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ABSTRACT
The Web Ontology Language (OWL) defines three classes of docu-
ments: Lite, DL and Full. All RDF/XML documents are OWL Full
documents, some OWL Full documents are also OWL DL docu-
ments, and some OWL DL documents are also OWL Lite docu-
ments. This paper discussesparsingandspecies recognition– that
is the process of determining whether a given document falls into
the OWL Lite, DL or Full class. We describe two alternative ap-
proaches to this task, one based on abstract syntax trees, the other
on RDF triples, and compare their key characteristics.

Categories and Subject Descriptors
I.2.4 [Artificial Intelligence ]: Knowledge Representation Formalisms
and Methods—Representation languages; D.3.4 [Programming
Languages]: Processors—Parsing

General Terms
Algorithms, Languages, Performance

Keywords
Semantic Web, OWL, Parsing, RDF

1. INTRODUCTION
In 1999, van Harmelen and Fensel [16], argued:

No matter how nice any Knowledge Representation
language is as proposed by the AI community, [. . . ]
the order of precedence is the other way round:how
well can AI concepts be fitted into the markup lan-
guages that are widely supported on the Web, [. . .our
emphasis]

This question is answered with OWL, the Web Ontology Lan-
guage. The underlying AI concept is Description Logic [1], the
Web markup language is RDF [12].

This paper discusseshow well the triple oriented RDF abstract
syntax can encode the more conventional tree structured syntax for
description logics.

The OWL Semantics and Abstract Syntax Recommendation [14]
normatively defines OWL. Two different semantics are given, one
for the RDF triples, the other for the OWL abstract syntax trees
(corresponding to a mainstream description logic syntax such as in
[1]). Mapping rules are specified linking the trees with the triples.
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For this to work, for OWL to make sense, it has to be possible
to switch between the triples and the trees. A minimal task is that
of being a syntax checker [7] – which involves classifying the tree,
given the triples.

During the development of OWL, some doubt was expressed as
to whether this was possible. An implementor reading the doc-
umentation gets a shock when they realize they have to run the
nondeterministic mapping backwards.

We describe two different implementations, one based around
the trees, the other on the triples.

1.1 What is OWL Syntax?
The Web Ontology Language (OWL) [9] defines three classes

of documents: Lite, DL and Full. All RDF/XML documents are
OWL Full documents. Some OWL Full documents are also OWL
DL documents, and some OWL DL documents are also OWL Lite
documents. The characterisation of OWL DL and OWL Lite is
essentiallysyntacticin nature. That is, the relevant rules define
structural manipulation, rather than the semantic rules that give in-
terpretation of structures.

The first structural rules are those defined by RDF/XML syntax
[3], which gives a set of rules for converting an RDF/XML docu-
ment into an RDF graph [12].

This paper is concerned with the further rules, found in the OWL
Semantics and Abstract Syntax [14] (S&AS), which then charac-
terise the RDF graphs that are in OWL DL and OWL Lite.

Syntax checking can be seen to have a number of uses. Imple-
mentors may choose to target a particular OWL sublanguage. For
example, OWL DL has been chosen to yield a language for which
inference isdecidable. An application targeting OWL DL will need
to know whether ontologies are amenable to inference using the
choice of DL semantics and reasoning techniques. At a more pro-
saic level, anecdotal experience suggests that many ontologies are
OWL Full not through explicit choice, but rather through errors
(see Section 2.4) – for example missing type triples may point to
typographical errors in the ontology source. A syntax checker can
prove useful in finding such errors.

1.2 Terminology
A parsertakes an input document and returns an abstract syntax

tree (which can then be classified).
A recognizer(or species recognizer) takes an input document

and indicates if it belongs to OWL DL or OWL Lite.
A parser can easily be transformed into a recognizer, but not vice

versa.
An OWL Syntax Checker, as defined in the OWL Test Cases Rec-

ommendation [7], is a recognizer for OWL DL and OWL Lite.
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1.3 Two Approaches
This paper presents two different systems reflecting two differ-

ent approaches to OWL syntax. The more conventional, Wonder-
Web parser, constructs an abstract syntax tree and checks its well-
formedness. This approach is also used by the other OWL Syntax
checkers that reported during the OWL Candidate Recommenda-
tion, such as OWLP and Pellet.1 The other, the Jena checker, is a
recognizer, which is strongly triple oriented, depending on a pre-
transformation of the grammar and mapping rules to be a triple-
centric grammar with no reference to abstract syntax trees.

2. OWL SYNTAX
A document is in OWL DL, if it is an RDF/XML document for

which the corresponding graph conforms to the rules for OWL DL.
The rules for OWL DL are defined constructively in S&AS. An

abstract syntax is defined, that describes a set of parse trees. Each
of these parse trees can then be converted into one or more RDF
graphs using nondeterministic mapping rules. This is shown in ta-
ble 1.

An OWL syntax checker, has to, at least implicitly, do this pro-
cess backwards – i.e. take an RDF graph, invert the mapping rules,
and hence find a corresponding abstract syntax tree. If there is one,
then the document is in OWL DL, otherwise it is in OWL Full.

If more than one graph corresponds to a parse tree, then these
graphs have the same semantic interpretation. Moreover, more than
one parse tree may correspond to the same RDF graph, in which
case the two trees have the same semantic interpretation.

2.1 The Abstract Syntax
The abstract syntax rules are described in section 2 of S&AS

[14].
These are fairly conventional looking BNF [10] rules:

〈ontology〉 ::= ‘Ontology( ’ [ 〈ontologyID〉 ] { 〈directive〉 } ’)’

〈axiom〉 ::= ‘Class( ’ 〈classID〉 〈modality〉 . . . ’)’
| ’DatatypeProperty(’〈datavaluedPropertyID〉 . . . ’)’

〈individual〉 ::= ’Individual(’ [ 〈individualID〉 ] . . .
{ ’type(’ 〈type〉 ’)’ } { 〈value〉 } ’)’

The principle novelty is that these rules describe abstract syntax
trees, and not a document. There is no intent that the terminal
leaves of the tree be read off to form a text string. Thus the ab-
stract syntax is a set of trees, defined by a BNF.

