
How to Make a Semantic Web Browser
Dennis Quan

IBM T. J. Watson Research Center
1 Rogers Street

Cambridge, MA 02142 USA

dennisq@us.ibm.com

David R. Karger
MIT CSAIL

200 Technology Square
Cambridge, MA 02139 USA

karger@theory.lcs.mit.edu

ABSTRACT
Two important architectural choices underlie the success of the
Web: numerous, independently operated servers speak a common
protocol, and a single type of client—the Web browser—provides
point-and-click access to the content and services on these decen-
tralized servers. However, because HTML marries content and pres-
entation into a single representation, end users are often stuck with
inappropriate choices made by the Web site designer of how to work
with and view the content. RDF metadata on the Semantic Web
does not have this limitation: users can gain direct access to the
underlying information and control how it is presented for them-
selves. This principle forms the basis for our Semantic Web
browser—an end user application that automatically locates meta-
data and assembles point-and-click interfaces from a combination of
relevant information, ontological specifications, and presentation
knowledge, all described in RDF and retrieved dynamically from the
Semantic Web. With such a tool, naïve users can begin to discover,
explore, and utilize Semantic Web data and services. Because data
and services are accessed directly through a standalone client and
not through a central point of access (e.g., a portal), new content and
services can be consumed as soon as they become available. In this
way we take advantage of an important sociological force that en-
courages the production of new Semantic Web content by remaining
faithful to the decentralized nature of the Web.

Categories and Subject Descriptors
D.2.2 [Software Engineering]: Design Tools and Techniques –
programmer workbench, user interfaces.

General Terms
Human Factors, Design

Keywords
Semantic Web, RDF, user interface, Web Services, bioinformatics

1. INTRODUCTION
1.1 Motivation
The World Wide Web revolutionized the Internet by providing a
number of mutually reinforcing capabilities. HTTP offered a simple
standard by which information could be fetched from any Web
server. HTML provided a uniform syntax in which publishers could
present information that would be rendered in human-readable form
in a Web browser. And URLs gave a way for any Web page to refer
to any other Web page, regardless of its location. Taken together,
these capabilities meant that a lay user could seamlessly browse the

entire space of Web information, viewing information without con-
cern for location and using a simple point and click interface to
navigate from any Web page to others that it referenced.

Though substantial, the powerful information access capability en-
gendered by the Web has its limitations. Through its use of HTML
and HTTP servers, the Web demands the production of content
already formatted for presentation in a particular human-readable
fashion. Implicit is the idea that a publisher will be able to figure out
the right way to present its information to end users. It should be
clear, however, that the information consumer will often have the
best sense of what is important in the fetched information and how
best to make use of it.1 Every Web browser offers its user some
limited ability to override presentation characteristics such as the
font and font size. Stronger evidence of the need for clients to con-
trol the presentation of information can be seen in the development
of HTTP content negotiation standards, in which the client describes
its capabilities and hopes that the server will deliver something that
can be presented reasonably [33], as well as the Web Accessibility
Initiative’s attempt to develop guidelines for crafting presentations
of Web pages so that they can be used by people with disabilities
[34]. Finally, efforts such as NewsIsFree show that means as ex-
treme as screen scraping are employed in order to enable Web site
content to be viewed in alternate ways (in this case, as RSS news
feeds in news tickers, news alert tools, etc.) [36].

The Semantic Web offers a particularly extreme example of differ-
ently-abled clients: nonhumans. In the Semantic Web vision,
autonomous agents will be able to pull information from the Web
and manipulate it on behalf of their users. HTML is clearly a terrible
data presentation language for such applications—its visual markup
hides the semantic content that agents actually care about. This
problem has motivated the development of RDF, a language for
describing semantic information in a machine-readable form without
the distraction of presentation markup.

We argue that beyond its support for automation, the Semantic Web
lets us dramatically improve the way people directly access informa-
tion. The Semantic Web gives us the opportunity to separate con-
tent—the proper purview of the publisher serving the information—
from presentation—an issue in which the end user or their local
application, aware of the uses to which they are putting the informa-
tion, should have substantial say. The fact that information is seman-
tically marked up, instead of just being formatted for display, makes
it possible for end user applications to make intelligent decisions on
how to present the information based on the purposes for which it is
being used. One application may show more details of an informa-
tion object, another less. One may present visually rich attributes of

1 Arguably, this is an application of the classic end-to-end argument

[32] that lower levels of an application should not be making
choices best left to the top elements that understand the overall
goals of the system.

Copyright is held by the author/owner(s).
WWW 2004, May 17–22, 2004, New York, New York, USA.
ACM 1-58113-844-X/04/0005.

