bound operator exist on T. For subset Y ⊆ T, let
ó Y denote • if Y is empty and the greatest lower bound of the
types in Y otherwise; let ò Y denote ⊥ if Y is empty and the
least upper bound of the types in Y otherwise.

To develop an information flow system, we needed to provide a
method to express the trust levels of variables. Following Foster et
al. [27] and Shankar et al. [65], we extended the existing PHP
language with extra type qualifiers—a widely-used annotation
mechanism for expressing type refinements. When used to
annotate a variable, the C type qualifier const expresses the
constraint that the variable can be initialized but not updated [27].
We used type qualifiers as a means for explicitly associating
security classes with variables and functions. In our WebSSARI
implementation, we specified preconditions for all sensitive PHP
functions using type qualifiers. These definitions are stored in a
prelude file and loaded by WebSSARI upon startup. Another
prelude file contains postconditions for functions that perform
sanitization to generate trusted output from tainted input. This
serves as a mechanism for automated declassifications. A third

45

prelude file includes annotations (using type qualifiers) of all
possible tainted input providers (e.g., $_GET, $_POST,
$_REQUEST). Type qualifiers are also used as a means for
developers to manually declassify variables. Manual
declassification support is important because it allows for manual
elimination of false positives, which in turn reduces the number of
unnecessary runtime guards, resulting in reduced overhead.

However, unlike Shankar et al. [65], we did not perform type
inference (of security classes) in our attempt to eliminate user
annotation efforts. In conventional type-based secure information
flow systems (e.g., JIF [50]), type inference is used as a means to
infer the initial security class of a variable, and a variable is
assumed to be associated with its initial class throughout the
entire program execution. As explained in Section 3.1, fixed
variable classes induce false positives. To develop a type system
in which variable classes can change and flow-sensitive properties
can be considered, we maintain our type environment based on
Strom and Yemini’s [68] typestate.

A type environment : X TΓ a is a mapping function that maps
variables to security classes at a particular program point. For
each variable dom()x ∈ Γ , we denote the uniquely mapped type
τ of x in Γ as ()xΓ . To approximate runtime type environment
at compile-time, a variable’s security class is viewed as a static
most restrictive class of the variable at each point in the program
text. That is, if a variable x is mapped to ()xΓ at a particular
program point, then its corresponding execution time data object
will have a class that is at most as restrictive as ()xΓ , regardless
of which paths were taken to reach that point. Formally, for a set
of type environments G , we denote GΓ = ⊕ as the most
restrictive type environment, such that () ()' 'Gx xΓ ∈Γ = Γò . When
verifying a program at a particular program point r, GrΓ = ⊕ ,
where Gr represents the set of all possible type environments,
each corresponding to a unique execution-time path that could
have been taken to reach r.

To illustrate this concept, we will use the widely-adopted tainted-
untainted (T-U) lattice of security classes (e.g., by BOON [71],
Ashcraft and Engler [3], and Shankar et al. [65]) shown in Figure
8. The T-U lattice has only two elements—untainted as its lower
bound and tainted as its upper bound. Assume that variable t1 is
tainted and that variables u1 and u2 are untainted. Since exec()
requires an untainted argument, for line 2 of Figures 10 and 11 to
typecheck requires that we know the static most restrictive class of
x. In other words, we need to know the security class ()xΓ that is
the most restrictive of all possible runtime classes of x at line 2,
regardless of the execution path taken to get there. In line 2 of
Figure 10, since x can be either tainted or untainted,

()x tainted untaintedΓ = ò ; line 2 therefore triggers a violation.
On the other hand, line 2 of Figure 11 typechecks.

Tainted
|

Untainted

Tainted String
|

Tainted Integer
|

Untainted String
|

Untainted Integer

Figure 8. Primitive lattice. Figure 9. Type-aware lattice.

1: if (C) x = t1; else x = u1;
2: exec(x);

1: if (C) x = u1; else x = u1;
2: exec(x);

Figure 10. Example A. Figure 11. Example B.

To preserve the static most restrictive class, rules must be defined
for resolving the typestate of variable names. For the sake of
simplicity, we adopted the original algorithm proposed by Strom
and Yemini [68]. First, we perform flow-sensitive tracking of
typestate. Then at execution path merge points (e.g., the beginning
of a loop or the end of a conditional statement), we define the
typestate of each variable as the least upper bound of the
typestates of that same variable on all merging paths. In our
defined lattice (Figure 9), the least upper bound operator on a set
selects the most restrictive class from the set. Note that while
Strom and Yemini originally used typestate to represent the static
invariant variable property, which requires applying the greatest
lower bound operator, for our purpose typestate is used to
represent the static most restrictive class, so we need to apply the
least upper bound operator instead.

4.2 Type-Aware Security Classes
The first version of WebSSARI implemented the verification
algorithm mentioned above and made use of the T-U lattice. An
initial test drive revealed a common type of false positive.
Apparently, many developers used type casts for sanitization
purposes; an example from Obelus Helpdesk is presented in
Figure 12. In that example, since $_POST[‘index’] is tainted,
$i is tainted after line 1, and $s is tainted after line 2. Line 3
therefore does not typecheck, since echo() requires untainted
values for its argument.