The trees defined by these rules are not quite the parse trees ac-
cording to the BNF, but structural trees defined by the ‘(’ and ‘)’ in
the terminals in the rules. A simple rule like:

〈fact〉 ::= 〈individual〉

is not made explicit in any corresponding abstract syntax tree.

2.2 The Mapping Rules
The mapping rules are described in section 4 of S&AS [14]. A

typical mapping rule looks like:

Individual(

value(pID1v1)
:x−−−−−→ :x T (pID1) T (v1).

. . .value(pIDkvk) ) . . . :x T (pIDk) T (vk).

This shows that an abstract syntax tree matching the left hand side,
can be transformed into triples as given on the right hand side. The
1Seehttp://www.w3.org/2001/sw/WebOnt/impls for details.

functorT (·) is used to show recursive application of the mapping
rules. A node is returned from such a recursive application that is
used within the triples on the right hand side of the rule.

We show the node to be returned (a ‘main node’ in the terminol-
ogy of S&AS), as a superscript above the arrow of the rule.

The mappings of the substructures are shown on the right hand
side in the same order as the abstract syntax tree on the left. This is
important when there are many optional or repeated elements.

2.3 OWL Lite or OWL DL?
Some OWL DL documents are also in OWL Lite. They are those

for which there is an abstract syntax tree which uses only the gram-
mar rules from the OWL Lite section of S&AS.

As discussed in the OWL Overview [13], OWL Lite and OWL
DL can be partially differentiated by the vocabulary used, for ex-
ampleowl:unionOf does not occur in OWL Lite. However, this ap-
proximation is wholly inadequate for writing a species recognizer.

There are a number of situations when different constructions in
the abstract syntax could yield the same triples. For example, ax-
ioms [A] and[B] in Table 2 both yield the same RDF triple shown
in the table, whereT(restriction( p cardinality(0) ) is the bn-
ode created to represent the restriction. Note however, that in this
case,[A] may be part of an OWL Lite ontology while[B] may not
as it involves a disallowed expression in an axiom. This particular
example illustrates that species recognition between DL and Lite is
not simply a case of checking vocabulary – we must also examine
how the vocabulary has beenused. An ontology is in OWL Lite
if there issomeabstract tree fitting the OWL Lite conditions that
yields the given triples under the mapping rules.

2.4 Error Classification
There are, in general, two ways in which an RDF graph may fail

to correspond to an OWL Lite or DL ontology.

• There is an OWL Lite or DL ontology in abstract syntax form
which maps to a superset of the given triples but some of the
triples have been forgotten and are not in the graph.

• The ontologies in abstract syntax form that map to the triples
or any superset of the triples violate some of the restrictions
for membership of the OWL Lite or DL subspecies. (This
includes the case where there are no such ontologies).

We might (loosely) describe the first asexternalerrors, and the
second asinternalerrors.

Examples ofexternalerrors include:

• Using a URI reference in a particular context (e.g. as the
subject of anrdfs:subClassOf triple) without including an
appropriate explicit type triple;

• Malformed syntactic constructs, e.g. a node typed as an
owl:Restriction that is not the subject of anowl:onProp-

erty triple;
• Using the wrong vocabulary, e.g.rdf:Property instead of

the more specificowl:ObjectProperty or owl:DatatypeProp-

erty ;

Examples ofinternalerrors include:

• Violation of the rules concerning separation of classes, indi-
viduals and properties (in DL and Lite we require that these
interpretations are disjoint);

• The use of expressiveness outside the scope of the species
– for example using anowl:unionOf in an OWL Lite docu-
ment;
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Ontology(
Class( eg:cl )

DataProperty( eg:p )

Individual(

type( eg:cl )

value( eg:p, "bar" )
)

)

⇒

:o rdf:type owl:Ontology .
eg:cl rdf:type owl:Class .
eg:p rdf:type owl:DatatypeProperty .

:i rdf:type eg:cl .
:i eg:p "bar" .

⇐

<rdf:RDF
xmlns:owl="http://www.w3.org/2002/07/owl#"
xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
xml:base="http://www.example.org/eg"
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
<owl:Ontology/>
<owl:Class rdf:ID="cl"/>
<owl:DatatypeProperty rdf:ID="p"/>
<eg:cl>

<eg:p>bar</eg:p>
</eg:cl>

</rdf:RDF>

OWL Abstract Syntax [14] RDF Graph [12] RDF/XML Syntax [3]
Mapping Rules

Table 1: Overview of Definition of OWL Syntax

Abstract Syntax RDF triples
[A] Class ( a complete restriction( p cardinality(0) ) ) a owl:equivalentClass T(restriction( p cardinality(0) ) )

[B] EquivalentClasses ( a restriction( p cardinality(0) ) )

Table 2: Axioms and OWL Lite

• Redefining the reserved vocabulary (e.g. those things in the
OWL, RDF and RDF(S) namespaces).

• A directed cycle of blank nodes is usually an internal error
(see section 2.6.2)

Errors concerning structure sharing, the use of blank nodes, may
fall into either category depending on the exact error, (see sec-
tion 2.6.2).

It may often be the case that “missing” triples are simply due
to an omission, rather than a desire to use expressiveness outside
the scope of OWL DL. For example a URI may only be used in
a “class” context, but without an explicit triple. In this case, the
document will be OWL Full, but a “fix” may be applied to the doc-
ument (effectively adding the missing triple). We must be careful
when applying such fixes that the original intention of the docu-
ment is not altered, but such a facility is likely to prove useful. We
return to this issue in Section 9.

2.5 Imports
A number of difficult issues in parsing and recognition relate to

imports. Species validation must be done on theimports closure
of the ontology – this effectively involves retrieving URIs that are
the object of anowl:imports triple and adding any triples from an
RDF graph found there to the current RDF graph.

Validation cannot be performedlocally, i.e. without first cal-
culating the imports closure2, as it may be the case that required
type triples are actually present in the imports. For example in test
imports-0053, the required triple typing the imported URI as an on-
tology (required in OWL DL) is actually contained in the imported
ontology. Similar situations can arise with classes and properties.

It can also be that case that an ontology imports an RDF graph
from a URI where the imported graph is in OWL Full, but the im-
porting ontology still remains in OWL Lite. This would be the case
where, for example, the imported ontology assertsa rdf:type b

without explicitly typing b as a class. We return to this issue in
Section 8.

