
Challenges and Practices in Deploying Web Acceleration
Solutions for Distributed Enterprise Systems

Wen-Syan Li Wang-Pin Hsiung Oliver Po Koji Hino K. Selçuk Candan Divyakant Agrawal

NEC Laboratories America, Inc.
10080 North Wolfe Road, Suite SW3-350, Cupertino, California 95014, USA

ABSTRACT
For most Web-based applications, contents are created dynamically
based on the current state of a business, such as product prices and
inventory, stored in database systems. These applications demand
personalized content and track user behavior while maintaining ap-
plication integrity. Many of such practices are not compatible with
Web acceleration solutions. Consequently, although many web ac-
celeration solutions have shown promising performance improve-
ment and scalability, architecting and engineering distributed en-
terprise Web applications to utilize available content delivery net-
works remain a challenge. In this paper, we examine the chal-
lenge to accelerate J2EE-based enterprise web applications. We
list obstacles and recommend some practices to transform typical
database-driven J2EE applications to cache friendly Web applica-
tions where Web acceleration solutions can be applied. Further-
more, such transformation should be done without modification to
the underlying application business logic and without sacrificing
functions that are essential to e-commerce. We take the J2EE refer-
ence software, the Java PetStore, as a case study. By using the pro-
posed guideline, we are able to cache more than 90% of the content
in the PetStore and scale up the Web site more than 20 times.

Categories and Subject Descriptors
H.4 [Information Systems]: Information Systems Applications;
D.2 [Software]: Software Engineering; D.2.8 [Software Engi-
neering]: Metrics—complexity measures, performance measures

General Terms
Performance, Reliability, Experimentation

Keywords
J2EE, dynamic content, application server, edge server, fragment,
web acceleration, reliability, scalability

1. INTRODUCTION
For many e-commerce applications, Web pages are created dy-

namically based on the current state of a business, such as prod-
uct prices and inventory, stored in database systems. This char-
acteristic requires e-commerce Web sites to deploy Web servers,
application servers, and database management system (DBMS) to
generate and serve user requested content dynamically. When the
Web server receives a request for dynamic content, it forwards the
request to the application server along with its request parameters

Copyright is held by the author/owner(s).
WWW2004, May 17–22, 2004, New York, New York, USA.
ACM 1-58113-844-X/04/0005.

(typically included in the URL string). The Web server communi-
cates with the application server using URL strings and cookie in-
formation, which is used for customization. When the application
server receives such a request from the Web server, it may query
the underlying databases to extract the relevant information needed
to dynamically generate the requested page.

To improve the response time, one option is to build a high per-
formance Web site by improving network and server capacity by
deploying a state of the art IT infrastructure. However, without
the deployment of dynamic content caching solutions and content
delivery networks (CDN), dynamic contents are generated on de-
mand. In this case, all delivered Web pages are generated based on
the current business state in the source database.

To improve scalability and performance, one solution is to de-
ploy network-wide caches so that a large fraction of requests can be
served remotely rather than all of them being served from the ori-
gin Web site. This solution has the advantage of serving users via
caches closer to them and reducing the traffic to the Web sites, re-
ducing network latency, and providing faster response times. Many
CDN services [1] provide Web acceleration services. A study in [2]
shows that CDN indeed has significant performance impact. How-
ever, for many e-commerce applications, content is created dynami-
cally based on the current state of a business, such as product prices
and inventory, rather than static information. Therefore, content
delivery by most CDNs is limited to handling static portions of the
pages and media objects, rather than the full spectrum of dynamic
content that constitutes the bulk of the e-commerce Web sites.

Wide-area database replication technologies and the availabil-
ity of data centers allow database copies to be distributed across
the network. This requires a complete e-commerce web site suite
(i.e., Web servers, application servers, and DBMS) to be distributed
along with the database replicas. A major advantage of this ap-
proach is, like the caches, the possibility of serving dynamic con-
tent from a location close to the users, reducing network latency.

Many web acceleration solutions, such as [3, 4, 5, 6, 7, 8], have
shown promising performance improvement and scalability. Li et
al. in [9] provide evaluations of architectural designs and various
implementation practices for database-driven Web sites. In [10], Li
et al. further analyze the factors that have impacts on the perfor-
mance and scalability of Web applications and outline a road map
for Web acceleration for dynamic content. However, with the nec-
essary requirements for enterprise Web applications, such as per-
sonalization and user behavior tracking, architecting and engineer-
ing distributed enterprise Web applications based on available Web
acceleration solutions remains a challenge.

297



In this paper, we examine the challenges and practices to acceler-
ate J2EE-based enterprise web applications. We list obstacles and
recommend some practices to transform a typical database-driven
J2EE applications to a cache friendly Web application where Web
acceleration solutions can be applied. Furthermore, such transfor-
mation can be done without modification to the underlying applica-
tion business logic and without sacrificing functions that are essen-
tial to e-commerce (e.g., personalization and user behavior track-
ing) and application security (e.g., URL encoding). We take the
Sun’s Java PetStore [11], a J2EE reference software provided by
the J2EE Blueprints program, as a case study. The PetStore de-
fines the application programming model for the J2EE platform.
It provides practice guidelines and architectural recommendations
for real-world application scenarios to enable developers to build
portable, scalable, and robust applications using J2EE technology.
To maintain the integrity of the content, the PetStore generates all
user responses based on database content and session objects are
used to track user behavior. We found out that most of the content
in the PetStore application is not cacheable. As a result, no accel-
eration solution can be applied. We take the PetStore and apply
cache friendly and deployment practice guidelines. By incorpo-
rating these changes, we are able to cache more than 90% of the
content in the PetStore while maintaining system integrity. We fur-
ther deploy NEC’s CachePortal II technology [12] to accelerate the
PetStore. The experiment evaluations show that the system can be
scaled up to more than 20 times.

The rest of this paper is organized as follows. In Section 2 we
describe a typical system architecture for database-driven Web ap-
plication. In Section 3 we address challenges to deploying acceler-
ation solutions to distributed enterprise systems and our approaches
to overcome these obstacles to enable dynamic content caching. In
Section 4, we use the Java PetStore as a case study to validate our
proposed guideline. In Section 5, we show how the performance
and scalability can be dramatically improved. In Section 6 we sum-
marize related work. In Section 7 we give our conclusion.