1: $i = (int) $_POST['index'];
2: $s = (string) $i;
3: echo “<hidden name = mid value='$s'>"

Figure 12. Example of a false positive resulting from a type cast.

Six of the 38 responding developers who also included copies of
their intended patches for our review relied on this type of
sanitization process. Since all HTTP variables are stored as strings
(regardless of their actual type), using a single cast to sanitize
certain variables appears to be a common practice. However, the
false positive serves as evidence supporting the idea that security
classes should be type-aware. For example, echo() can accept
tainted integers without compromising system integrity (i.e.,
without being vulnerable to XSS). Figure 9 illustrates the type-
aware lattice that we incorporated in our second version of
WebSSARI. Until now, it has been commonly believed that
annotations in type-based security systems should be provided as
extensions to be checked separately from the original type system.
[27] [28] [65] [26]. In this paper we are proposing the use of a
type-aware lattice model and introducing the idea of type-aware
qualifiers. Though still checked separately, type refinements (e.g.,
security classes) are type-aware.

4.3 Program Abstraction and Type Judgment
When verifying a PHP program, we first use a filter to deconstruct
the program into the following abstraction:

1 2 1 2

1 2

() :: ; | : | | if than else
() :: | | ~ | (),
commands c c c x e e e c c
expression e x n e e f x

= =
=

46

where x is a variable, n represents a constant value, ~ represents
binary operators (e.g., +), ()f x represents a function call.
Commands that do not induce insecure flows are referred to as
valid commands. To track the changes in security classes of
variables and to check for program validity, we define type
judgments and judgment rules. Denoted as 'CΓ → Γ� , a type
judgment specifies a type environment Γ in which the execution
of a command C is valid, and becomes 'Γ as a result of the
execution. As stated in Section 4.1, preconditions of sensitive
functions and postconditions of tainting and sanitization functions
are defined in the prelude files. At call sites to sensitive functions,

()SATISFY , ,f xΓ checks whether ()xΓ satisfies function f’s
precondition. When verifying, we derive type judgments
according to command sequences and raise an error when

()SATISFY , ,f xΓ fails. That is, given a program P and its initial
type environment 0Γ (usually mapping all variables to untainted),
then the validity of P depends on whether we can derive the
judgment 0 PΓ → Γ� by following the judgment rules below.

1.Updating Rules:
(Tainting) (Sanitation)

() [] () []
T S

f f

f x x tainted f x x untainted
∈ ∈

Γ →Γ Γ →Γa a� �

 (Assignment) (Restriction)

():x e x e Γ = → Γ Γ a�
 1 1 2 2

if then else 1 2 1 2

C C
e C C

Γ →Γ Γ →Γ
Γ →Γ ⊕Γ

� �
�

2. Checking Rule: 3. Concatenation Rule:
 (Precondition) (Concatenation)

()C, SATISFY , ,
()

f f x
f x

∈ Γ
Γ →Γ�

" " ' '
; ' '

C C
C C

Γ →Γ Γ →Γ
Γ →Γ

� �
�

4. Mapping Rules:
() () () () ' 'n untainted e e e eΓ = Γ ∼ = Γ Γò

4.4 Soundness
At every program point, since we always derive the static most
restrictive type environment, all variables are mapped to their
most restrictive types among all execution paths to reach that
point. This is an essential property that ensures the soundness of
our algorithm. However, like many other popular languages used
for Web development, PHP is a scripting language that supports
dynamic evaluation—a feature unique to interpreted languages
that allows for programmatic access to the interpreter. For
example, one can write “$$a” to represent a “dynamic variable,”
whose variable name can be determined only at runtime. To retain
soundness, all dynamic variables are considered as tainted. When
other kinds of dynamic evaluation exist in the target code (e.g.,
PHP’s eval()), WebSSARI degrades itself to a checker—it still
checks for potential vulnerabilities, but outputs a warning
message indicating that it cannot guarantee soundness. We do,
however, support pointer aliasing by implementing the original
solution proposed by Strom and Yemini [68]. We maintain two
mappings—an environment and a store. The environment maps
the names of variables involved in pointer aliasing to virtual
locations, and the store maps locations to security classes.
Therefore, when two pointers point to the same storage, we
recognize their dereferences as a single value having a single

security class. A trust level change in one pointer deference is
reflected in the other.

5. SYSTEM IMPLEMENTATION
To test our approach, we developed a tool called WebSSARI that
extends an existing script language with our proposed type
qualifier system. An illustration of WebSSARI’s system
architecture is presented in Figure 13. A code walker consists of a
lexer, a parser, an AST (abstract syntax tree) maker, and a
program abstractor. The program abstractor asks the AST maker
to generate a full representation of a PHP program’s AST. The
AST maker uses the lexer and the parser to perform this task,
handling external file inclusions along the way. By traversing the
AST, the program abstractor generates a control flow graph (CFG)
and a symbol table (ST). Based on the prelude files, the
verification engine moves through the CFG and references the ST
to generate a) type qualifiers for variables and b) preconditions
and postconditions for functions. This routine is repeated until no
new information is generated. The verification engine then moves
through the control flow graph once again, this time performing
typestate tracking to determine insecure information flow. It
outputs insecure statements (with line numbers and the invalid
arguments). For each variable involved in an insecure statement, it
inserts a statement that secures the variable by treating it with a
sanitization routine. The insertion is made right after the statement
that caused the variable to become tainted. Sanitization routines
are stored in a prelude, and users can supply the prelude with their
own routines.