2.6 Blank Nodes
A number of conditions regarding valid OWL syntax relate to

blank nodes (or bnodes) in the RDF graph. A blank node is a node

2See Section 5.3. of S&AS.
3http://www.w3.org/2002/03owlt/imports/
Manifest005.rdf

that is not a URI reference or a literal – it is a unique node that can
be used in one or more RDF statements, and has no globally distin-
guishing identity. A key point is that bnodes cannot be referred to
from outside the document that we are processing.

Bnodes generated by the mapping correspond to:

• Anonymous classes, e.g. arbitrary class expressions such as
intersections, unions and enumerations.

• Restrictions, e.g. existential quantifications over properties.
• Anonymous individuals, e.g.John’s brother.

The mapping rules [14] state:
Bnode identifiers here must be taken as local to each transfor-

mation, i.e., different identifiers should be used for each invocation
of a transformation rule.

Thus whenever an expression such asintersectionOf (Person

Male) is used in an ontology, the mapping creates anew bnode
corresponding to that expression. In general, no sharing of bnodes
is permitted – each bnode can participate as the object of at most
one triple.

There are, however, two cases where a blank node corresponding
to an expression can be used in more than one place – when the
translation results from anEquivalentClasses or DisjointClasses

axiom.

2.6.1 Bnodes in axioms
When anonymous class expressions are used inEquivalentClasses

or DisjointClasses axioms, the mapping rules permit the re-use of
the resulting bnodes produced. However, this reuse is only allowed
within the context of the triples produced by the mapping from that
particular axiom.

For an equivalent classes axiom:

EquivalentClasses( d1 ... dn )

the mapping requires the production of a set ofowl:equivalent-

Class triples that form an (undirected) connected graph over the
nodes produced by translating eachdi.

For a disjoint classes axiom:

DisjointClasses( d1 ... dn )

the mapping requires the production of a set ofowl:disjointWith

triples s.t. each node produced by translating adi is related to every
otherdj for i 6= j as either subject or object in aowl:disjointWith

triple (forming anowl:disjointWith clique).
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We can see that in the above cases, bnodes corresponding to a
translation from an anonymous class expression may participate in
a number of triples. They may not, however, participate in any
triples that do not correspond to those generated by the mapping
rule applied to the axiom.

In addition, theSubClassOf axiom, may introduce a blank node
that is the subject of anrdfs:subClassOf triple, and such a blank
node cannot be the object of any triple.

2.6.2 Bnode Summary
In summary, blank nodes must fit at most one of the following

cases:

1. Be the subject or object of any number ofowl:equivalent-

Class triples
2. Be the subject or object of any number ofowl:disjointWith

triples (in which case a further check must be applied)
3. Be the subject of anrdfs:subClassOf triple.
4. Be the object of anrdfs:subClassOf triple.
5. Be the object of some other triple.

Hence, a graph may have an internal error concerning a blank
node which is in more than one of these categories, or is involved
in two triples in cases 3, 4 or 5. Or it may have an external er-
ror, concerning the blank nodes involved withowl:disjointWith

triples which may not form a clique.
In addition blank nodes may not form directed cycles, except in

cases 1 and 2.

3. SYSTEM DESCRIPTIONS
In the following sections we provide overviews of the two sys-

tems discussed in this paper – these will be referred to as Wonder-
Web and Jena.

3.1 WonderWeb
WonderWeb4 is an EU IST FET project concerned with “Onto-

logy Infrastructure for the Semantic Web”. As part of the work of
WonderWeb, an API for OWL Ontologies has been developed, pro-
viding a collection of (Java) interfaces allowing the representation
and manipulation of OWL ontologies. A detailed description of the
rationale behind the API is given in [2], but put briefly, the API in-
sulates application developers from the vagaries of concrete syntax,
and provides a higher level view of the objects (classes, properties,
axioms etc) in an OWL Ontology. The structure of the data model
in the API is largely based on the OWL Abstract Syntax [14].

The WonderWeb API also aims to separate the functionality that
one might require when working with OWL ontologies. Aspects of
functionality such as:

• change (addition/removal)
• serialization
• parsing/deserialization
• inference

are all considered separately, allowing implementations to be clear
about the services they provide. The codebase of the API (including
a species validator as described here) is available for download as
an open source project5.

Of course, insulating applications from concrete syntax is all
well and good, but it is clear that mechanisms for parsing and se-
rializing from/to concrete representations are vital for real-world

4http://wonderweb.semanticweb.org
5http://sourceforge.net/projects/owlapi

applications. To this end, a parser for OWL ontologies represented
in RDF/XML has been produced. The parser takes an RDF/XML
document and attempts to produce a corresponding abstract syntax
tree.

The WonderWeb OWL API is particularly targeted at the OWL
DL and Lite species (a research agenda of the project is the use of
Description Logic reasoners with OWL). The ability to recognize
when a particular document is in a species (and is thus amenable
to the appropriate reasoning techniques) is a key requirement, and
the WonderWeb parser performs species recognition as part of its
parsing process.

3.2 Jena
Jena6 [6] is an open source semantic web developers kit, princi-

pally developed at HP Labs.
It provides APIs for manipulating RDF graphs. The Ontology

API provided for OWL and DAML ontologies, while abstracting
from the underlying RDF graph, does not attempt to totally hide or
replace it.

Moreover, the OWL support is intended as OWL Full support
with reasoning support for cases not included in the OWL DL syn-
tactic subset. The Ontology API within Jena has explicit OWL Full
support handling the polymorphism that can occur between classes
and individuals, datatype properties and object properties, etc.

Thus the syntax checker requirements are an add on to the ontol-
ogy support rather than a prerequisite. The typical user requirement
which may be addressed is to verify that a graph is within OWL DL
before saving it to be exported. There is no requirement to produce
abstract syntax trees.

In keeping with the RDF-centric philosophy of Jena, the syntax
checker operates in a triple oriented fashion, and hence depends
upon a different triple oriented expression of the grammar of OWL
DL. This is produced in a precompilation stage, akin to the well
known compiler-compiler technique [11]. In this stage, which oc-
curs while the system is being built, the abstract syntax rules and
the mapping rules are analyzed in detail. A set of syntactic cat-
egories for nodes in a graph and a table of triples linking these
syntactic categories is produced. This table of triples is used as the
grammar at runtime.