255

an object, another focus on textual or audible content. An applica-
tion accessing a city description for the purposes of travel planning
can present entirely different information from one being used to
prepare a history report or evaluate a business opportunity.

1.2 Approach
In this paper we describe Haystack, an application that can be used
to browse arbitrary Semantic Web information in much the same
fashion as a Web browser can be used to navigate the Web. Hay-
stack aggregates RDF from multiple arbitrary locations and presents
it to the user in a human-readable fashion, with point and click se-
mantics that let the user navigate from one piece of Semantic Web
data to other, related pieces. Haystack’s presentation of the informa-
tion is controlled by presentation “recommendations,” much like
cascading stylesheets, that are themselves described in RDF; such
recommendations can be issued by the content server but can also be
made by context-specific “applications” that understand how the
information can best be presented to meet a particular need or com-
plete a particular task, or even by a third party offering helpful view-
ing advice. Finally, to support information gathering and structuring,
Haystack offers a rich model of collections. Users can build collec-
tions of links to Semantic Web objects with much the same ease as
they presently have creating bookmarks; at the same time, Hay-
stack’s rich presentation layer can display those collections as
thumbnails, Web pages, taxonomies, or various other views that can
help the user exploit the collections once created.

Overall, our approach is based on the principle that content can be
broken down into its key elements, i.e., data, presentation recom-
mendations, and functionality, and that these elements can be indi-
vidually published and consumed by users. Individual data, presen-
tation styles, and pieces of functionality are describable in RDF and
can be incrementally pieced together by Haystack at the client end to
form custom user interfaces and functionality for particular indi-
viduals and applications.

We believe that our approach to Semantic Web browsing offers
several key benefits that motivate its adoption for a variety of end
user applications. For example, separate pieces of information about
a single resource that used to require navigation through several
different Web sites can be merged together onto one screen, and this
merging can occur without specialized portal sites or coordination
between Web sites or databases. Furthermore, services applicable to
some piece of information need not be packaged into the Web page
containing that information, nor must information be copied and
pasted across Web sites to access services; instead, semantic match-
ing of resources to services that can consume them can be done by
the client and exposed in the form of menus.

The separation of content from presentation means lowers the bar to
publishing, since individuals can now produce “unformatted” se-
mantic information, relying on end user clients to figure out good
ways to present it. Conversely, users can publish new ways of look-
ing at existing information without modifying the original informa-
tion source.

The existence of a good Semantic Web browser may also speed the
proliferation of the Semantic Web. Much has been made of the po-
tential for the Semantic Web to support powerful information inter-
change and automation, but to date the amount of accessible Seman-
tic Web information remains rather small. Arguably, the rapid, or-
ganic growth of the Web was due in large part to the ubiquity of the
Web browser—a universal client that provides immediate access to
new content as soon as it comes online. This ability for new Web
sites to be instantly available to users is a key sociological driving

force that should not be underestimated: it encourages numerous
individuals to produce content, in the knowledge that there will be
easy access to it. An effective Semantic Web browser that allows
users similarly instant access to newly published Semantic Web
information may likewise motivate individuals to publish Semantic
Web content.

The Haystack system, which embodies the ideas described in this
paper, is an Open Source RDF-based information management envi-
ronment [1] [7]. Haystack is written in Java and is built into the
Eclipse platform [6], providing a stable basis for extension writers
(another important feature of the Web browser). A screenshot of
Haystack appears in Figure 1. To demonstrate the practicality of our
approach, we have applied Haystack towards an important target
domain for the Semantic Web—bioinformatics, an area rich with
various kinds of resources (protein structure data, genetic sequences,
published papers, etc.), metadata connecting them, and services that
operate on these objects [38]. Just as anyone can browse and publish
to the Web without understanding how Web servers work, making
the Semantic Web accessible to scientists who are experts in their
domains but not necessarily on the supporting technology is a cru-
cial first step to expanding the reach of the Semantic Web. Further-
more, bioinformatics is rich with cross-linked information, making it
well-able to take advantage of the cross-linking representation that is
central to the Semantic Web. In this way it is similar to many other
domains, including personal information management, other re-
search areas, and even business process integration. Finally, bioin-
formatics provides us with real, large data sources that are expressed
in RDF via the Life Science Identifier (LSID) standard [5].