Figure 13. WebSSARI system architecture.

Support for different languages is achieved by providing their
corresponding code walker implementations. Since the lexers and
parsers can be generated by publicly available compiler generators,
providing a code walker for a language breaks down to: a)
choosing a compiler generator, and providing it with the
language’s grammar, b) providing an AST maker, and c)
providing a program abstractor. For step a, grammars for widely-
used languages (e.g., C, C++, C#, and Java) are already available
for widely-used compiler generators such as yacc and SableCC;
for step b, AST makers for different languages should only differ
in preprocessing support (e.g., include file handling). However,
since we expect considerable differences to exist in the ASTs of
various languages, the major focus on providing a code walker

Lexer Parser

AST
Generator

Program
Abstractor

AST

Control Flow
Graph

Symbol
Table

Verifier Engine

SableCC

LALR(1)
Grammar

Command
Flow

Information
Flow

Code Walker

Grammar
Generation

Prelude Prelude Prelude

47

implementation for a language is on implementing a program
abstractor.

To support verification experiments using tens of thousands of
PHP files, we developed a separate GUI featuring batch
verification, result analysis, error logging, and report generation.
Statistics can be collected based on a single sourcecode file, files
of a single project, or files of a group of projects. Vulnerable files
are organized according to severity, with general script injection
the most severe, SQL injection second, and XSS third. To help
users investigate reported vulnerabilities, we added Watts’
PHPXREF [74] to generate cross referenced documentation of
PHP source files. A screenshot of this GUI is presented in Figure
14.

In this project, we provided a code walker for PHP. We used
Gagnon and Hendren’s SableCC [29], an object-oriented compiler
framework for Java. Similar to yacc and other compiler generators,
SableCC accepts LALR(1) [23] grammars. No formally written
grammar specifications for the PHP language exist, and no studies
have been performed on whether PHP’s grammar can be fully
expressed in LALR(1). We used Mandre’s [45] LALR(1) PHP
grammar for SableCC, which has never been thoroughly tested.
The combination of SableCC and Mandre’s grammar allowed us
to develop a code walker for PHP; however, an initial test drive
using approximately 5,000 PHP files revealed deficiencies that
caused WebSSARI to reject almost 25 percent of all verified files
as grammatically incorrect. With help from Mandre, we were able
to reduce that rejection rate to 8 percent in a following test
involving 10,000 PHP files.

Figure 14. A screenshot of the WebSSARI GUI under Windows.

6. EXPERIMENTAL RESULTS
SourceForge.net [4], the world’s largest open source development
website, hosts over 70,000 open-source projects for more than
700,000 registered developers. PHP, currently with 7,792
registered projects, clearly outnumbers all other programming
languages (e.g., Perl, Python, and ASP) for Web application
development. SourceForge.net classifies projects according to
language, purpose, popularity, and development status (maturity).
We created a sample of 230 projects that reflected a broad
variation in terms of language, purpose, popularity, and maturity.
We downloaded their sources, tested them with WebSSARI, and
manually inspected every report of a security violation. Where
true vulnerabilities were identified, we sent email notifications to
the developers. Over the five-day test period, we identified 69

projects containing real vulnerabilities; to date, 38 developers
have acknowledged our findings and stated that they would
provide patches (Figure 15).

For each project it hosts, SourceForge.net assigns a “development
status” (planning, pre-alpha, alpha, beta, stable, mature, and
inactive) and an “activity rate” (indicating both development
activity and popularity. We limited our selections to beta, stable,
and mature products. Figure 16 presents the development status
and activity rates of the 69 vulnerable projects, and Figure 17
presents distribution information for the 38 projects whose
developers responded to our email notifications. We assumed that
beta projects would be more vulnerable, but the data reflect the
opposite—that is, stable stage projects were slightly more
vulnerable than beta stage projects. These respective percentages
were even higher for the 38 projects whose developers
acknowledged our notifications.

Project A D PO 1 2 3 Project A D P O 1 2 3
GBook MX 60 1 1 Y Y Y Y SquirrelMail 99 21 1 Y N Y N
AthenaRMS 0 3 1 Y Y N N PHPMyList 69 1 1 Y Y Y Y
PHPCodeCabinet71 1 2 Y Y N Y EGroupWare 99 17 1 Y N Y Y
BolinOS 94 7 1 Y Y N N PHPFriendlyAdmin 87 1 1 Y Y N N
PHP Surveyor 99 6 1 Y Y Y Y PHP Helpdesk 87 3 1 Y Y Y Y
Booby 90 1 1 NY N Y Media Mate 0 2 2 Y Y Y Y
ByteHoard 98 3 1 Y Y N Y Obelus Helpdesk 22 2 2 N Y N Y
PHPRecipeBook 99 1 1 Y Y N Y eDreamers 80 5 1 N Y N N
phpLDAPadmin 97 3 1 Y Y N N Mad.Thought 66 1 3 Y Y Y N
Segue CMS 77 4 1 Y Y Y N PHPLetter 79 1 1 Y Y Y Y
Moregroupware 99 11 1 Y Y Y N WebArchive 2 3 1 Y Y N Y
iNuke 0 1 1 Y Y Y N Nalanda 58 1 1 Y Y N N
InfoCentral 82 9 1 Y Y Y N Site@School 94 2 1 Y Y Y Y
WebMovieDB 24 3 1 Y Y N N PHPList 0 1 1 Y Y Y N
TestLink 88 4 1 Y Y Y Y PHPPgAdmin 98 6 1 Y Y N N
Crafty Syntax 0 1 1 NY N N Anonymous Mailer 73 1 1 N N Y Y
ILIAS open
source 20 2 4 Y Y Y Y PHP Support