The Jena syntax checker’s principle task is to find a mapping
from the nodes in the graph to the syntactic categories such that
every triple appears in the transformed grammar.

4. THE WONDERWEB PARSER
The WonderWeb parser takes an RDF graph and attempts to

build an abstract syntax tree. The basic strategy employed is as
follows.

1. Identify named objects: classes, properties
2. Identify axioms asserted in the ontology. In the course of

identifying axioms, we may need to translate nodes corre-
sponding to class expressions.

3. Translate anything that’s left. Again this may require the
conversion of class expressions occurring as the subject of
rdf:type triples.

During this process, we keep a note of those triples that have
been “used”, e.g. those that are identified as being the result of
the application of the mapping rules to a particular construct. By
doing this we can identify any triples that are “left” after we have
constructed all classes, properties and the axioms concerning those

6http://jena.sourceforge.org
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classes. These unused triples are then interpreted as facts about
individuals in the ontology.

Identifying named objects is simply a case of finding all those
(named) nodes that are the subject of anrdf:type triple where the
object isowl:Class , owl:ObjectProperty or owl:DatatypeProp-

erty
7. In these cases, optional triples may also be present – for

example if we havea rdf:type owl:Class , the rules also allow
the addition ofa rdf:type rdfs:Class (even though the additional
triple adds no extra semantic information).

Once those objects are identified, we can translate axioms con-
cerning them. For example, for any triples of the form:p owl:-

inverse q we check thatp andq are instances ofowl:ObjectProp-

erty and addq to the list of inverses held byp. If p andq are not
instances ofowl:ObjectProperty , and we are simply interested in
recognizing OWL DL and OWL Lite ontologies, we can stop at this
point as we now know that the RDF graph cannot correspond to a
OWL DL or Lite ontology.

Other axiom types such asrdfs:subProperty are dealt with in
a similar manner. A more interesting translation task is when the
axiom deals with a bnode representing a class expression as in Fig-
ure 1. In this situation, we first identify the node which is the object

<owl:ObjectProperty rdf:about="#p">
<rdf:domain>

<owl:Class>
<owl:complementOf rdf:resource="#A"/>

</owl:Class>
</rdf:domain>

</owl:ObjectProperty>

Figure 1: Complex Domain Expression

of the triple. This is then translated to a class expression by a case
analysis on the triples in which the node appears as subject. In
general, there should be a single such triple, with its predicate de-
termining the form of the expression produced. The presence of
more than one such triple indicates an OWL Full ontology. Recur-
sive translations may be necessary if the expression includes nested
expressions.

Lists are used to represent the operands in expressions such as
intersections. Such lists are translated by collecting all the nodes
that appear in the list (as the object of anrdf:first triple) and
forming a new expression using the translations of those nodes.
The well-formedness of the list (each node in the list should be
the subject of exactly onerdf:first and rdf:rest triple) is also
checked during this process.

4.1 Axioms and OWL Lite
As discussed in Section 2.3, care needs to be taken when han-

dling axioms concerning classes. The strategy employed here is to
translate anyrdfs:subClassOf andowl:equivalentClass triples to
“class definitions” whenever possible. For example, with a triplea

rdfs:subClassOf x , wherea is a named node (as opposed to a bn-
ode), then we attempt to construct an object corresponding to:

Class( a partial Tx )

whereTx is the translation ofx to a class expression. Similarly, if
we encountera owl:equivalentClass x then this is translated to

Class( a complete Tx )

(but see later discussion on handling blank nodes). This strategy
ensures that OWL Lite ontologies are produced whenever possible.
7we must also identify instances ofowl:OntologyProperty and
owl:AnnotationProperty , but space precludes us from providing
a detailed exposition of the parsing process here.

4.2 Handling Imports
The use ofowl:imports allows us to refer to RDF graphs held

at separate locations. Although the validation process is performed
over the imports closure of the graph, it can be useful to try and pro-
cess each chunk separately. It is often the case when we haveonto1

owl:imports onto2 that the statements atonto1 are intended to
form a singleOntology , while those atonto2 form another8. A for-
mal definition of this difficult due to the inexpressiveness of RDF
– we cannot represent the fact that particular assertions belong in a
particularOntology (see Section 8). The parser attempts, wherever
possible, to perform this “chunking” (based on the physical loca-
tions of the triples) and builds individualOntology objects corre-
sponding to each RDF graph retrieved from a particular URI. This
is done by recursively calling a new parse on an imported URI.

In order to do this successfully though, we need to pass informa-
tion between the parsing processes, in particular recording whether
URIs have been correctly typed. This then allows us to deal with
situations where a URI is used in a class context inonto1 and has
the appropriate type triple inonto2 (or vice versa).

In adopting this approach to imports, we need to relax our han-
dling of typing somewhat. In theowl:inverse example above,
the local information may not be enough to determine whether the
properties are of the required types as the triple regarding the type
of p may be in an imported ontology. In this case, we make an
assumption that the types are appropriate, and check at the end
of the complete parsing process that any such assumptions made
have been discharged (e.g. we really encountered the appropriate
typing triple). Assumptions are also passed to any recursive parse
along with type information. If assumptions remain at the end of
the parse, required type triples were missing, signifying an OWL
Full ontology.

Note that the grouping of statements into separate ontologies has
no effect on the semantics of importing ontology, in terms of the
entailmentsthat hold.

4.3 Blank Nodes and Structure Sharing
In addition to flagging “used” triples, the parsing process also

flags bnodes as they are translated to expressions or used in lists.
If a flagged bnode is encountered in a translation, this indicates
that structure sharing has occurred, the document is OWL Full, and
appropriate action can be taken.

Cases involving equivalence and disjointness axioms (see Sec-
tion 2.6.1 require special handling. In order to check whether equiv-
alence axioms are well-formed, we do the following.

1. Gather together all nodes that participate in triples involving
owl:equivalentClass ;

2. Partition these nodes into sets, where two nodesa andb are in
the same set iff there exists a triplea owl:equivalentClass

b or b owl:equivalentClass a .