1.3 Outline of the Paper
The paper starts off with a summary of important related work. Then
we characterize our approach in a bottom-up fashion. First we de-
scribe the critical elements of a resource naming scheme: universal-
ity and the ability to retrieve metadata. Next we discuss our strategy
for managing connections to disparate RDF repositories and various
approaches for federating metadata that take into account the diver-
sity of store implementations and network inefficiencies. We de-
scribe Haystack’s support for LSID and HTTP URIs via a caching
metadata store and show why universal retrieval is important from
the perspectives of both automation and usability. Afterwards, we
introduce Haystack’s user interface paradigm and the visualization
ontologies that support it. We talk about collections—a powerful
RDF-based mechanism for grouping related items together, reflect-
ing the frequent use of Web pages to aggregate related items and
building on the notion of customization introduced by bookmark
managers in the Web browser. Furthermore, we show how one
might apply Haystack’s user interface techniques to service discov-
ery and invocation. We tie up our discussion with an example of
Haystack being used to browse several bioinformatics databases and
build up a collection of interesting items. Finally, we discuss practi-
cal issues of publication to the Semantic Web: trust, inference, and
dealing with ontological mismatch.

1.4 Related Work
An important distinction between the approach presented in this
paper and other Semantic Web metadata visualization approaches
can be found in examining who maintains control over what meta-
data is shown to the user and how this metadata is presented. For
example, with a semantic portal (e.g., SEAL [2] or Semantic Search
[8]), it is the administrator who aggregates semantically-classified
information in a centralized location for dissemination to users.
Because these portals often use Web servers to distribute their in-

256

formation, server side HTML templates are typically employed to
convert metadata into a human-readable presentation. The semantic
portal approach has the advantage of maintainability, since all of the
presentation logic and choice of data sources are configured in one
central location. Furthermore, Semantic Web information can be
consumed by users of the existing Web; end users gain access to
important metadata without needing to be aware that RDF is in-
volved.

Unfortunately, the dynamic, ad hoc nature of the Web—anyone
being able to author a piece of information that is immediately
available to everyone—is thus buried within ostensibly monolithic
aggregations under centralized control. In particular, if someone
wishes to publish information reflecting a new schema, no portal
will be able to present it unless and until the portal administrator
modifies his or her display system. This model also detracts from the
free contribution of content because it forces a content producer to
either set up or locate a specialized semantic portal to host the new
content.

On the other hand, if users are allowed to directly access informa-
tion sources, then we could return content production to its powerful
decentralized behavior. Users would gain immediate access to the
growing range of available RDF-based data and services. Enabling
users to feel the network effects of the Semantic Web’s expansion is
crucial to gaining greater acceptance of the Semantic Web and its
potential to enable agent-based automation.

Although the effective separation of content from presentation might
conceivably be achieved using a properly designed server that
fetches content and presentation from outside when needed, the
decision to eliminate the centralized administration of presentation

knocks out the main argument for a server model. Instead, we have
chosen to implement our Semantic Web browser as an application
running on the user’s local machine because it is simpler to imple-
ment, is more scalable, and provides a higher-fidelity user interface
than an equivalent server-based setup.

Other systems exist for visualizing RDF metadata that take the form
of end user applications. These systems commonly employ auto-
matic form generation techniques seen in desktop database applica-
tions; a good example is Protégé [30], an ontology editor. Such
systems are capable of taking a schema or ontology definition and
presenting specialized, key-value pair-based forms to the user that
allow instances of classes in the ontology to be created, modified,
and queried. This is one approach used by our user interface frame-
work, which also incorporates human-computer interface-inspired
points of flexibility, such as the ability to group property fields into
lenses and to allow for multiple styles of presentation (views) for
instance resources.

Other applications take another approach to visualization that is
inspired by the notion of the Semantic Web being an extension of
the existing Web. Systems such as Magpie augment standard Web
browsers with the ability to act on resources described in Web pages
and to find resources semantically related to a Web page [31]. Tools
such as Annotea allow users to embed and read RDF-encoded tex-
tual annotations in Web pages from a Web browser [9]. The primary
difference between these approaches and the one described in this
paper is that we are providing support for visualizing RDF metadata
in its own right, not just the metadata connecting or embedded in
Web pages. In other words, Haystack is a Semantic Web browser,
not just a Semantic Web browser.

Figure 1. Haystack displaying mRNA sequence data named by LSID from multiple sources (side: an ad hoc collection of related
resources collected by the user; thick box indicates view selector control).

257

2. RESOURCE NAMING SCHEMES
A necessary piece of infrastructure for the Semantic Web is an ap-
propriate shared naming scheme. There seems to be a general con-
sensus around the ultimate arrival of some common URI scheme,
with some resolution layer that lets one fetch all or some informa-
tion associated with a given URI. But this consensus has yet to
evolve into a universal standard. In the meantime, various groups
have attempted to jump-start universal naming by defining naming
schemes such as handles [26]. In this paper we give particular atten-
tion to Life Science Identifiers (LSIDs), a naming scheme being
pushed by life sciences informatics communities [5]. A large num-
ber of biological resources, such as proteins, published papers, and
genetic sequences, are already named by LSIDs. Like URLs, LSIDs
are URIs that contain a field that can usually be resolved in DNS to
locate a server that can be contacted to resolve (provide information
about) a given LSID. LSID servers can be accessed using a SOAP-
based Web Services protocol to retrieve octets and/or RDF-encoded
metadata.