2. ARCHITECTURE OF DISTRIBUTED
ENTERPRISE SYSTEMS

Note that due to the dynamic nature of e-commerce businesses,
a large number of e-commerce Web sites are database-driven. A
typical database-driven Web site (shown in Figure 1) consists of
the following components:

1. A database management system (DBMS) to store, maintain,
and retrieve all necessary data related to the business state.

2. An application server (AS) that incorporates all the necessary
rules and business logic to interpret the data and information
stored in the database. AS receives user requests for HTML
pages and depending upon the nature of a request may need
to access the DBMS to generate the dynamic components of
the HTML page.

3. A Web server (WS) which receives user requests and delivers
dynamically generated Web pages.

4. A cache server in front of the Web server (i.e., front end
cache) or at the edge (i.e., edge cache) to cache content.
To serve dynamically assembled pages, such as JSP or ASP
pages, an edge application server may be deployed to offload
the application server at the origin Web site.

End Users

Web Server

Application Server

Cache Server / Edge Application Server

Cookies
/ Session Object

/ Session Object

Page content (HTML)

Cookies

Page content (HTML)
Cookies
/ Session Object

DB Query Results

DBMS

Page content (HTML)

Request: URL+Parameters

Request: URL+Parameters

Invocation: Program parameters 

DB Queries

Figure 1: Architecture of a Database-Driven E-Commerce Site

When a user accesses the Web site, the request and its associ-
ated parameters, such as the product name and model number, and
cookie and session object information for customization, are passed
to the application server. The application server performs necessary
computation to identify what kind of data it needs from the database
or file system, or external data sources. Then the application server
sends appropriate queries to the database or other sources. After
the database returns the query results to the application server, the
application uses these to prepare a Web page and passes it to the
Web server, which then sends it to the user. Note that most cache
servers are cookie-aware in the sense that they can serve cached
pages based on matching a combination of URL string and cookie
information. However, the session object information is only avail-
able to the application.

Since cache servers, Web servers, application servers, and databases
are independent components, it requires a coordination mechanism
to ensure that database content changes are reflected to the caches.
In [4], we first developed a dynamic content caching and invalida-
tion framework for accelerating database-driven e-commerce Web
sites. The technology enables dynamic content caching by

� automatically deriving the relationships between cached pages
and database contents (i.e., URL and query mapping); and

� intelligently monitoring database changes to ”eject” (i.e., delete)
stale pages from caches.

In most existing work, the relationships between Web pages and
the underlying data are specified manually. In contrast, CachePor-
tal II[12] features a sniffer to automatically generate the URL and
query mapping. The sniffer sits between the Web server and the ap-
plication as well as between the application server and the DBMS.
The sniffer intercepts the user requests and inserts a special tag to
associate with the requests. The tag is then used to track the actions
of each request at the application server and the DBMS. Because
the cache server uniquely identified cached content based on URL
and cookie information, the URL in the map includes cookie infor-
mation. Also in most existing work, the invalidation checking is
implemented using database trigger functions while the invalidator
presented in [13] is implemented as an external software compo-
nent based on the incremental view maintenance techniques, which
does not add substantial load to the underlying DBMS.

As we can see, the framework of enabling dynamic content caching
to accelerate Web applications truly relies on automated construc-
tion of the URL and query mapping since the accurate invalidation

298



can not be done without the map. In the next section, we describe
some obstacles to construction of the URL and query mapping.

3. OBSTACLES FOR ENABLING DYNAMIC
CONTENT CACHING

We have investigated a set of J2EE e-commerce application soft-
ware. In this section, we discuss the challenges and obstacles for
constructing URL and query mapping.

3.1 Session Object
An application may maintain data in the session object that may

influence the construction of a page. For example, a session ID
based on Ethernet card ID may be used to identify user A logging
in from PC A. When user A gives his password to user B to access
the account of user A from another PC concurrently, the application
server can use the information in the session object to reject the
access by user B.

The session object is also frequently used to hide parameters
since how to interpret the semantics of the session object is only
available at the application server. For example, the Java PetStore
uses the session object to store shopping cart information for indi-
vidual user. In this example, the session object is a better option
than the cookie since the session is designed to have a short TTL
(i.e., less than a hour).

Since the session data spans different requests, cache servers do
not know if these objects will have any impact on safe caching of a
page. By default, requested pages will be marked non-cacheable if
the session object contains any data objects.

To solve this problem, we develop a scheme for enabling dy-
namic content caching in the presentation of a session object. The
procedure of our proposed scheme is as follows:

� The API of converting URL, cookie, and session object into
a hash key is made available at the application server for the
cache server to access or the API is replicated at the cache
server.

� When the request first comes to the cache server, the cache
server forwards it to the application server after checking
through the API to see if there is a match of cached pages
based on the hash key.

� The application server processes the page and determines if
the page is cacheable or not (by CachePortal’s SQL parser)
and returns the page to the cache server with a special tag
indicating if the page is cacheable.

� If the page is cacheable, it is cached to serve further requests.

� If the database content changes occur and the invalidator de-
tects the cached page needs to be invalidated, the invalidation
message is sent to the cache server.

Note that with this scheme, the cached pages are served to only
the original requesting users rather than other users even if the page
contents are identical. The impact of this solution to the cache hit
rate will be discussed later.

3.2 Cache Object
Applications may maintain data obtained from data sources in

data objects and provide them to the subsequent requests to the
same data content. For example, when a user login to an on line

banking application Web site, all information associated with the
user may be retrieved to the application using a single SQL com-
mand. As a result, the subsequent user requested pages, such as
account balance, history, and mailing address, do not result in any
queries to the database. As a result, a sniffer implemented at the
JDBC layer will see only one SQL command rather than multiple
SQL commands that correspond to the subsequent requests.

To solve this problem, we allow the users to tag the applica-
tion programs with additional statement to explicitly declare such
intent. For example, when the first request results in the construc-
tion of the cached data object, the SQL statement and the object
ID is stored in the map. Subsequent requests will be tagged with
additional statement to declare usage of such cached data objects.
Therefore, the URL strings of the following requests and the cached
data object ID can be associated and stored in the map for invalida-
tion process. Note that the above tagging statement can be added to
the application programs systematically without affecting the ap-
plication and business logic.