Tickets 0 1 1 N Y Y N

PHP Multiple
Newsletters 68 1 1 NY Y N Norfolk Household

Finan. Manager 0 1 1 N Y Y Y

International
Suspect
Vigilance Nexus

0 1 1 NN Y N Tiki CMSGroupware 99
1
3
5

2 N N Y Y

Activity / Total 62
0 70

1.
20 28
0

33
0

22
0

18
0

A: Project activity D: Number of Developers
P: Vulnerability Depth O: Overlooked / unaware
1: Cross-site scripting 2: SQL injection
3: General script injection

Figure 15. The 38 vulnerable projects that have responded to our
notifications.

Developer motivation and behavior is outside the scope of this
paper, but we did note that in 33 of those 38 projects, the
vulnerabilities had simply been overlooked, even though
sanitization routines had been adopted in the majority of cases.
We also discovered (from the developers’ responses) that some of
these projects had vulnerabilities that had already been identified
and disclosed prior to the present project. For instance,
ByteHoard had one Bugtaq disclosure report, and SquirrelMail
had 13 CVE (Common Vulnerability Exposure) records. Further
inspection of their code revealed that the developers had fixed all
previously published vulnerabilities, but failed to identify similar
problems that were hidden throughout the code. These

48

observations justify the need for an automated verification tool
that can be used repeatedly and routinely.

In all, our WebSSARI scanned 11,848 files consisting of
1,140,091 statements; 515 files were identified as vulnerable.
Even with the special features provided by the WebSSARI GUI,
manual validation of our results turned out to be a very time-
consuming task, because it required investigation into multiple
function calls that spanned across multiple files. Fortunately, the
PHPXREF [74] that we incorporated into our approach sped up
the process. After four days of manual inspection, we concluded
that only 361 files were indeed vulnerable—a false positive rate of
29.9 percent. After adding support for type-aware qualifiers, the
number of insecure files reported by WebSSARI dropped to 494,
yielding a false positive rate of 26.9 percent. Type-aware
qualifiers eliminated the false positive rate by 10.03 percent.

Of the total 1,140,091 statements, 57,404 were associated with
making sensitive function calls using tainted variables as
arguments. WebSSARI identified 863 as insecure; after manual
inspection, we concluded that 607 were actually vulnerable.
Adding sanitization functions to all 57,404 statements caused 5.03
percent (57404/1140091) of the 1140091 statements to be
instrumented with dynamic guards, thus inducing overhead. After
static analysis, the number of statements requiring dynamic
sanitization was reduced to 863—a difference of 98.4 percent. As
stated in Section 3.6, this instrumentation for vulnerable
statements cannot be considered overhead because it simply adds
code omitted by the programmer. Since only 607 statements were
actually vulnerable, WebSSARI only caused 0.02 percent of all
statements to be instrumented with unnecessary sanitization
routines.

Development Status Current Activity (Activity + Popularity)
<= Beta >= Stable 0-25% 26-50% 51-75% 76-100%

31 38 21 6 11 31

Figure 16. Distribution of all 69 vulnerable projects.

Development Status Current Activity (Activity + Popularity)
<= Beta >= Stable 0-25% 26-50% 51-75% 76-100%

10 28 11 0 6 21

Figure 17. Distribution of the 38 vulnerable projects that have
responded to our notifications.

7. DISCUSSION
In order to experiment with our proposed algorithm, we have
chosen to implement a code walker for PHP. However, by
providing other code walker implementations, our approach can
be used for other Web programming languages as well. Because
of the difficulties involved with developing secure Web
application code, the more popular scripting languages contain
various aids—for instance, Perl’s tainted mode and PHP’s “magic
quotes” option. Although these features offer runtime protection,
they are incapable of compile-time bug identification. Perl’s
tainted mode tracks information flow at runtime, resulting in
expensive overhead. The magic quotes option causes the PHP
interpreter to use backslashes to automatically escape certain
problematic characters within tainted data. However, escape
mechanisms differ depending on the type of tainted data and the
set of problematic characters being used. Therefore, the strategy
helps eliminate certain kinds of attacks (e.g., SQL injection) but
not others (e.g., cross-site scripting, where sanitization requires
escaping a different set of characters according to HTML
character entity references).