3. ACCESSING RDF SOURCES
Above URIs is the next important layer of the Semantic Web layer
cake—distributed pieces of RDF metadata. As with any distributed
body of information, such as a distributed file system, much infor-
mation of interest is stored remotely, and one needs efficient means
for tapping into the network. To achieve the goal of allowing users
to type in any URI and be immediately able to see relevant informa-
tion, a simplistic approach would be to assume that all URIs have a
server field and to have the browser contact that server to obtain the
chunk of all RDF statements related to the resource named by the
URI. This simplistic approach is actually the one adopted by LSIDs
and the subset of HTTP URIs that is actually hosted by Web servers
that can return RDF metadata today; the implicit assumption is that
these URIs have an authoritative server that can always be contacted
as a useful starting point.

The per-URI RDF download approach is not always practical.
Sometimes, all that is needed is a focused answer to a complex
query, so it would be more efficient for this query to occur where the
data is located. Also, unlike the Web, the Semantic Web allows
parties other than the authoritative server to provide statements
about resources, and these metadata residing on separate servers
should be accessible. For these reasons, many RDF repositories on
the Semantic Web, such as Annotea [9], TAP [8], and Joseki servers
[16], can resolve queries over arbitrary resources written to fairly
expressive query languages. On the other hand, many RDF reposito-
ries are simply RDF files sitting on an HTTP or FTP server. In this
case, it may be desirable to download the entire file and to host it in
a local database capable of answering queries in order to minimize
network traffic.

For Haystack’s implementation, we have chosen to model the vari-
ous kinds of RDF sources mentioned above with an RDF store ab-
straction [29]. Specifically, Haystack’s notion of an RDF store al-
lows specific forms of queries and optionally allows RDF statements
to be added and removed. Furthermore, Haystack’s RDF store ab-
straction supports an event mechanism: components can be notified
when statements matching specific patterns are added to or removed
from the store. Haystack includes a default RDF store implementa-
tion built on top of a database and an instantiation of this implemen-
tation that we refer to as the “root” RDF store, which is used to
locally store metadata created by the user (we discuss uses for this
store throughout this paper). To support RDF sources such as LSID,
Annotea, TAP, and Joseki, one can imagine implementing a virtual

read-only RDF store adapter that accepts queries and translates them
into the appropriate protocol understood by a given RDF query
service. In this fashion, new RDF sources can be made available to
Haystack by providing plug-ins.

For network efficiency reasons, we have chosen instead to wrap
many of these RDF sources as caching RDF stores—ordinary local
RDF stores that cache data from another source. In the case of a
read-only RDF file on a Web server, the process is straightforward:
a blank RDF store is instantiated and the RDF file is imported into
it. In the case of a query service, the wrapping process works as
follows. When requests for information are made against the store
(e.g., by the user interface), they are resolved using the data already
in the store (which may produce empty result sets if there are unre-
solved URIs); meanwhile, in a background thread, unresolved URIs
mentioned in the query are resolved against the query service, and
the new metadata is added to the store. As new information is incor-
porated into the store, events are fired, notifying services, user inter-
face components, and other listeners of the fact that updated infor-
mation satisfying their queries is available. While caching and an
event mechanism are not necessary to create a browser, they do
provide a useful way to implement asynchronous downloading and
rendering of information to the screen.

For example, built into Haystack is a caching RDF store that handles
LSID URIs. When a user requests to see information on an LSID-
named resource, he or she initially sees a blank page, but as the
background thread resolves the LSID, the RDF describing the re-
source incrementally pops onto the screen (much like images back-
ground-loading in a Web browser). In this fashion, users can enter
URIs (in this case LSIDs, but metadata-backed HTTP URIs are
similarly supportable) they find in papers from the literature, e-mails
from colleagues, or maybe one day even advertisements and bill-
boards, and the system takes care of locating the necessary server
and retrieving the necessary metadata.

Furthermore, Haystack supports metadata coming from multiple
RDF sources at once with the notion of a federated RDF store: a
store that exposes an RDF store interface but distributes queries
across multiple RDF stores. There is much work in the literature on
federating RDF sources together [21] (especially for use in portals
[2]), but these efforts are mainly focused towards environments in
which a database administrator or other expert is present to set up
connections to data sources and to define ontological mappings. We
focus on the problem of providing end users with semi-automatic
database federation while still giving a fine level of control over
which repositories are being used for those who need it, since many
users want to know where information is coming from in order for
them to form valid judgments on its trustworthiness and usefulness.
(The issues of trust and ontological mapping are discussed further in
Section 8.) Part of the job of federating data rests with the user inter-
face, which is discussed in Section 4.