Each of these equivalence classes can now be translated. If the size
of the set is 2 and the triple that induced the set is of the forma

owl:equivalentClass x wherea is a named node, then we trans-
late to a class definition (see Section 4.1). Otherwise we translate
to anEquivalentClasses axiom.

The conditions regarding disjointness are more complicated. The
rules forDisjointClasses axioms tell us that an axiom:Disjoint-

Classes( d1 d2 ... dk ) is translated to a collection of nodes, one
for each expression in the equivalence, and a number ofowl:dis-

jointWith triples, such that every node in the collection is con-
nected to every other node by at least one triple (in either direc-
tion). This may lead to blank nodes being used in more than one
8E.g. thefood andwine examples from the OWL Guide [15].
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place and participating in many triples. We apply the following
strategy toowl:disjointWith triples.

1. Gather together all nodes that participate in triples involving
owl:disjointWith ;

2. While there are bnodes in the collection of nodes that we
have not already dealt with, do the following:

(a) Pick a bnoden that we haven’t already dealt with.
(b) Gather together all the nodesn1, n2, . . .nk that can be reached

from n via a path that consists ofowl:disjointWith triples,
and which does not pass through a named class node – in
other words the traversal stops when we reach a named node.
Includen in this collection.

(c) In order for the graph to be in OWL DL, the subgraph formed
from these nodes consideringowl:disjointWith edges must
be fully connected: every node must have an edge to every
other node. If this is not the case, the graph is not in DL. If
it is the case, then we add aDisjointClasses axiom using
translations of the nodes in the collection formed above.

5. THE JENA RECOGNIZER
The Jena recognizer uses a very different technique. We intro-

duce it with an example, followed by describing the key concept of
node categorization, before launching into a detailed discussion.

5.1 An Example of the Approach
Suppose we are given the following three triples in order:

_:r owl:onProperty eg:p .
_:r owl:hasValue "a value" .
eg:p rdf:type owl:ObjectProperty .

When processing the first triple, we can conclude that it must have
come from one of the mapping rules for restrictions, for example:

restriction( ID :x rdf:type owl:Restriction .

allValuesFrom(
:x−−→ :x owl:onProperty T (ID) .

range)) :x owl:allValuesFrom T (range) .

Thus eg:p must be either a datavaluedPropertyID9 or an indivi-
dualvaluedPropertyID, and:r is the node corresponding to some
restriction.

When we process the second triple, we already know that:r is
a restriction of some sort, and the additional triple tells us that it is
a value( ·) restriction. Moreover, the literal object, tells us that this
is a value restriction using the following mapping rule:

restriction( ID :x rdf:type owl:Restriction .

value(
:x−−→ :x owl:onProperty T (ID) .

value)) :x owl:hasValue T (value) .

We note that forT (value) to be a literal, thenvaluemust bedataL-
iteral and the following abstract syntax rule must have been used:

〈dataRestrictionComponent〉 ::= ’value(’ 〈dataLiteral〉 ’)’

This rule can only fire ifID is adatavaluedPropertyID.
Thus, the second triple tells us that:r corresponds to a value

restriction on adatavaluedPropertyID. If we now return to the first
triple, given the new information about:r we now know thateg:p

is adatavaluedPropertyID.
Since the mapping rule only applies to abstract syntax constructs

that come from OWL DL we know that the triples are not from an
OWL Lite document.

There is nothing more that can be said about either the predi-
cate or the object of either the first or second triples. Thus neither
9The reader will need to refer to an open copy of S&AS [14] during
this section!

triple will make any further difference to the rest of the processing,
and both could be discarded in an incremental recognizer. All that
needs to be remembered is the classification of:r andeg:p .

When we come to the third triple, we find adatavaluedProper-
tyID as the subject of anrdf:type triple, with anowl:ObjectProp-

erty object. The mapping rules do not produce such triples, and so
this is an internal error (cf. section 2.4).

If we processed the triples in the reverse order, we would have
concluded thateg:p was anindividualvaluedPropertyID, (from the
third triple), and found the error while processing the first triple, be-
cause the grammar does not generateowl:onProperty triples link-
ing value restrictions on datavalued properties withindividualval-
uedPropertyIDs.

5.2 Node Categorization
The example depended upon an analysis of

• Whethereg:p was anindividualvaluedPropertyIDor adata-
valuedPropertyID.

• What sort of restriction corresponded to:r

We view this as a function from the nodes in the graph to a set of
syntactic categories generated from the grammar.

Each uriref node may be a builtin uriref, with its own syntactic
category (such asowl:onProperty ), or a user defined ID, such as a
classID.

Each blank node is introduced by one of the mapping rules. We
hence have one or more10 syntactic categories for each mapping
rule that creates a blank node.

5.3 The Category Refinement Algorithm
The main goal of the algorithm is to determine which category

each of the nodes is in.
To make the runtime algorithm simpler, the grammar (including

the mapping rules) is preprocessed into a grammar table of triples
of syntactic categories.

Two of the entries in this table, relevant to the example are:

individualValuedProperty rdf:type owl:ObjectProperty .
literalValueRestriction owl:hasValue literal . (DL)

Some of the entries are annotated with actions, for example the
second triple sets the not-Lite flag.

Each step in the algorithm processes one triple.
The currently known possible categories for each of the three

nodes are retrieved. Each combination of these is tested to see if it
is in the grammar table. Such tests allows the elimination of some
of the previous possible categories for each node.

If all the possible categories are eliminated, then the graph did
not conform to the syntax.

The algorithm is specified in terms of the definition of a function
C that assigns a set of categories to each node in the graph.

1. For each blank noden in the graph, setC(n) to the set of all
blank categories.

2. For each builtin urirefn in the graph, setC(n) to be{n}.
3. For other urirefsn in the graph, setC(n) to be the set of all

ID categories (classID etc).

10Sometimes, the combination of the abstract syntax and the map-
ping rules, is such that the same mapping rule is used for two dif-
ferent abstract syntax constructs. The rule for the value restriction
is one, which can be used for both literal values and object values.
In such cases, we clone the mapping rule and have one for each
abstract syntax construct, giving rise to two syntactic categories for
blank nodes.
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4. For each node equivalent to"0" ˆ̂ xsd:int "1" ˆ̂ xsd:int set
C(n) to {liteInteger} (for use in cardinality restrictions).