One weakness of our approach is that it identifies error symptoms
rather than causes. Maintaining the most restrictive environments
at the merge points of execution paths keeps the search space
small, but it also forbids counterexample traces. For this reason
we had to insert runtime guards at potentially vulnerable function
call sites to sanitize tainted variables before they are used as
arguments for calling sensitive functions. However, following
initial induction, a single piece of tainted data becomes capable of
triggering a snowballing process of data propagation and tainting,
with the number of tainted variables growing exponentially as the
program executes. A more efficient strategy would be to use an
algorithm capable of giving counterexample traces to identify
where the tainting process begins and to sanitize the data before it
propagates. We have recently completed a project [39] in which
we address this weakness using bounded model checking, a
process that produces counterexamples at a reasonable cost.

8. CONCLUSION
Security remains a major roadblock to universal acceptance of the
Web for many kinds of transactions, especially since the recent
sharp increase in remotely exploitable vulnerabilities have been
attributed to Web application bugs. Scott and Sharp’s global
protection mechanism [62] [63], AppShield [58], and InterDo [43]
offer protection methods that immediately ensure the security of
Web applications, but they require careful configuration by
experienced administrators [12]. At least four assessment
frameworks for Web application security (WAVES [38], AppScan
[59], WebInspect [66], and ScanDo [43]) provide black-boxed
testing capability for identifying Web application vulnerabilities.
Still, testing approaches can never guarantee soundness. Here we
have tried to establish an approach that retains the advantages and
eliminates the disadvantages of preceding efforts.

Our approach provides immediate protection at a much lower cost
than Scott and Sharp’s, since validation is restricted to potentially
vulnerable sections of code. If WebSSARI detects the use of
untrusted data following correct treatment, the code is left as-is.
According to our experiment, WebSSARI only caused 0.02
percent of all statements to be instrumented with unnecessary
sanitization routines. In contrast, Scott and Sharp perform
unconditional global validation for every bit of user-submitted
data without concerning that the Web application may incorporate
the same validation routine, thus resulting in unnecessary
overhead. If a Web application utilizes HTTPS for traffic
encryption, the associated decrypt-validate-encrypt process may
limit scalability. Furthermore, WebSSARI provides protection in
the absence of user intervention, as compared with the user
expertise required for their approach. Compared to WAVES,
WebSSARI offers a sound verification of Web application code.
Since verification is performed on source code, it does not require
targeted Web applications to be up and running, nor is there any
danger of introducing permanent state changes or loss of data.

Compared to language-based approaches such as Myers [50],
Banerjee and Naumann [7], and Pottier and Simonet [56], our
approach verifies the most commonly used language for Web
application programming, and we incorporate support for
extending to other languages. In other words, we provide
verification for existing applications while others have proposed
language frameworks for developing secure software. Their
technique of typing variables to fixed classes results in a high
false positive rate; in contrast, we proposed using typestate to
perform flow-sensitive tracking that allows security classes of

49

variables to change, resulting in more precise compile-time
approximations of runtime states. Comparing to flow-sensitive
approaches such as Ashcraft and Engler [3] and Shankar et al.
[65], we proposed a type-aware lattice model in contrast to their
primitive T-U lattice. According to our experimental results, the
use of this lattice model helped to reduce false positives by 10.03
percent. Compared to unsound checkers [3] [26] [71] [64] [75]
[20] [44] [69], our approach attempts to provide a sound
verification framework.

9. ACKNOWLEDGMENT
We deeply appreciate the anonymous reviewers for offering us
many valuable comments. We would also like to thank Dr. Bow-
Yaw Wang for his useful suggestions. This project was supported
in part by the National Science Council, Taiwan under grants
NSC-93-2422-H-001-0001, NSC-92-2219-E-002-019, and NSC-
92-2213-E-001-024.

10. REFERENCES
[1] Allen, F. E, Cocke, J. “A Program Data Flow Analysis Procedure.”

Communications of the ACM, 19(3):137-147, March 1976.

[2] Andrews, G. R., Reitman, R. P. “An Axiomatic Approach to
Information Flow in Programs.” ACM Transactions on
Programming Languages and Systems, 2(1), 56-76, 1980.

[3] Ashcraft, K., Engler, D. “Using Programmer-Written Compiler
Extensions to Catch Security Holes.” In Proc. 2002 IEEE Symp.
Security and Privacy, pages 131-147, Oakland, California, 2002.

[4] Augustin, L., Bressler, D., Smith, G. “Accelerating Software
Development through Collaboration.” In Proc. 24th Int’l Conf.
Software Engineering (ICSE2002), pages 559-563, Orlando,
Florida, May 19-25, 2002.

[5] Ball, T., Rajamani, S. K., “Automatically Validating Temporal
Safety Properties of Interfaces.” In Proc. 8th Int’l SPIN Workshop
on Model Checking of Software (SPIN’01), pages 103-122, volume
LNCS 2057, Toronto, Canada, May 19-21, 2001. Springer-Verlag.

[6] Banatre, J. P., Bryce, C., Le Metayer, D. “Compile-time Detection of
Information Flow in Sequential Programs.” In Proc. Third European
Symp. Research in Computer Security, pages 55-73, volume LNCS
875, Brighton, UK, Nov 1994. Springer-Verlag.