Initially, Haystack’s root RDF store and the LSID caching store are
federated together. For those users who need more control, the In-
formation Sources pane shows users the list of “mounted” RDF
sources, i.e., the RDF sources that have been federated into Hay-
stack. Users can easily mount additional RDF stores that speak An-
notea’s RDF store protocol [9] or RDF files that exist on the Web;
support is being added to enable other protocols, such as Joseki
[16]. For users who wish to explore developing for the Semantic
Web, we feel being able to mount a set of known RDF sources in
order to begin browsing and “playing” with the combined data set is
an intuitive way to get started.

258

4. PRESENTING RDF TO USERS
Haystack’s user interface has the challenge of providing a sensible
presentation to the user given the metadata available to it. As a basic
paradigm, we have chosen to center the presentation around one
resource at a time, just like the Web browser model. In fact, Hay-
stack's user interface works more or less like a Web browser: users
can type URIs into the Go to box or click on “hyperlinks” shown on
the screen to navigate to resources. We also provide back, forward,
and refresh buttons on the toolbar. Of course, unlike a Web page, a
Semantic Web resource has no predefined presentation specifica-
tion; instead, the metadata describing that resource must be lever-
aged to generate an intelligent presentation.

Ontologies and schemas are specifications for use by software in
determining how to best process metadata written to these specifica-
tions. These specifications are incorporated into Haystack when an
unknown RDF class is referenced by the resource being viewed
(e.g., by an rdf:type statement) and the URI of the class resolves to
a piece of RDF containing this specification, as described in the
previous section. However, typical schemas offer little information
regarding the best means of presentation. For example, a calendar
can easily be characterized by a DAML+OIL ontology, but a generic
display (usually a key-value pair editor or a directed graph display)
is unlikely to be intuitive to those unfamiliar with the abstract no-
tions of RDF. We argue that to support appropriate presentation of
Semantic Web information to end users, it will be necessary to de-
fine an ontology for describing presentation knowledge, such as
which are the important properties of a class. We will refer to this
ontology as VOWL: the View Ontology Web Language. Haystack
uses VOWL in addition to the RDFS and DAML+OIL schema
description languages in an effort to bridge the gap between a user's
display needs and the underlying data model.

In this section we discuss what presentation guidance Haystack can
derive from standard ontological specifications and what else must
be provided by VOWL to produce a better presentation for a given
resource. This additional presentation knowledge is itself describ-
able in RDF and can be added to the RDF-encoded ontological
specifications returned when the class URI is resolved. Rather than
giving RDF/XML examples, we have chosen to use high level ex-
planations and diagrams in this section to explain the important
concepts in Haystack’s user interface; specifics can be found at the
project Web site [37].

4.1 Views
There is no single way a generic Semantic Web resource must ap-
pear in a browser as there is with an HTML page; in fact, it is often
useful to look at a resource in many different ways. As a result, we
have abstracted the notion of multiple presentation styles into the
concept of views. For any resource, multiple views exist; we focus
on one particular view in this section, which shows metadata as a
segmented form. Other views are discussed later in this paper. Users
are given control over which view of a resource they want by means
of the view selector, seen in Figure 1. More details on Haystack’s
view mechanism can be found in previous papers on Haystack [1]
[3].

4.2 Titles
Perhaps the most basic view of an object is a simple reference to it
on the screen by a human-readable name. The ultimate fallback
name for any object is its URI, but URIs tend not to be meaningful
or memorable for humans. Instead, if dc:title or rdfs:label proper-
ties are provided, Haystack will use one of the values of these prop-
erties, giving higher priority to dc:title . At the schema level, one can

explain how to title all resources of a given class by annotating the
class with a vowl:titleSourcePredicate property, telling Haystack
which property contains a literal suitable for use as the resource’s
title. For example, in Haystack, the title source predicate for the type
mail:Message is mail:subject.

4.3 The All Information View
The All Information view is the default view shown for resources
with non-HTTP URIs if Haystack has no further knowledge of how
to display the resource. (As a heuristic, resources named by HTTP
URIs are, in the absence of an RDF type specification, shown in a
Web browser view.) The All Information view renders together the
lenses that apply to the types of the resource being displayed. A lens
is defined to be a list of properties that make sense being shown
together. The reason for defining lenses is that there could poten-
tially be an infinite number of predicate/object pairs characterizing a
resource; lenses help filter the information being presented to the
user. Lenses are shown as panels that display some fragment of
information about a resource. When a new applicable lens that can
display further information fragments is defined, the All Information
view will automatically incorporate it. An example of a customized
version of the All Information view is shown in Figure 2; it contains
three lenses specific to flights and two that are broadly applicable.