Construction of the URL and SQL query map in the presentation
of cached data objects is not a major issue for the application server
vendors since the requests to the cached data objects are moni-
tored by the application server. The map described above can be
constructed without adding additional statements to the application
programs.

3.3 Unsupported Data Source
Any content that is used for the construction of a page must come

from data sources that are being sniffed to detect content change.
This is essential, as without this we have no way of invalidating
a page when the underlying data changes. For example, a page
may be generated based on data stored in the modern database as
well as some files stored in content management software. If the
content management software does not provide any invalidation
scheme of the content it supports, we have to mark the pages as
non-cacheable. The other option is to utilize fragments to cache the
partial page. For example, we can mark the portion of a page that
is generated using unsupported data source non-cacheable while
marking other portions cacheable.

CachePortal provides a framework for developing custom snif-
fers and invalidators. Custom sniffers and invalidators are required
to support caching of pages where all or part of the content for the
page comes from data sources not supported by CachePortal.

3.4 URL Encoding
Requests may contain parameters that are encoded/encrypted with

session id or some other key. For example, two users may login
to a Web site and the session ID based on Ethernet card ID on
the two machines where the users login are sent to the application
server. Then the application may generate two pages with the iden-
tical content but all the links are encoded with the session ID from
the machine. When the links are clicked, the request with encoded
URL is sent to the application server. The application then checks
if the session ID (i.e., Ethernet card ID) sent with the request match
with the session ID encoded in the URL string. If it does not match,
the application server will not generate the requested page. This
practice of URL encoding allows the Web site to limit users’ ac-
cess from certain machines. Furthermore, when the encoded URLs
generated for a particular user on a particular machine are given to
another user, the content will not be returned.

The URL encoding scheme provides option for applications to

299



add some security to the system. However, it greatly reduces the
scope of dynamic content caching. With URL encoding, almost
all requests will appear as a different request to cache server, even
though the content returned is the same. We propose two solutions
for this problem:

� Limiting usage of URL encoding: we have investigated sev-
eral real world applications. We found out that many Web
applications over-use the URL encoding scheme in their ap-
plications. For example, the URL encoding scheme should
be applied on only transaction related operations while URLs
for catalog pages should not be encoded so that caching so-
lution can be applied.

� Currently, the encoding logic is embedded in the application
server. To enable dynamic content caching of encoded URL
requests (for those catalog pages), there are two options. The
first option is to define an API for the cache server to access
and decode the URLs. It will result in additional network
latency. The second option is to replicate the decoding com-
ponent at the cache server.

3.5 Use of Cookie
Most cache servers are cookie enabled; which means that the

cache servers will use a combination of the URL string and cookie
information to uniquely identify a page when the cookie informa-
tion is presented. However, once a cookie is set at the beginning of
the user session with the application server, the cookie will remain
active until it is destroyed. During the entire period, the cookie
information is used to identify pages even for cacheable catalog
pages. As a result, all the users may access the same catalog page,
but the cache server will view the same catalog pages accessed by
two users different since the combination of the URL string and
cookie information differentiate them although the cookie infor-
mation has no impact on the generation of the catalog page. To
solve this problem, CachePortal provides a tool, Page Differ-
entiator, for the system administrator to configure the cache
servers a list of URLs for which cookie information needs to be
considered and a list of URLs for which cookie information does
not need to be considered. The detailed information of Page Dif-
ferentiator is given later.

3.6 User Behavior Logging and Tracking
User behavior logging and tracking are essential to enterprise

system integrity and business intelligence. For example,

� an on-line banking application needs to log all user interac-
tion and values that the user enters through the screen so that
such operation can be recovered if any error occurs; and

� an e-commerce Web site may track the items that the users
browse to identify the categories of items the users are inter-
ested for future targeted marketing activities.

For the real world applications that we have investigated, we
found that most applications do deploy logging and tracking func-
tions and use a dedicated database table to store such information.
All the logging and tracking information is written to the database
table before or on returning the requested pages to the users. As
a result, when logging or tracking is applied, even if generating a
page requires only a read operation to the DBMS, it will still result
in both read and write operations on the DBMS making the request
non-cacheable.

Figure 2: Page Differentiator Configuration Tools

All database operations, such as logging, that do not have an im-
pact on freshness of a cached page should be avoided in the request
thread for the reasons of (1) better response time for the request
pages; and (2) confusing the caching solution to make correct judg-
ment on whether or not a requested page is cacheable.

To overcome this obstacle, we propose the following solutions:

� CachePortal provides configuration tool to allow the system
administrator to specify the database tables that are used for
logging and tracking. CachePortal will then ignore the SQL
statement and read/write operations on such tables;

� Logging and tracking operations are done in a separate thread
apart from the request thread; and

� Moving the logging and tracking function to the cache servers.
For example, CachePortal Cache Manager and monitor tool
are able to log all user specified parameters as well as all
performance related statistics, which are more comprehen-
sive than most of the information collected in the logging
and tracking functions.

3.7 Page Differentiation
Every request from a client is uniquely identified based on the

URL, cookie, HTTP header, session objects, and (if applicable)
post data. If these parameters are identical to another request that
led to a cached page, the page cached in the cache server is re-
turned. However, if any of these parameters is different for any
reason, the request is forwarded to application server for process-
ing. However, in some cases, although the request parameters are
different, they may actually be referring to the same page. This
may happen because of two reasons:

� The request contains a parameter that has no material effect
on the response sent. For example, if a different cookie is set
for every user, irrespective of whether the user has actually
logged in or not, the request will appear as a different request
to the cache server, although the content returned is the same.

300



Figure 3: Cache Unfriendly Interface Design

Figure 4: Cache friendly Interface Design

� The request contains parameters that are encoded/encrypted
with session id or some other key. Again, the request will
appear as a different request to the cache server, although the
content returned is the same.

CachePortal provides two different mechanisms to deal with each
of these situations. The difference between the two cases arises
from the fact that the information needed to interpret the request
parameters is not available at the cache server, but available at the
application server. In addition to having an API at the application
server for the cache server to access and provide replica of such
information (or programs) at the cache server, the other solution is
to use the tool Page Differentiator to configure the cache
servers to enable caching for more dynamic pages that are really
cacheable, such as the catalog.