[7] Banerjee, A., Naumann, D.A. “Secure Information Flow and Pointer
Confinement in a Java-Like Language.” In: Proc. 15th Computer
Security Foundations Workshop (CSFW2002), pages 239-253,
Nova Scotia, Canada, 2002.

[8] Barth, J. M. “A Practical Interprocedural Data Flow Analysis
Algorithm.” Communications of the ACM, 21(9):724-736, 1978.

[9] Bell, D. E., La Padula, L. J. “Secure Computer System: Unified
Exposition and Multics Interpretation.” Tech Rep. ESD-TR-75-306,
MITRE Corporation, 1976.

[10] Biba, K. J. “Integrity Considerations for Secure Computer Systems.”
Technical Report ESD-TR-76-372, USAF Electronic Systems
Division, Bedford, Massachusetts, Apr 1977.

[11] Bishop, M., Dilger, M. “Checking for Race Conditions in File
Accesses.” Computing Systems, 9(2):131-152, Spring 1996.

[12] Bobbitt, M. “Bulletproof Web Security.” Network Security
Magazine, TechTarget Storage Media, May 2002.
http://infosecuritymag.techtarget.com/2002/may/bulletproof.shtml

[13] Chen, H., Wagner, D., “MOPS: an Infrastructure for Examining
Security Properties of Software.” In Proc. 9th ACM Conf. Computer
and Communications Security (CCS2002), pages 235-244,
Washington, DC, Nov 18-22, 2002.

[14] Cousot, P., Cousot, R. “Abstract Interpretation: A Unified Lattice
Model for Static Analysis of Programs by Constructions or
Approximation of Fixpoints.” In Conference Record of the Fourth
ACM Symp. Principles of Programming Languages (POPL’77),
pages 238-252, 1977.

[15] Cowan, C., D. Maier, C. Pu, Walpole, J., Bakke, P., Beattie, S.,
Grier, A., Wagle, P., Zhang, Q., Hinton, H. “StackGuard: Automatic
adaptive detection and prevention of buffer-overflow attacks.” In
Proc. 7th USENIX Security Conference (USENIX’98), pages 63-78,
San Antonio, Texas, Jan 1998.

[16] Cowan, C. “Software Security for Open-Source Systems.” IEEE
Security and Privacy Magazine, 1(1):38-45, 2003.

[17] Curphey, M., Endler, D., Hau, W., Taylor, S., Smith, T., Russell, A.,
McKenna, G., Parke, R., McLaughlin, K., Tranter, N., Klien, A.,
Groves, D., By-Gad, I., Huseby, S., Eizner, M., McNamara, R. “A
Guide to Building Secure Web Applications.” The Open Web
Application Security Project, v.1.1.1, Sep 2002.

[18] Darvas, A., Hähnle, R., Sands, D. “A Theorem Proving Approach to
Analysis of Secure Information Flow.” In Proc. Workshop on Issues
in the Theory of Security (WITS’03), Warsaw, Poland, Apr 5-6,
2003.

[19] Das, M., Lerner, S., Seigle, M. “ESP: Path-Sensitive Program
Verification in Polynomial Time.” In Proc. 2002 ACM SIGPLAN
Conf. Programming Language Design and Implementation
(PLDI2002), pages 57-68, Berlin, Germany, 2002.

[20] DeKok, A. “PScan: A Limited Problem Scanner for C Source Files.”
http://www.striker.ottawa.on.ca/~aland/pscan/

[21] DeLine, R. Fahndrich, M. “Enforcing High-Level Protocols in Low-
Level Software.” In Proc. ACM SIGPLAN 2001 Conf. Programming
Language Design and Implementation (PLDI2001), pages 59-69,
Snowbird, Utah, 2001.

[22] Denning, D. E. “A Lattice Model of Secure Information Flow.”
Communications of the ACM, 19(5):236-243, 1976.

[23] DeRemer, F. “Simple LR(k) Grammars.” Communications of the
ACM, 14(7):453-460, 1971.

[24] Dharmapurikar, S., Krishnamurthy, P., Sproull, T., and Lockwood,
J. “Deep Packet Inspection Using Parallel Bloom Filters.” In Proc.
11th Symp. High Performance Interconnects (HOTI’03), pages 44-
51, Stanford, California, 2003.

[25] Doh, K. G., Shin, S. C. “Detection of Information Leak by Data
Flow Analysis.” ACM SIGPLAN Notices, 37(8):66-71, 2002.

[26] Flanagan, C., Leino, K. R. M., Lillibridge, M., Nelson, G., Saxe, J.
B., and Stata, R. “Extended Static Checking for Java.” In Proc.
2002 ACM SIGPLAN Conf. Programming Language Design and
Implementation (PLDI2002), pages 234-245, volume 37(5) of ACM
SIGPLAN Notices, Berlin, Germany, Jun 2002.

[27] Foster, J. S., Fähndrich, M., Aiken, A. “A Theory of Type
Qualifiers.” In Proc. ACM SIGPLAN 1999 Conf. Programming
Language Design and Implementation (PLDI’99), pages 192-203,
volume 34(5) of ACM SIGPLAN Notices, Atlanta, Georgia, May 1-
4, 1999.