5. For each other node equivalent toxˆ̂ xsd:nonNegativeInte-

ger setC(n) to {dlInteger}.
6. For any typed literal node with user defined type setC(n) to

{uTypedLiteral}.
7. For each other11 literal node setC(n) to {literal}.
8. For each triplet =< s, p, o > in the graph,refine(t), where

refineis defined as:

(a) SetS = C(s), P = C(p), O = C(o), to be the set of
categories currently associated with the subject, predi-
cate and object oft respectively.

(b) SetS′ = {s∗ ∈ S|∃p∗ ∈ P, o∗ ∈ O with
< s∗, p∗, o∗ >∈ Grammar}

(c) If S′ is empty then fail.
(d) SetP ′ andO′ similarly
(e) If S 6= S′ updateC(s) := S′ and for eacht′ involving

s which has already been processed,refine(t′)
(f) Similarly for P ′ andO′

(g) If every match fromS′, P ′ O′ in the grammar table is
annotated with the same action, perform that action.

9. Check for missing triples, (i.e. for external errors, see sec-
tion 2.4).

Since the values ofC are strictly monotonic decreasing through the
recursive steps 8e and 8f, the algorithm terminates. The actions in
step 8g and the final checks in step 9 are discussed in more detail
below.

5.4 The Compiler Compiler
The compiler compiler transforms the OWL DL grammar from

the form in S&AS [14] to a triple oriented form suitable for the
Jena checker.

The input consists of:

• A list of the names of the syntactic categories for urirefs (e.g.
classID).

• The abstract syntax (somewhat reformulated)
• The mapping rules (somewhat reformulated).

The output is as follows:

• A list of syntactic categories for nodes (148 categories: 45
for the keywords in OWL, such asrdf:type , 14 correspond-
ing to the different uses of user defined urirefs, 83 for differ-
ent usages of blank nodes, 6 artificial pseudocategories)

• Various groupings of these categories (e.g. all those cate-
gories that are involved withowl:disjointWith ).

• A table of legal triples of syntactic categories, annotated with
actions and a DL flag (2486 entries).

• A lookup functions that assign an initial set of syntactic cat-
egories to a node

The compiler compiler is written in Prolog, and the grammar
and mapping rules have been written in a Prolog form. A detailed
discussion can be found in [5].

The rules concerning blank nodes corresponding to descriptions
and restrictions are somewhat complicated. There are two natural
categories: descriptions being blank nodes with explicit typeowl:-

Class , and restriction being blank nodes with explicit typeowl:Re-

striction . It is convenient to subdivide these categories into one
category per mapping rule.

11This ratherad hoclist of literal classifications reflects precisely
the relevant division in OWL DL syntax. In particular, non-integer
XSD literals are treated the same as plain literals.

We saw in section 2.6.2 that blank node usage fell into four cases:
in the compiler compiler, this is expressed by converting each of the
syntactic categories coming from a mapping rule for descriptions
or restrictions into four subcategories, one for each of these cases.
Since there are 19 such mapping rules in the grammar used, this
accounts for 76 of the 83 blank node categories.

5.5 The Actions
The actions used by the grammar are: the DL actions, for triples

which do not occur in Lite; an Object action when the object of
this triple is a blank node which must not be the object of any other
triple; and the actions FirstOfOne, FirstOfTwo and SecondOfTwo
when the subject of this triple corresponds to a construct with one
or two components each reflected by a triple in the graph. This
triple is the stated component (e.g.owl:onProperty is the first of
the two components of a restriction). For each of these, the runtime
processing remembers the triple as fulfilling the specified role and
it is an error if some other triple plays the same role.

The actions are only acted on when all remaining categorizations
of the triple require it. In particular, this ensures that the DL action
is not invoked until it is not possible to match the triple with only
the OWL Lite grammar.

5.6 Pseudotriples
Given the framework of category refinement, some of the other

syntactic aspects of OWL can be expressed within it. This is achieved
by introducing additional syntactic categories, which are included
in the initial assignment of categories to nodes. The table of triples
is extended with a further virtual table of pseudotriples using these
virtual categories. This table of pseudotriples is a short piece of
code rather than actual entries in a table.

By an appropriate choice of which pseudotriples are in the vir-
tual table, global properties can be propagated through the node
categories.

The goal with the pseudocategories is that nodes with syntactic
defects are marked as being in a pseudocategory. When a triple is
processed which addresses those defects then the node is no longer
marked as in the pseudocategory.

The final stage of the algorithm searches for all marked nodes
and takes appropriate action (such as rejecting the input).

5.6.1 Typing
As an example, most nodes in OWL Lite and OWL DL have to

have an explicit type triple in OWL Lite and OWL DL.
In the Jena checker, all relevant nodes have initially category

assignment including the categorynotype . This pseudocategory
appears in pseudotriples in all three places with arbitrary real cat-
egories in the other two places. The key exception is when the
predicate isrdf:type which typically provides the required type.
Such triples do not appear in the pseudotable.

Thus, if there is an appropriate type triple, the pseudocategory is
removed from the category assignment for the node by the opera-
tion of the refinement algorithm.

5.7 The Final Checks
These checks check external errors, i.e. where needed triples

were missing, and some internal errors which were not fully cov-
ered elsewhere.

To continue the typing example, the final check is a simple in-
spection for nodes in the pseudocategorynotype .

Every blank node in category such as restriction or description
which require one or two structural triples, is inspected to verify
that such triples have been found.
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5.8 The Difficult Cases
Most of the difficult cases are handled using a combination of

pseudocategories, pseudotriples and final checks. This is particu-
larly suited to the external errors, which cannot be detected by the
refinement algorithm. Some of these cases concern exceptions to
the required type triple rule, such as anowl:Class being a permit-
ted type for a restriction. Others concernorphans, blank nodes that
are not the object of any triple: for example, list nodes may not be
orphans.