Figure 2 shows a window dump of using Page Differen-
tiator to configure a cache server to cache or not to cache pages
for the Java PetStore software. On top of the window, we see that
there are multiple rules for various URL string patterns. For ex-
ample, in the Java PetStore, the session object is set when users
login the system. When the users come to the Java PetStore site
but do not login, neither the cookie nor the session object are set.
However, the session object information is not used when users
navigate catalog pages and item information pages. We can con-
figure the cache server to ignore the session object, JSessionId,
when the patterns of URL strings include product.screen,
item.screen, and category.screen. The window also forces
the cache server not to parse the pages with the URL string with
the patterns like cart.do and purchase. The lower part of the
window shows the details of the configuration.

3.8 Post versus Get
As a convention, HTTP POST is used when the request is idem-

potent (acting as if used only once, even if used multiple times)
and when the request has a permanent effect on the outside world.
When the intention of the request is to only obtain information,
HTTP GET should be used. HTTP POST is also used when the
request parameters are longer than that supported by HTTP GET.

Since the request parameters using HTTP POST are not shown
as a part of URL string, POST may sometimes be used just to hide
the request parameters. Unlike cookies, the HTTP POST message
is not parsed by cache servers. However, the request parameters
may be used by the application servers to generate page content.
For example, a Web site may use cookie information to identify the
origin of users (i.e., Japan or US) and use HTTP POST messages to

Figure 5: Interface Design with Personalization

send the product list in users’ shopping carts. In this example, the
users with the identical URL string and cookie information may be
given different page content. Since most cache servers do not parse
HTTP POST messages, the user requests using HTTP POST are
marked as non-cacheable.

We have enhanced the Squid cache server by adding POST mes-
sage parsing capability. Thus, in our system, POST messages are
parsed and used in conjunction with URL string and cookie to
uniquely identify users’ requested content.

3.9 Cache Friendly GUI
To utilize caching, careful and intelligent design of cache friendly

Web sites is essential to scalability of a Web site using any dis-
cussed approach and configuration. In Figure 3, we show a non-
cache friendly Web site design. Using this interface, users can
issue unlimited number of query types to the application server
and the hit ratio will be low since the probability that two users
issue the same query is extremely low. On the other hand, the Web
site design shown in Figure 4 is a cache friendly Web site inter-
face since there will be only 42 different pages that can be gener-
ated (i.e., 6 � 7). The Web site can generate all the possible 42
pages in advance and store them at the cache server while deploy-
ing CachePortal technology to invalidate pages in the cache
that are impacted by database content changes. The most desir-
able cache friendly Web access interface design would be similar
to that in Figure 4. Its default query interface is cache friendly and
is used by most of the users while supporting a link to go to another
interface for advanced query and search.

3.10 Personalization
Personalization is essential to e-commerce applications. For ex-

ample, e-commerce sites track users’ navigation or purchase behav-
ior and show the users products related to users’ recent purchases or
browsed categories. For example, Figure 5 shows a window similar
to the window in Figure 4 except additional personalization on the
right side of Figure 5. The personalization shows users with links
pointing to the categories of their recent purchase is included. Once
a new purchase is made, the personalization page will change ac-
cordingly. Implementing personalization using the right system ar-
chitecture while reflecting the business intelligence of e-commerce
has a great impact to the cacheability and performance. We see that
there are two major ways to implement this example:

3.10.1 Frame-based Implementation
Frames are frequently used in most commercial Web sites for

the flexibility they provide in page formatting and layout as well
as to simplify users’ navigation. The HTML code below shows
an example of an index page consisting of three fragment pages
grouped by frame.

<HTML>
<TITLE>
My PetShop Search Screen
</TITLE>

301



<FRAMESET ROWS="30%,40%,30%">
<FRAME NAME="category" SRC="./category.html">
<FRAME NAME="search" SRC="./product.search">
<FRAME NAME="mylink" SRC="./mylink.html">

</FRAMESET>
</HTML>

After a browser receives the page index.html, it parses the page
and then requests three additional pages. Note that although this
composite page is displayed to the user as a single and personal-
ized Web page, all fragment pages are cacheable. The category
page and search page have fairly long TTL and the personalized
fragment page is also cacheable for the individual user and it can
be invalidated when a new purchase occurs.

For this frame-based implementation, an edge cache server de-
ployment will be most suitable for fast delivery through caching.

3.10.2 Dynamically-assembly Implementation
If the requested page is dynamically assembled at user request

time, all three fragment pages are cacheable but an edge applica-
tion server is needed to assemble the three fragment pages into one
page to serve the user. In this system architecture, the invalidation
message for the personalization page needs to be sent to the edge
application server instead to the cache server. The network latency
and processing latency for fragment pages are reduced.

Note that in the case that neither the edge application server nor
the CachePortal is deployed, the application server at the origin site
needs to dynamically generate the personalization page for each
user and then assemble the three fragment pages into one page to
serve the user. The combination of network latency and processing
latency may result in slow response time.

3.11 Cluster Architecture
A typical approach to supporting high-availability and scalabil-

ity is to use a cluster architecture for Web/Application Server and
DBMS. If middleware is deployed to provide transparent access to
WAS, such as [14], and DBMS, such as [15], the cluster architec-
ture is not really an obstacle to construct the URL and query map-
ping. If the cluster architecture does not provide transparent access
or shared memory, it requires additional effort and it is challenging
to monitor all activities across multiple servers.

4. CASE STUDY: JAVA PETSTORE
The Java PetStore is a reference application provided by the Java

2 Platform, Enterprise Edition BluePrints (J2EE BluePrints) pro-
gram at Java Software, Sun Microsystems. This reference appli-
cation demonstrates how to use the capabilities of the J2EE plat-
form to develop flexible, scalable, cross-platform e-business ap-
plications. It comes with full source code and documentation for
users to experiment with J2EE technology and learn how to use
it to build enterprise solutions. The J2EE BluePrints program de-
fines the application programming model for the J2EE platform.
It provides practice guidelines and architectural recommendations
for real-world application scenarios to enable developers to build
portable, scalable, and robust applications using J2EE technology.
In this paper, we use it to demonstrate how we can enable dynamic
content caching and accelerate an e-commerce J2EE applications.

4.1 Overview of the Java PetStore
We installed the Java PetStore and populated the database as in-

structed in the manual. We then deployed CachePortal on top of the

Figure 6: Java PetStore Main Page

Figure 7: PetStore Category Page

Figure 8: PetStore Item Page

Figure 9: PetStore Item Information Page

Figure 10: PetStore Shopping Cart Page

302



Figure 11: PetStore My List Page

Java PetStore. The PetStore represents a typical e-commerce Web
site, where users are provided with options to navigate through the
catalog, items, and place orders.