Figure 2. A flight itinerary shown in All Informati on view.

The three specialized lenses, Flight Information, Contacts residing at
the destination, and Weather forecast for destination, are specialized
lenses for the Flight type. The Flight Information lens is straightfor-
ward to define in that it is simply a list of RDF properties. In con-
trast, the remaining two flight lenses make use of virtual proper-
ties—connections between one resource and another that are not
materialized in the RDF representation for efficiency reasons. To
motivate the need for virtual properties, it is important to bear in
mind that a significant amount of Semantic Web metadata originates
from relational databases whose schemas were designed with the
objectives of consistency and optimized access in mind. On the
other hand, a user may also care about properties that are derivable
from or are redundant with properties already given by the schema
or ontology, such as Contacts residing at the destination. For this
reason, Haystack allows virtual properties to be defined and used in
the specification of lenses. It is, of course, possible to implement
virtual properties using an inference engine; in Haystack, an ex-

259

tremely limited form of forward-chaining inference is employed to
support virtual properties.

4.3.1 Defining Lenses
A lens is defined by specifying a (DAML+OIL) list of properties.
When Haystack renders a lens to the screen, it makes use of infor-
mation that likely already exists in the ontology:

• The human-readable names of the properties (e.g.,
travel:origin) are specified by rdfs:label properties in the
schema, as described in Section 4.2.

• Referring to the screenshot in Figure 2, one notices that
some fields have an Edit button and some do not. Proper-
ties that are defined to have type daml:UniqueProperty
are assumed to be single-valued, and Haystack will not
display the Edit button in those cases. (Uses for the Edit
button are discussed later in Section 6.1.)

• Haystack also uses knowledge of whether the properties
being displayed have the daml:DatatypeProperty or
daml:ObjectProperty types to determine whether to
show a text field or a list of resource hyperlinks (displayed
using their titles according to the rules given in Section
4.2), respectively.

For Haystack to know which lenses are available for a given class,
the vowl:hasLens property of the class is used. When the All In-
formation view is displayed for a resource, it queries all RDF
sources for the RDF types of the resource and accumulates all of the
lenses that correspond to those types. Two special lenses are implic-
itly associated with all types: the All Properties lens shows every
single property and value associated with the resource, while the
Standard Properties lens shows a bundle of properties from the Dub-
lin Core ontology, such as title and author/creator, which seems to
be useful for a wide variety of types.

4.3.2 Defining Virtual Properties
Contacts residing at the destination and Weather forecast for desti-
nation are examples of lenses involving only one property, here a
virtual property. Virtual properties can be defined in a number of
ways, but perhaps the simplest is in terms of an RDF graph match-
ing pattern. For example, the Contacts residing at the destination
virtual property is defined by the thick dotted line as follows.

The Weather forecast for destination property can be thought of as
having a literal value that is defined in terms of the result of a Web
Services invocation, which involves scripting. Advanced support for
defining virtual properties and rendering formatted text is described
in the Haystack documentation on our Web site and in other papers
[1] [7] [37].

5. COLLECTIONS
There is a diverse spectrum of different kinds of pages on the Web.
Even so, one notices that a large fraction of Web page real estate is
devoted simply to the task of listing links to other Web pages. Good
examples include search results, product listings, taxonomical classi-
fications (e.g., the Open Directory Project [19]), individuals’ publi-
cation lists, and RSS news feeds. We see this as a social phenome-
non not specific to HTML and anticipate that the Semantic Web will
be similarly populated with purposefully-gathered collections of
related resources. In fact, some of the above examples from the ex-
isting Web today are already part of the Semantic Web, as the Open
Directory and RSS 1.0 [22] Weblog feeds are both described in
RDF.

As evidenced by the appearance of search result, bookmark, and
history panes in Internet Explorer and Mozilla, collections deserve
baseline support built into the browser. But how should they be
displayed? One finds many examples of a user wishing to see the
same underlying collection in different ways (e.g., a product listing
sorted by price or rendered as a page of thumbnail images, etc.). At
present, such multiple-view functionality is offered at the server end
or by Web-site-specific JavaScript. Individual users’ Web pages,
often containing collections, do not even have the domain-specific
multi-view support offered by more sophisticated Web sites: one
will likely not be able to view them as hierarchies, in multiple col-
umns, or sorted by date. We can correct this problem on the Seman-
tic Web by using the RDF description of a collection to generate
multiple different views from within the browser.