[28] Foster, J., Terauchi, T., Aiken, A. “Flow-Sensitive Type Qualifiers.”
In Proc. ACM SIGPLAN 2002 Conf. Programming Language
Design and Implementation (PLDI2002), pages 1-12, Berlin, Jun
2002.

[29] Gagnon, E. M., Hendren, L. J. “SableCC, an Object-Oriented
Compiler Framework.” In Proc. 1998 Conf. Technology of Object-
Oriented Languages and Systems (TOOLS-98), pages 140-154,
Santa Barbara, California, Aug 3-7, 1998.

[30] Goguen, J. A., Meseguer, J. “Security Policies and Security
Models.” In Proc. IEEE Symp. Security and Privacy, pages 11-20,
Oakland, California, Apr 1982.

50

[31] Graham, S., Wegman, M. “A Fast and Usually Linear Algorithm for
Global Flow Analysis.” Journal of the ACM, 23(1):172-202, Janu
1976.

[32] Guyer, S. Z., Berger, E. D., Lin, C. “Detecting Errors with
Configurable Whole-program Dataflow Analysis.” Technical Report,
UTCS TR-02-04, University of Texas at Austin, 2002.

[33] Hallem, S., Chelf, B., Xie, Y., Engler, D. “A System and Language
for Building System-Specific, Static Analyses.” In Proc. ACM
SIGPLAN 2002 Conf. Programming Language Design and
Implementation, pages 69-82, Berlin, Germany, 2002.

[34] Hecht, M. S., Ullman, J. D. “Analysis of a Simple Algorithm For
Global Flow Problems.” In Conference Record of the First ACM
Symp. Principles of Programming Languages (POPL’73), pages
207-217, Boston, Massachussets, 1973.

[35] Henglein, F. “Dynamic Typing.” In Proc. Fourth European Symp.
Programming (ESOP’92), pages 233-253, volume LNCS 582,
Rennes, France, Feb 1992. Springer-Verlag.

[36] Higgins, M., Ahmad, D., Arnold, C. L., Dunphy, B., Prosser, M.,
and Weafer, V., “Symantec Internet Security Threat Report—Attack
Trends for Q3 and Q4 2002,” Symantec, Feb 2003.

[37] Holzmann, G. J. “The Logic of Bugs.” In Proc. 10th ACM SIGSOFT
Symp. Foundations of Software Engineering (FSE-10), pages 81-87,
Charleston, South Carolina, 2002.

[38] Huang, Y. W., Huang, S. K., Lin, T. P., Tsai, C. H. “Web
Application Security Assessment by Fault Injection and Behavior
Monitoring.” In Proc. Twelfth Int’l World Wide Web Conference
(WWW2003), 148-159, Budapest, Hungary, May 21-25, 2003.

[39] Huang, Y. W., Yu, F., Hang, C., Tsai, C. H., Lee, D. T., Kuo, S. Y.
“Verifying Web Applications Using Bounded Model Checking.” In:
Proc. 2004 Int’l Conf. Dependable Systems and Networks
(DSN2004), Florence, Italy, Jun 28-Jul 1, 2004.

[40] Hughes, F. “PHP: Most Popular Server-Side Web Scripting
Technology.” LWN.net. http://lwn.net/Articles/1433/

[41] Jensen, T., Le Metayer, D., Thorn, T. “Verification of Control Flow
Based Security Properties.” In Proc. 20th IEEE Symp. Security and
Privacy, pages 89-103, IEEE Computer Society, New York, USA,
1999.

[42] Joshi, R., Leino, K. M. “A Semantic Approach to Secure
Information Flow.” Science of Computer Programming, 37(1-
3):113-138, 2000.

[43] Kavado, Inc. “InterDo Version 3.0.” Kavado Whitepaper, 2003.

[44] Larochelle, D., Evans, D. “Statically Detecting Likely Buffer
Overflow Vulnerabilities.” In Proc. 10th USENIX Security
Symposium (USENIX’01), Washington, D.C., Aug 2001.

[45] Mandre, I. “PHP 4 Grammar for SableCC 3 Complete with
Transformations.” Indrek's SableCC Page, 2003.
http://www.mare.ee/indrek/sablecc/

[46] Meier, J.D., Mackman, A., Vasireddy, S. Dunner, M., Escamilla, R.,
Murukan, A. “Improving Web Application Security—Threats and
Countermeasures.” Microsoft Corporation, 2003.

[47] Microsoft. “Visual C++ Compiler Options: /GS (Buffer Security
Check).” MSDN Library, 2003.
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/vccore/html/vclrfGSBufferSecurity.asp

[48] Mizuno, M., Schmidt, D. A. “A Security Flow Control Algorithm
and Its Denotational Semantics Correctness Proof.” Formal Aspects
of Computing, 4(6A):727-754, 1992.

[49] Morrisett, G., Walker, D., Crary, K., Glew, N. “From System F to
Typed Assembly Language.” ACM Transactions on Programming
Languages and Systems, 21(3):528-569, May 1999.