Figure 6 shows the main page of the Java PetStore, where the
users can see all five categories of pets as well as performing search
on the whole inventory of pets. When the users click on one of the
category page links, a category page similar to Figure 7 will appear.
Then, the users can click on one of the two links in the category
page to go to sub-categories until an item page is reached. An ex-
ample of the item page is shown in Figure 8. At the item page, the
users can add the pet to the shopping cart or click on the link to
go to the information page. At the information page (as shown in
Figure 9), the users are presented with detailed information about
the pet and have option to click on add to cart link. When
the add to cart link is clicked, the users can modify the quan-
tity or remove the items from the shopping cart completely. The
users have an option to check out and log off from the PetStore.
At any page, the users can click on the categories, sign in,
account, and change language links.

Note that users can navigate the categories and add items to shop-
ping carts without signing in. However, after the users login to the
system, the system will provide a personalized page, My List,
on the right side of the window as shown in Figure 10. The links
in My List is based on what the users purchased recently and
the database content is accessed every time when personalization is
enabled.

4.2 Enabling Dynamic Content Caching
The purpose of our case study is to see if we are able to en-

able dynamic content caching without modification to its applica-
tion program. The tools available to us via CachePortal include:

� CachePortal sniffer and invalidator as described in Section 2;

� Page Differentiator as described in Section 3.7;

� Squid cache server with enhancement of POST message han-
dling and configurability through Page Differentia-
tor;

� Light weight edge application server that is able to assemble
fragment pages if necessary. The edge application server is
integrated with the Squid cache server.

We do not modify the Java PetStore to build an API for the URL
encoding/decoding purpose and passing cacheability and hashing
keys to the edge cache/application server. There are five steps to
enable dynamic content caching for PetStore.

There are total 84 possible screens in the Java PetStore. Among
them, 79 screens, catalog and item information pages, are cacheable.

The remaining 5 non-cacheable screens are sign in, account,
check cart, add to cart, and checkout.

In the Java PetStore, cookies and session objects are created
when the users login to the main screen of the system. However,
the cookie information is not really used in the PetStore while the
session objects are used to store shopping cart information.

We navigated through every page in the Java PetStore and iden-
tified that the URL strings can be classified into the following ten
patterns:

1. petstore/category.screen?category_id=FISH
2. petstore/product.screen.screen?product_id=AV-CB-01
3. petstore/item.screen?item_id=EST-18
4. petstore/changelocale.do?locale=en_US
5. petstore/changelocale.do?locale=jp_JP
------------------------------------------
6. petstore/signon_welcome.screen
7. petstore/cart.do
8. petstore/customer.do
9. petstore/cart.do?action=purchase&itemld=EST-19
10.petstore/enter_order_information.screen

On the list, the first three URLs are for browsing categories, sub-
categories, items, and item information. The fourth and the fifth
URLs are for language switching between English and Japanese.
All of these pages are cacheable using Page Differentiator
to configure the edge cache/application server to ignore the session
objects and cookies. The remaining URLs (from the sixth to the
tenth) are for the sign in screen, check cart screen, account screen,
add to cart screen, and checkout screen. They are not cacheable.
Note that in this list, we can only show the URL strings for user
requests.

Since fragment pages are used in the Java PetStore, additional
included and forwarded requests for the fragment pages are sniffed
at the application server filter. The URL and query map stores the
mapping between

� URL of origin user requests and queries,

� URL of origin user requests and queries and URLs of in-
cluded and forwarded requests for the fragment pages, and

� URL of requests for the fragment pages and queries.

For example, for the request to generate the page shown in Figure
7, a URL string, petstore/category.screen?category id=FISH,
is captured by the sniffer as A request results in a page with two
fragment pages, category on the left and product id=FISH
on the right in Figure 7. The internal request for the fragment page
category results in the following query, Query1, issued to the
database:

select a.catid, name, descn
from category a, category_details b
where a.catid=b.catid and locale = "en_US"
order by name

The sniffer also captures the query, Query2, issued as a result of
the fragment page category id=FISH. Query2 is as follows:

select a.productid, name, descn
from product a, product_details b
where a.productid=b.productid

and locale = "en_US"
and a.catid = "FISH"

order by name

303



category.screen?
category_id=FISH

user ID = 123

category.screen?

category_id=FISH

category.screen?

category_id=DOGS

=AV−CB−01

product_id

Query4 Query5

product_id=AV−CB−01

product.screen? Cached HTML pages

at edge cache servers

Cached fragment pages

at edge application servers

or application servers
= FISH = DOGS

category
category_id category_id

my_list

Queries issued to DBMS
Query2Query1 Query3

Figure 12: Mapping between HTML Pages, Fragment Pages, and Query Statements

For the user request for a category page for pets related to dogs,
petstore/category.screen?category id=DOGS, the
sniffer capturesQuery1 and the following query,Query3, for the
fragment page,category id=DOGS

select a.productid, name, descn
from product a, product_details b
where a.productid=b.productid

and locale = "en_US"
and a.catid = "DOGS"

order by name

For the same URL request with a user login, a customized page
shown in Figure 11 is generated. Additional query,Query4, is is-
sued to retrieve the purchase history of the user and to generate the
fragment page,my list, on the right of Figure 11. When a re-
quest for the page shown in Figure 8 is issued, the sniffer captures
the URL/petstore/product.screen?product id=AV-CB-01

as well as two queries to the database,Query1 for the category
fragment page and the following query,Query5, to generate the
fragment page,product id=AV-CB-01, containing detailed in-
formation about product items:

select catid, name, a.itemid, b.image, b.descn,
attr1, attr2, attr3, attr4, attr5,
listprice, unitcost

from item a, item_details b, product_details c,
product d

where a.itemid=b.itemid
and a.productid=c.productid
and d.productid=c.productid
and b.locale = c.locale
and b.locale = "en_US"
and a.productid = "AV-CB-01"

4.3 Monitoring and Invalidation
In Figure 12, we summarize the relationship between HTML

pages cached at edge cache servers and fragment pages cached in
either at the edge application servers or at the application servers
(at the origin site). The relationship is captured by the application
sniffer automatically. The figure also illustrates the map between
fragment pages and queries, which is captured by the JDBC sniffer.
Note that if a HTML page is generated without using any fragment
page, a direct map between the HTML page and queries is con-
structed. In the implementation of PetStore, all HTML pages are
constructed based on multiple fragment pages with or without user
login. Also note that a request for a page may result in multiple
queries.