Most directed cycles of blank nodes are prohibited. While these
form internal errors, the refinement algorithm cannot detect them.
However, using three pseudocategories, it can detect many cases of
provably non-cyclic nodes (e.g. a blank node that is the object of a
triple whose subject is a URIref or a non-cyclic blank node). The
final check then only examines those nodes not already proven to
be non-cyclic.

The hardest part is checking the constraint onowl:disjointWith .
During the refinement algorithm each pair of nodes linked byowl:-

disjointWith is saved in a classical undirected graphG. The final
check then verifies the following transitivity constraint onG, which
is sufficient for there to be appropriateowl:disjointWith cliques:

∀a, c ∈ V (G) ∀ blankb ∈ V (G),

{a, b} ∈ E(G) ∧ {b, c} ∈ E(G) ⇒ {a, c} ∈ E(G)

6. PERFORMANCE
Performance figures are shown in Table 3. The two systems were

run on the OWL Test Cases (resulting in approx 480 single doc-
ument recognition tasks). In addition, the systems were given a
large12 OWL Lite ontology (the NCI Cancer Ontology13) to recog-
nize. Test documents were cached locally to reduce delays due to
network access.

These are not intended to be detailed test results, but show the
rough performance of the systems. Elapsed time (in seconds) and
total memory required are given. Figures are broken down by test
size (in terms of triples in the models). Tests were run on a PC
running Windows 2000 with a Pentium III 866 MHz processor and
512 Mb memory.

As we can see from the figures, the systems are roughly compa-
rable in time and space required. Jena’s better performance on the
working group tests can be explained in part by the fact that it does
less work and does not produce abstract syntax trees.

7. COMPARISON
Here we compare the two approaches and consider their advan-

tages and disadvantages.

7.1 Jena
The Jena implementation has two main attractions: much of the

code is generated from the grammar, and, in principle, the algo-
rithm need only remember relatively small amounts concerning
triples that have been processed.

A key defect is that the approach does not generate an abstract
syntax tree.

In general, generating code from a grammar using a compiler
compiler should make it easy to change. Many changes can simply
be copied into the source grammar, and the system is then recom-
piled. However, the grammar for OWL, particularly the mapping

12over 500,000 triples.
13http://www.mindswap.org/2003/
CancerOntology/

rules, is augmented with English text, which provides additional
difficulties that sabotage the simple recompile. Moreover, the treat-
ment in the Jena checker depends on a number of global features
of the abstract syntax grammar, such as the assignment of a type to
every node. These features are partly there as a result of lobbying
by the second author between the first draft of S&AS and the final
recommendation. Hence, the approach is fragile to change.

A further advantage of using a compiler compiler is that the core
engine is very small, which has facilitated optimization, permitting
some incremental processing, see [5].

For the external errors, the Jena code could give elegant error
messages. For the internal errors, the code currently computes a
minimal subgraph exhibiting the error. The error message then
prints this subgraph. This is not user friendly, and is a consequence
of the design with a core table driven engine. A way to improve the
error messages would be to write additional code that examined the
minimal subgraph produced looking for common problems. This
would tend to duplicate some of the WonderWeb code.

What would make the Jena code particularly attractive is if the
overall design of OWL DL, with an abstract syntax and mapping
rules, were duplicated for some other RDF extension. A possible
candidate may be any specific ontology, for which the data files
would be OWL files using mainly thefact directives, and most of
the axiom directives would be disabled. Moreover, additional re-
strictions may be applied to thefact directives. This would allow
an ontology creator to specify a syntactic conformance to that on-
tology. If the structure of the OWL DL definition were used, then
the Jena checker could be recompiled using the new definition. To
make this feasible, a significant clean up to the approach taken in
S&AS would be needed. In particular, it is not plausible to support
ad hocEnglish annotations to the formal rules.

7.2 WonderWeb
The WonderWeb approach results in the construction of an ob-

ject representing the abstract syntax tree of the Ontology. This has
a number of advantages, in particular it can facilitate further manip-
ulations or translations of the ontology, e.g. to an alternative format
amenable for processing. This has allowed us to experiment with
alternative reasoning strategies for OWL using first order reason-
ers14 or logic programming.

In addition, the approach allows us to provide “user friendly” er-
ror messages, informing the userwhytheir ontology fails to belong
to a particular language species. Similarly, fixing particular kinds
of errors (such as missing type triples) would be relatively easy.

Actually building the abstract syntax objects does not come with-
out a cost. In “difficult” RDF graphs, say where we have twoowl:-

Ontology objects in the graph, we have no way of deciding where to
put anything – if we are solely interested in validation (e.g. whether
an appropriate ontology can exist), then this is not an issue, other-
wise we can only apply heuristics to determine where information
should be contained.

As with Jena, the WonderWeb codebase is largely unoptimised
and the memory footprint is large (see Section 6). The strategy
employed requires the entire RDF graph (or at least an interface
allowing query of the entire graph) to be available to the checker.
This could, of course, be done using some persistent storage, re-
ducing the memory requirements. Similarly the construction of the
abstract syntax objects requires storage, which is currently held in
main memory.

The main drawback of the approach, however, is that it is effec-
tively a bespoke or hard-coded solution – the rules for validation

14http://wonderweb.man.ac.uk/owl/first-order.
shtml
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Test size 40 80 120 200 600 1000 1500 3000 NCI
Time WonderWeb 194 268 284 291 355 394 454 1450 49,200
(ms) Jena 4 11 15 21 95 155 239 710 301,436
Memory WonderWeb 102 143 211 220 1,098 1,207 1,848 3,901 281,059
(Kb) Jena 50 103 151 176 582 714 962 2,060 356,428

Table 3: Performance Figures

are encapsulated in the implementation, both of the parser and the
post-parsing validation. Small scale changes to the mapping rules
could be accommodated, large scale changes would require a more
extensive rewrite. Changes to S&AS as discussed in Section 7.1
are unlikely to be of much benefit here.

Another disadvantage is that the original structure of the RDF
is lost – thus the WonderWeb parser and API is not well suited to
handling general RDF15.

8. DISCUSSION

8.1 Imports
It is clear that the handling ofowl:imports is a crucial aspect to

parsing and recognition. AS&S says:
an owl:imports annotation also imports the contents of another

OWL ontology into the current ontology and requires that an inter-
pretation of an ontology O satisfies the ontology iff it also satisfies
all ontologies mentioned in anowl:imports directive.