5.1 Ontological Specifications for Collections
From an ontological standpoint, a collection—a resource that repre-
sents a set of resources—is conceptually simple: one relationship,
often called “member-of”, ties a collection to its members. However,
there are many variations on this pattern. For example, one can also
choose to model collections with added structure, as DAML+OIL
and OWL do with Lisp-style lists. One also has many choices on the
kinds of restrictions placed on membership in a given collection
class. One simple baseline case is to have no restrictions placed on
the kinds of resources that could belong to a collection (in
DAML+OIL, we would say that the rdfs:range of the membership
predicate is daml:Thing). The resulting arrangement—the hetero-
geneous collection—turns out to be extremely powerful, as we dis-
cuss later. Haystack predefines a heterogeneous collection class
called hs:Collection and an unconstrained membership predicate
hs:member. Naturally, more specialized, homogeneous collections
are useful for other applications, and these are also supported by the
system.

5.2 Browsing Collections
Haystack offers many collection visualizations, allowing the user to
choose one depending on the particular task at hand. The default
view simply shows a list of the resources in the collection. The cal-
endar view shows the resources on a daily calendar view, using
date/time information encoded in the dc:date predicate. (In Hay-
stack, a calendar is not a specific type; rather it is a collection that
happens to contain resources with date/time information.) The photo
album view shows the members of the collection as thumbnails, or
as tiles with the name of the resource inside if a thumbnail is un-
available (e.g., for resources that are not images). Finally, the Ex-
plore relationships between collection members view shows prop-
erty relationships among the resources that belong to the collection
as a labeled directed graph; the arcs shown are the ones described by
some appropriate lens. For example, Figure 4 shows a collection of

Destination

Contact residing at
destination (in-
ferred)

Flight
itiner-

ary

San
Fran-
cisco

Lives in

Ted
John-
son

260

people in terms of the Human resources lens, a lens that includes the
“manages” property.

Figure 3. Browsing a collection in double pane mode (thick box
indicates preview pane controls).

Collections are so pervasive that they appear in many slightly differ-
ent representations—sets, ordered lists, directories, etc. In a big
picture sense these are subclasses of the collection class. We want a
way to ignore the superficial differences in representation and focus
on their fundamental “collectionness”, letting users manipulate them
as collections. Haystack provides the developer with tools for ex-
plaining how a given class can be treated as a collection; this allows
our collection views to be applied to things like DAML+OIL lists
and file directories.

Additionally, the browser can be placed into one of three modes to
facilitate browsing through the members of a collection. These
modes are enabled by means of three buttons on the toolbar, indi-
cated in Figure 3. The single pane mode is the default and mimics
the behavior of the Web browser: when users click on hyperlinks,
the pane navigates to the new page. The double pane and triple pane
modes allow a user to keep a collection on screen while viewing
members of the collection at the same time. (Higher numbers of
panes can be set up through a dialog box.)

Figure 3 shows an example of browsing a collection (the user’s
favorites collection) in double pane mode. When the user clicks on
the “Weather for Cambridge, MA (02142)” link on the left, instead
of the entire window navigating to the weather forecast, the second
pane on the left is used to display it. Similarly, in the triple pane
mode, hyperlinks activated in the second pane appear in the third
pane, and so on. Incidentally, it is worth noting that Haystack’s
multi-pane functionality has been extremely useful for browsing
collections, but any resource can be browsed with this mechanism.
For example, if a user clicks on a link inside of the All Information
view of a resource when in double pane mode, the target link’s re-
source will appear in the second pane.

5.3 Collections as a Bookmarks Facility
In addition to downloading Web pages and rendering HTML to the
screen, Web browsers also play an important but often overlooked
role in helping users personalize portions of the Web most important
to them [10]. All of the major Web browsers include bookmark

facilities (of varying degrees of quality) that let users group related
pages into labeled, usually hierarchical containers called folders.
Some browsers let users export these bookmark hierarchies into new
HTML pages; some, such as Lynx, store users’ bookmarks in
HTML files to begin with. It is not uncommon to find homepages
whose main purpose is to hold nicely formatted bookmarks. The
important point here is that the generic notion of making collections
of Web resources is fundamental both to the philosophy of having a
Web and to a user’s own ability to keep track of portions of the Web
of personal interest.

Users can create their own local heterogeneous collection resources
by using the Create collection operation. These collections can be
used to group resources together based on some commonality such
as project, task, RDF type, similarity, or perhaps even a trait not
easily articulated but highly intuitive to the user [12]. Furthermore,
users can drag and drop items they encounter while browsing into
collections; the metadata associated with the collection is stored in
Haystack’s root RDF store.