From these captured query statements, we can identify a list of
tables, includingcategory, product, product details,

item, anditem details, that store information necessary to
generate requested pages. Thus, these tables need to be monitored
for invalidating cached HTML pages or fragments when database
content changes occur. For example, if a database change is de-
tected and the invalidator determines thatQuery3 needs to be in-
validated, the fragment pagecategory id=DOGS is invalidated
from the edge application servers and consequently the HTML page
category.screen?category id=DOGS needs to be invali-
dated. For detailed description of the invalidation scheme, please
see [10].

CachePortal is designed to accelerate very large scale data cen-
ter hosted database-driven Web applications. We have evaluated
the system using an e-commerce application and it is capable of
tracking 50 million dynamic content pages in 10 cache servers and
it assures content freshness of these 50 million pages by invali-
dating impacted pages within 12 seconds once database content is
changed. Our approach also provides better scalability and signifi-
cantly reduced response times up to 70% in the experiments. Some
experimental evaluation results are described in [16, 12].

The Java PetStore is now dynamic content caching enabled and
is ready for the evaluation of performance gain through the deploy-
ment of CachePortal. Note that since HTML pages in Java PetStore
are personalized if users login and they have purchased some items
in the past, the cache hits on edge cache servers are only for re-
quests from the users who do not login or have no purchase history.
For all other requests other than transactional requests related to or-
ders and shopping carts, edge application servers can dynamically
assemble requested pages based on cached fragments at the edge
application servers. The invalidations will occur to the following
fragments pages:

� my list fragment (on the right Figure 11) when a user
makes new purchases;

� category fragment (on the left of Figures 6 to 11) when a
new category is added to the PetStore;

� category id fragment (on the right of Figure 7) when a
new item added to a category;

� item fragment (on the right of Figure 8) when a new item is
added to a category or the standard list price for an existing
item is changed; and

� item details fragment (on the right of Figure 9) when
the standard list price or special price for an existing item is
changed.

304



5. EXPERIMENTS
In this section, we present the experimental results of evaluating

the Java PetStore’s performance gain and scalability improvement
with the deployment of NEC’s CachePortal Web acceleration so-
lution and the proposed guideline. We first describe the general
experiment setup that consists of Web servers, application servers,
DBMS, and network infrastructure that are used in the experiments.

5.1 General Experimental Setting
The content delivery configuration is similar to that described

in Section 2. We used two heterogeneous networks that are avail-
able in the NEC’s facility in Cupertino, California: one is used
by the C&C Research Laboratories (referred to as CCRL) and the
other one is used bycacheportal.com (referred to as CP). Users and
edge cache servers are located in the CP network while Web server,
application server, and DB Caches are located in the CCRL net-
work. The average round trip time on the CCRL-CP connections is
through a network delay generator using Dummy Net provided by
FreeBSD. The round trip time within the same network is negligi-
ble. In summary, connectivity within the same network is substan-
tially better than that across the Internet and there is large network
latency.

The system and software configuration for each component are
as follows:

� Edge cache server: Squid 2.4.7 with enhancements to handle
POST requests on a 1500 MHZ Pentium 4 machine running
Linux 8.0.

� Web server and application server: Tomcat 4.1.24 Web Server
and JBoss 3.2.1 Application Server are used on a 1500 MHZ
Pentium 4 machine with 1 G Byte main memory running
Linux 8.0.

� DBMS: Oracle 9i is used as the database system and it runs
on a 2300 MHZ Xeon machine with 2 G Byte main memory
running Linux 8.0.

5.2 Evaluation of Performance Gain
The first experiment we conducted is to measure the performance

gain (in terms of the response time observed by the users) achieved
through our proposed approach. In this experiment, the network
latency is set to 200ms, 400ms, and 800ms and the number of con-
current users are set to in a range between 20 and 100. We ran-
domly assign the users to navigate the Java PetStore applications.
Thus, some users may look at the catalog while some of them may
add items to shopping carts and are ready to check out. We ran the
experiments based on combinations of all these parameter values
for the PetStore without CachePortal and PetStore with the deploy-
ment of CachePortal with cache hit rates at 60%, 70%, 80%, and
90% (i.e., hits at the edge cache servers or the edge application
servers). We then record the response time of each users. The
experiments are repeated five times and the average user response
time is used to plot in Figure 13.

As we can see in Figure 13, the system without dynamic con-
tent caching and CachePortal yields very large response time and
the response time increases almost in proportion to the number of
concurrent users and network latency. On the other hand, the sys-
tems with dynamic content caching and CachePortal consistently
provide fast average response time under 4 seconds.

5.3 Evaluation of User Experience
The next experiment we conducted is to measure user experience

in terms of

� percentage of the users receiving error message due to sys-
tem overload or time out; and

� percentage of the users receiving response under 7 seconds.

The experiment setting is the same as the previous experiment
except we vary the number of concurrent users between 20 and 200
in order to create system overload.

Note that these experiments illustrate the user’s actual experi-
ence. As we can see in Figure 14, at the load of 50 concurrent
users, the users of the Java PetStore start to experience unpleasant
delay and at the load of more than 100 concurrent users, more than
half of the users experience delay more than 7 seconds. In Figure
15, we can see at the load of more than 120 concurrent requests,
the users start to receive error messages.

In the figure, we also see that the network latency has an impact
to the user response time. Note that the network latency not only
increases the transmission time but also cause the requests to hold
on to the limited number of connections to the application servers
and the DBMS.

5.4 Experiments on System Scalability
The next experiment we conducted is to measure the scalabil-

ity of five different systems for Java PetStore: one system without
dynamic content caching and four systems with dynamic content
catching enabled and deployment of CachePortal. These four sys-
tems have hit rates of 60%, 70%, 80%, and 90%, respectively. We
want to experimentally derive the limitation of each system config-
urations to serve user requests under 7 seconds on average.