In terms of RDF graphs, the interpretation of imports is that
[an ontology] isimports closediff for every triple in any element

of K of the formx owl:imports u , then K contains a graph that
is the result of the RDF processing of the RDF/XML document, if
any, accessible atu into an RDF graph. The imports closure of a
collection of RDF graphs is the smallest import-closed collection
of RDF graphs containing the graphs.

There is a tension here between these interpretations ofowl:-

imports – the interpretation in terms of RDF graphs does not nec-
essarily coincide or respect the boundaries of the interpretation in
terms of “abstract syntax” ontologies.

This tension is reflected in the two implementations discussed
here. The triple based approach used in Jena handles imports in a
natural fashion. The abstract syntax approach taken in WonderWeb
requires careful handling of imports – in some situations heuristics
have to be applied in order to determine exactly where assertions
belong, and information must be passed around during parsing of
imported ontologies.

8.2 Context
A related issue here is that of containment orcontext. The map-

ping rules translate an Ontology to a collection of triples. This
collection includes triples that relate to the ontology object itself.
For example the ontology:

Ontology( U
Class( a ) )

yields the following triples:

U rdf:type owl:Ontology (a)
a rdf:type owl:Class (b)

The problem here is that there is no connection between triple(a)

and(b) , other than the fact that they occur in the same graph. The

15This is no surprise though as it is not intended to be a general RDF
API.

fact that the typing occurs within the context of the Ontology isnot
represented explicitly.

If an owl:imports triple occurs, the imported RDF graph is sim-
ply added to the existing graph – again though the fact that there is
no explicit representation of theorigin of those statements means
that the context has to be handled using heuristics.

The situation is compounded further by the fact that the mapping
rules allow for an RDF graph to be the translation of a collection
of OWL ontologies. In this case, we cannot even apply heuris-
tics16 to determine which assertions belong with which ontology.
Of course, this difficulty is a direct consequence of the desire to
actually reverse the mapping rather than demonstrate that a reverse
mapping ispossible– which is all that is required for recognition.
The desire to construct a representation closer to the abstract syntax
is, however, not unreasonable.

The link between the physical location of the RDF graph and the
URI assigned to the ontology in the abstract is also unclear. For
example the ontology:

Ontology( http://xyz/things ... )

could be mapped to an RDF graph G1 which is then made available
at a URIhttp://abc/stuff . A second ontology can now make use
of this:

Ontology( Annotation(owl:imports http://abc/stuff) ) ... )

If this ontology is mapped to an RDF graph G2, calculating the im-
ports closure of G2 actually results in the addition of the G1 into the
RDF graph, including the triples referring tohttp://xyz/things

as an ontology. This is at best confusing, and is likely to result in
OWL Full ontologies due to the lack of appropriateowl:Ontology

triples.
Carroll and Stickler [8] suggest that the naming of RDF graphs

should be promoted to a first class operation, and not handled im-
plicitly through document names. They suggest that this improves
the semantics of both theowl:Ontology class and theowl:imports

predicate.

9. FIXING UP OWL
Both systems could be modified to fix errors to transform OWL

Full documents into OWL DL documents. Some changes would
be semantically sound, others unsound. The sound changes are
those where the original document both entails and is entailed by
the transformed document, according to the OWL Full semantics.
Unsound changes either lose information or add information to the
original document (or both).

Example sound fixups are:

• Adding missing type triples for classes and individual valued
properties.

• Adding missing type triples with typeowl:Thing for individ-
uals.

16For example, lumping all the triples obtained from a single URL
together as one “ontology”.
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• Doing a deep copy of a unnamed class description when it is
the object of two triples (soundness depends on a conjecture
from Carroll [4]).

• Converting a named restriction into a named class, and an un-
named restriction, linked by anowl:equivalentClass triple.

Example unsound fixups that add information, i.e. the trans-
formed document entails the original:

• Adding missing type triples for data valued properties.
• Using a skolemization to resolve bnode problems.

Example unsound fixups that lose information, i.e. the original
document entails the transformed document:

• Forgetting either a transitivity constraint or a cardinality con-
straint on a property with both.

• Doing a deep copy of an unnamed individual which is the
object of two triples.

• Take a large DL subset of the RDFS closure of the input
graph. This is particularly useful when the OWL vocabulary
has been extended. This is easier in Jena than in WonderWeb,
since Jena includes an RDFS reasoner.

A further unsound, but potentially useful, fixup is to clone a
property that is used both as a data valued property and a individual
valued property. One version is used for data values, the other for
individual values.

For the external errors both systems know what went wrong and
the appropriate place for the fixup is clear. For internal errors, the
Jena recognizer faces the same problem as with error messages, in
that it finds bad subgraphs without a clear idea of why they are
bad. Hence the fixup code would need to be able to analyse such
subgraphs to identify the problem. Some errors defy fixup – for
example cycles of bnodes in descriptions.

10. CONCLUSIONS
We answer the syntactic aspects of van Harmelen and Fensel’s

question [16] of “how wellcan AI concepts be fitted into the markup
languages on the Web?” with a weak affirmative: well enough, (but
it was not easy).

We have demonstrated that itis possible to build OWL parsers
and recognisers. Moreover, one of our implementations reflects the
needs and interests of the AI community, the other those of the Web
community. This is a non-trivial exercise, but the information in
the OWL document set is sufficient to allow implementors to build
recognisers that behave appropriately on the OWL Test Cases [7].
The identification and discussion of issues and hard cases may also
prove useful for those wishing to implement OWL-based systems.

Demonstration of implementation experience is a key prerequi-
site to the endorsement of a recommendation by the W3C. The exis-
tence of both the WonderWeb and Jena checkers17 and the fact that
the two implementations decribed here adopt very different strate-
gies to the task can be taken as further evidence that the specifica-
tion is implementable.

To answer the question raised in the title of the paper, both triple-
and tree-based approaches are possible. Each has its pros and cons
– which to choose depends primarily on the perspective of the ap-
plication.

17Along with other systems such as OWLP and Pellet – seehttp:
//www.w3.org/2001/sw/WebOnt/impls for details
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