[50] Myers, A. C. “JFlow: Practical Mostly-Static Information Flow
Control.” In Proc. 26th ACM SIGPLAN-SIGACT Symp. Principles

of Programming Languages (POPL’99), pages 228-241, San
Antonio, Texas, 1999.

[51] Necula, G. C. “Proof-Carrying Code.” In Conference Record of the
24th Annual ACM SIGPLAN-SIGACT Symp. Principles of
Programming Languages (POPL’97), pages 106-119, Paris, France,
Jan 1997.

[52] Necula, G. C., McPeak, S., Weimer, W. “CCured: Type-Safe
Retrofitting of Legacy Code.” In Proc. 29th Annual ACM
SIGPLAN-SIGACT Symp. Principles of Programming Languages
(POPL2002), pages 128-139, Portland, Oregon, 2002.

[53] Orbaek, P. “Can You Trust Your Data?” In Proc. 1995
TAPSOFT/FASE Conference, pages 575-590, volume LNCS 915,
Aarhus, Denmark, May 1995. Springer-Verlag.

[54] OWASP. “The Ten Most Critical Web Application Security
Vulnerabilities.” OWASP Whitepaper, version 1.0, 2003.

[55] Park, J. S., Sandhu, R. “Role-Based Access Control on the Web.”
ACM Transactions on Information and System Security 4(1):37-71,
2001.

[56] Pottier, F., Simonet, V. “Information Flow Inference for ML.” ACM
Transactions on Programming Languages and Systems, 25(1):117-
158, 2003.

[57] Sabelfeld, A., Myers, A. C. “Language-Based Information-Flow
Security.” IEEE Journal on Selected Areas in Communications,
21(1):5-19, 2003.

[58] Sanctum Inc. “AppShield 4.0 Whitepaper.” 2002.
http://www.sanctuminc.com

[59] Sanctum Inc. “Web Application Security Testing—AppScan 3.5.”
http://www.sanctuminc.com

[60] Sandhu, R. S. “Lattice-Based Access Control Models.” IEEE
Computer, 26(11):9-19, 1993.

[61] Schneider, F. B. “Enforceable Security Policies.” ACM Transactions
on Information and System Security, 3(1):30-50, Feb 2000.

[62] Scott, D., Sharp, R. “Abstracting Application-Level Web Security.”
In: Proc. 11th Int’l Conf. World Wide Web (WWW2002), pages 396-
407, Honolulu, Hawaii, May 17-22, 2002.

[63] Scott, D., Sharp, R. “Developing Secure Web Applications.” IEEE
Internet Computing, 6(6), 38-45, Nov 2002.

[64] Secure Software, Inc. “RATS—Rough Auditing Tool for Security.”
http://www.securesoftware.com/

[65] Shankar, U., Talwar, K., Foster, J. S., Wagner, D. “Detecting Format
String Vulnerabilities with Type Qualifiers.” In Proc. 10th USENIX
Security Symposium (USENIX’02), pages 201-220, Washington DC,
Aug 2002.

[66] SPI Dynamics. “Web Application Security Assessment.” SPI
Dynamics Whitepaper, 2003.

[67] Stiennon, R., “Magic Quadrant for Enterprise Firewalls, 1H03.”
Research Note. M-20-0110, Gartner, Inc., 2003.

[68] Strom, R. E., Yemini, S. A. “Typestate: A Programming Language
Concept for Enhancing Software Reliability.” IEEE Transactions on
Software Engineering, 12(1):157-171, Jan 1986.

[69] Viega, J., Bloch, J., Kohno, T., McGraw, G. “ITS4: a static
vulnerability scanner for C and C++ code.” In The 16th Annual
Computer Security Applications Conference (ACSAC’00), New
Orleans, Louisiana, Dec 11-15, 2000.

[70] Volpano, D., Smith, G., Irvine, C. “A Sound Type System For
Secure Flow Analysis.” Journal of Computer Security, 4(3):167-187,
1996.

[71] Wagner, D., Foster, J. S., Brewer, E. A., Aiken, A. “A First Step
Towards Automated Detection of Buffer Overrun Vulnerabilities.”
In Proc. 7th Network and Distributed System Security Symposium
(NDSS2000), pages 3-17, San Diego, California, Feb 2000.

51

[72] Wall, L., Christiansen, T., Schwartz, R. L. Programming Perl.
O'Reilly and Associates, 3rd edition, July 2000.

[73] Walker, D. “A Type System for Expressive Security Policies.” In
Proc. 27th Symp. Principles of Programming Languages
(POPL’00), pages 254-267, ACM Press, Boston, Massachusetts, Jan
2000.

[74] Watts, G. “PHPXref: PHP Cross Referencing Documentation
Generator.” Sep 2003. http://phpxref.sourceforge.net/

[75] Wheeler, D. A. “FlawFinder.” http://www.dwheeler.com/flawfinder/

[76] Witten, B., Landwehi, C., Caloyannides, M., “Does Open Source
Improve System Security?” IEEE Software, 18(5):57-61, 2001.

[77] Wright, A. K, Cartwright, R. “A Practical Soft Type System for
Scheme.” ACM Transactions on Programming Languages and
Systems, 19(1):87-152, Jan 1999

52