In Table 1, we show the maximum number of concurrent users
that each system can support with average user response time un-
der 7 seconds. In Figure 16, the X-axis indicates the number of
concurrent user requests and the Y-axis indicates the network la-
tency between the users and the application server. We tested the
limitation of each system by increasing the number of concurrent
user requests and network latency until the average user response
time is above 7 seconds. We then plot the number of concurrent
user requests and network latency as the limitation for the system
in terms of scalability.

As shown in Figure 16, when the system has no dynamic con-
tent caching (the left most line), its scalability is very limited. On
the other hand, when we deploy CachePortal software for dynamic
content caching, the system can be scaled up to handle more con-
current users as well as higher network latency. For a common
network condition in which the round trip time is around 400 ms,
the system with 90% hit rate is scaled up to for more than 20 times
as pointed out in Figure 16 and in the second row of Table 1.

6. RELATED WORK
Applying caching solutions for Web applications and content

distribution has received a lot of attention in the Web and database
communities [6, 17, 18, 19, 20, 21, 22]. These provide various
solutions to accelerate content delivery, such as middleware level
cache/pre-fetch solutions, which lie between application servers
and underlying DBMS or file systems. They do not provide au-
tomated URL/Query mapping construction and invalidation func-
tionalities.

305



(a) (b) (c)

Figure 13: Effects of Number of Requests on Average User Response Time for Network Latency of (a) 200 ms, (b) 400 ms, and (c)
800 ms

(a) (b) (c)

Figure 14: Effects of Number of Requests on Percentage of User Requests Served under 7 Seconds for Network Latency of (a) 200
ms, (b) 400 ms, and (c) 800 ms

(a) (b) (c)

Figure 15: Effects of Number of Requests on Percentage of User Requests Resulting in Error Messages for Network Latency of (a)
200 ms, (b) 400 ms, and (c) 800 ms

306



Figure 16: Evaluation of System Scalability

Latency / Cache Hit Rate 0% 60% 70% 80% 90%

200 120 385 550 1400 2600
400 100 330 480 1100 2350
600 95 280 400 860 2000
800 75 240 350 660 1800
1000 65 200 300 580 1600

Table 1: Limitation of Systems

WebCQ [23] is one of the earliest prototype systems for detect-
ing and delivering information changes on the Web. However, the
change detection is limited to ordinary Web pages. Yagoub et
al. [24] have proposed caching strategies for data intensive Web
sites. Their approach uses materialization to eliminate dynamic
generation of pages but does not address the issue of view invali-
dation when the underlying data is updated. Labrindis and Rous-
sopoulos [25] present an innovative approach to enable dynamic
content caching by maintainingstatic mappings between database
contents and Web pages, and therefore this approach requires a
modification to underlying Web applications.

Dynamai [3] from Persistence Software is one of the first dy-
namic caching solution that is available as a product. However,
Dynamai relies on proprietary software for both database and ap-
plication server components. Thus it cannot be easily incorporated
into existing e-commerce framework. Jim Challenger et al. [26, 27]
at IBM Research have developed a scalable and highly available
system for serving dynamic data over the Web. The IBM system
was used at Olympics 2000 to post sport event results on the Web
in a timely manner. The system provides tools to define fragment
pages and their dependency. It utilizes database triggers to gener-
ate update events as well as intimately relies on the semantics of
the application to map database update events to appropriate Web
pages.

SPREAD [28], a system for automated content distribution, is
an architecture which uses a hybrid ofclient validation, server in-
validation, andreplication to maintain consistency across servers.
Note that the work in [28] focuses on static content and describes
techniques to synchronize static content, which gets updated peri-
odically, across Web servers.

Yuan et al. [29] evaluated the benefit of edge caching and of-
floading for dynamic content delivery. In this work, Pet Shop is
used for benchmark. Note that Pet Shop comes from Sun’s J2EE

reference software PetStore but implemented using ASP.NET. The
evaluations verify the benefit of dynamic content caching but at the
same time they point out the enabling process is overly complex
and even counter-productive. In their prototype, application pro-
grams need to be modified and user-specified TTL is used to en-
force the consistency in contrast to that CachePortal provides more
plug-and-play deployment and features invalidation schemes to en-
sure cache content freshness.

All these related research activities focus on Web acceleration
solution or maintenance of strong consistency for the caches rather
than the practical and engineering issues of how to apply and en-
able dynamic content solutions. None of their approaches, how-
ever, evaluate the impact of these caching strategies in a real e-
commerce environment such as the one described in this paper.

7. CONCLUDING REMARKS
The framework of enabling dynamic content caching to acceler-

ate Web applications and its applicability truly rely onautomated
construction of the URL and query mapping. CachePortal develops
sniffer and Invalidator to automate and scale up this task. In this
paper, we identify the challenges in deploying CachePortal to real
world e-commerce J2EE-based Web applications. We recommend
practices to transform a typical database-driven J2EE applications
to a cache friendly Web application where Web acceleration solu-
tions can be applied. Furthermore, such transformation can be done
without modification to the underlying application business logic
and without sacrificing functions that are essential to e-commerce.
We take the J2EE reference software, the Sun’s Java PetStore, as a
case study. After applying the guideline, we are able to cache more
than 90% of the content in the PetStore and scale up the Web site
more than 20 times.

Future work includes extending our solutions to outside the J2EE
setting and PHP-based applications as well as more in-depth study
of deploying acceleration solutions for Web applications based on
cluster architectures.

Acknowledgments
The authors would like to thank Satish Murthy for useful discus-
sions on this work and acknowledge his contributions in engineer-
ing the CachePortal SDK used for experiments in this paper.

307



8. REFERENCES
[1] Akamai Technology.Information available at

http://www.akamai.com/html/sv/code.html.
[2] B. Krishnamurthy and C. E. Wills. Analyzing factors that

influence end-to-end web performance. InProceedings of the
9th World-Wide Web Conference, pages 17–32, Amsterdam,
The Netherlands, June 2000.

[3] Persistent Software Systems Inc. http://www.dynamai.com/.
[4] K. Seluk Candan, Wen-Syan Li, Qiong Luo, Wang-Pin

Hsiung, and Divyakant Agrawal. Enabling Dynamic Content
Caching for Database-Driven Web Sites. InProceedings of
the 2001 ACM SIGMOD Conference, Santa Barbara, CA,
USA, May 2001. ACM.

[5] C. Mohan. Application Servers: Born-Again TP Monitors for
the Web? (Panel Abstract). InProceedings of the 2001 ACM
SIGMOD Conference, Santa Barbara, CA, USA, August
2001.

[6] C. Mohan. Caching Technologies for Web Applications. In
Proceedings of the 2001 VLDB Conference, Roma, Italy,
September 2001.

[7] Mitch Cherniack, Michael J. Franklin, and Stanley B.
Zdonik. Data Management for Pervasive Computing. In
Proceedings of the 2001 VLDB Conference, Roma, Italy,
September 2001.

[8] Qiong Luo and Jeffrey F. Naughton. Form-Based Proxy
Caching for Database-Backed Web Sites. InProceedings of
the 2001 VLDB Conference, Roma, Italy, September 2001.

[9] Wen-Syan Li, Wang-Pin Hsiung, Oliver Po, K. Seluk
Candan, and Divyakant Agrawal. Evaluations of
architectural designs and implementation for database-driven
web sites.Data and Knowledge Engineering,
43(2):151–177, November 2002.

[10] Wen-Syan Li, Wang-Pin Hsiung, Dmitri V. Kalashnikov,
Radu Sion, Oliver Po, Divyakant Agrawal, and K. Selc¸uk
Candan. Issues and Evaluations of Caching Solutions for
Web Application Acceleration. InProceedings of the 2002
VLDB Conference, Hongkong, China, August 2002.

[11] Java Software, Sun Microsystems.Information available at
http://blueprints.macromedia.com/petstore/.

[12] Wen-Syan Li, Oliver Po, Wang-Pin Hsiung, K. Selc¸uk
Candan, Divyakant Agrawal, Yusuf Akca, and Kunihiro
Taniguchi. CachePortal II: Acceleration of Very Large Scale
Data Center-Hosted Database-driven Web Applications. In
Proceedings of the 2003 VLDB Conference, Berlin,
Germany, September 2003.

[13] K. Selçuk Candan, Divyakant Agrawal, Wen-Syan Li, Oliver
Po, and Wang-Pin Hsiung. View Invalidation for Dynamic
Content Caching in Multitiered Architectures . In
Proceedings of the 28th Very Large Data Bases Conference,
Hongkong, China, August 2002.

[14] BEA Systems, Inc.Information available at
http://edocs.bea.com/wls/docs70/cluster/.

[15] Tangosol, Inc.Information available at
http://www.tangosol.com/.

[16] Wen-Syan Li, Oliver Po, Wang-Pin Hsiung, K. Selc¸uk
Candan, and Divyakant Agrawal. Engineering and Hosting
Adaptive Freshness-sensitive Web Applications on Data
Centers. InProceedings of the 12th WWW Conference,
Budapest, Hungary, May 2003.

[17] Ben Smith, Anurag Acharya, Tao Yang, and Huican Zhu.
Exploiting Result Equivalence in Caching Dynamic Web
Content. InProceedings of USENIX Symposium on Internet
Technologies and Systems, 1999.

[18] P. Deolasee, A. Katkar, A. Panchbudhe, K. Ramamritham,
and P. Shenoy. Adaptive Push-Pull: Dissemination of
Dynamic Web Data. Inthe Proceedings of the 10th WWW
Conference, Hong Kong, China, May 2001.

[19] Anoop Ninan, Purushottam Kulkarni, Prashant Shenoy,
Krithi Ramamritham, and Renu Tewari. Cooperative Leases:
Scalable Consistency Maintenance in Content Distribution
Networks. InProceedings of the 11th WWW Conference,
Honolulu, Hawaii, USA, May 2002.

[20] Anindya Datta, Kaushik Dutta, Helen M. Thomas, Debra E.
VanderMeer, Suresha, and Krithi Ramamritham.
Proxy-Based Acceleration of Dynamically Generated
Content on the World Wide Web: An Approach and
Implementation. InProceedings of 2002 ACM SIGMOD
Conference, Madison, Wisconsin, USA, June 2002.

[21] Qiong Luo, Sailesh Krishnamurthy, C. Mohan, Hamid
Pirahesh, Honguk Woo, Bruce G. Lindsay, and Jeffrey F.
Naughton. Middle-tier Database Caching for e-Business. In
Proceedings of 2002 ACM SIGMOD Conference, Madison,
Wisconsin, USA, June 2002.

[22] Mehmet Altinel, Christof Bornh¨ovd, Sailesh Krishnamurthy,
C. Mohan, Hamid Pirahesh, and Berthold Reinwald. Cache
Tables: Paving the Way for an Adaptive Database Cache. In
Proceedings of the 2003 VLDB Conference, Berlin,
Germany, September 2003.

[23] Ling Liu, Calton Pu, and Wei Tang. WebCQ: Detecting and
Delivering Information Changes on the Web. InProceedings
of International Conference on Information and Knowledge
Management, Washington, D.C., November 2000.

[24] Khaled Yagoub, Daniela Florescu, Valrie Issarny, and Patrick
Valduriez. Caching Strategies for Data-Intensive Web Sites.
In Proceedings of the 26th VLDB Conference, Cairo, Egypt,
2000.

[25] A. Labrindis and N. Roussopoulos. Self-Maintaining Web
Pages - An Overview. InProceedings of the 12th
Australasian Database Conference (ADC), Queensland,
Australia, January/February 2001.

[26] Jim Challenger, Paul Dantzig, and Arun Iyengar. A Scalable
and Highly Available System for Serving Dynamic Data at
Frequently Accessed Web Sites. InProceedings of
ACM/IEEE Supercomputing’98, Orlando, Florida, November
1998.

[27] Jim Challenger, Arun Iyengar, and Paul Dantzig. Scalable
System for Consistently Caching Dynamic Web Data. In
Proceedings of the IEEE INFOCOM’99, New York, New
York, March 1999. IEEE.

[28] P. Rodriguez and S.Sibal. SPREAD: Scaleable Platform for
Reliable and Efficient Automated Distribution. In
Proceedings of the 9th World-Wide Web Conference, pages
33–49, Amsterdam, The Netherlands, June 2000.

[29] Chun Yuan, Yu Chen, and Zheng Zhang. Evaluation of Edge
Caching/Offloading for Dynamic Content Delivery. In
Proceedings of the 12th WWW Conference, Budapest,
Hungary, May 2003.

308