There is an additional important usability benefit to modeling col-
lections (including bookmark listings) in RDF. In such a model,
there are no infrastructural reasons for prohibiting membership of a
resource in more than one collection at once. In some folder sys-
tems, such as the Windows file system or many e-mail and book-
mark managers, it is difficult to manage bookmarks that are placed
into multiple collections at once. But this is primarily a problem
with the view rather than the underlying data model. User studies
have shown that there is significant value in being able to file re-
sources into multiple collections at once rather than having to am-
biguously choose between collections [12]. Thus, in Haystack we
provide views supporting easy multiple categorization that can be
applied when appropriate [11], as well as other more standard views
that emphasize the hierarchical/taxonomic aspects of collections.
Each is useful at different times, and each can be applied to the same
collection.

6. SEMANTIC WEB SERVICES
Another large part of the Web consists of form-driven services that
let users submit requests to Web servers. Like most Web pages,
these service forms are largely meant for human consumption. Addi-
tionally, services (e.g., purchase an item) are usually served off the
same Web site as the data meant to be consumed by that service
(e.g., items being sold on an e-commerce Web site). Using a service
from one Web site on data from another involves a lot of manual
effort, such as copying and pasting part numbers, unless the two
Web sites have a back-office arrangement in place.

With the growth of Web Services, many of these HTML form-
driven services are being exposed in a machine-accessible fashion
[27]. As with content, we believe that services being described in a
machine-readable fashion can play a role in improving the user ex-
perience. At present, standard Web Services descriptions, such as
those in WSDL format [17], only provide relatively low-level details
on how to connect to services. For example, a service that purchases
an item may be described as accepting two string parameters—the
expectation is that a developer, writing tools that access the service,
will read documentation describing the semantics of how the service
should be invoked. Some researchers have begun to consider the
possibility of agents accessing Web Services autonomously. These
services will need a more semantic description of the service pa-
rameters, e.g., that the two parameters above are a product ID and a
credit card number. Services that are characterized in terms of what
they do and what kinds of resources they operate on, rather than in

261

terms of the low level data types involved, have been dubbed Se-
mantic Web Services [23].

As with content, we believe that services described in a machine-
readable, presentation-free fashion can also play a role in improving
direct human interaction with information. When services are
marked up with semantics, we can build interfaces that help indi-
viduals locate the appropriate services to invoke for a given task,
that help users fill in the necessary arguments to the services, and
that support naïve-user customization of the services for the users’
own purposes.

There are only a few drafts of standards available for describing
Semantic Web Services, such as DAML-S [24] and OWL-S [25],
none of which have been adopted formally by any standards body at
the present time. As a result, Semantic Web Services are even
scarcer than the Semantic Web metadata and resources they are
designed to consume. Nevertheless, we wish to characterize how
services would be incorporated into a Semantic Web browser, given
the importance of the analogous HTML form-based services to the
existing Web.

Although not many Semantic Web Services exist yet “in the wild”,
all of the actions that a user can take in Haystack, such as menu
commands, are actually implemented as a kind of single-method
“mini Web Service” called an operation. Operations are pieces of
functionality that take parameters and return sets of values, and they
are used in Haystack to implement commands in the user interface,
such as “e-mail a link to the current resource”. Like Semantic Web
Services, operations have parameter specifications constrained by
RDF types rather than XML Schema types. For example, the “e-
mail link” operation might be configured to accept one parameter of
any type (the resource to send) and another that must have type
hs:Identity (e.g., a person or an e-mail agent).

6.1 Invoking Operations
One benefit to semantically marking up operations is that we can use
the markup to help users invoke them properly. When a user starts
an operation, Haystack checks to see if the resource currently in
view unambiguously satisfies any of the operation’s parameter
types. If there are unresolved parameters or the resource type checks
against multiple parameters, Haystack displays a form prompting the
user for parameters. This form is actually a special view of an opera-
tion closure resource configured to display a lens constructed from
the parameters to the operation. An operation closure is a resource
that represents an operation invocation and has, as properties, the
parameters to that operation. The RDF that is used to describe the
current state of the operation closure is stored in Haystack’s root
RDF store, as is metadata for user-created collections. Users can fill
in the form by dragging and dropping items from other views or by
using the Edit button, which exposes an appropriate interface for
collecting the kind of resource or literal needed for that parameter.
When the user is done, he or she can click the OK button to invoke
the operation.

There are many benefits to representing operation invocations as
resources, which are described in another paper [4]. One particular
feature we highlight here is our ability to reuse the existing browsing
infrastructure to expose forms for parameter collection. When a
service is described semantically, a form for accepting parameters
from the user can be constructed automatically by Haystack. Note
that the appearance of the form can be customized, as discussed in a
related paper [1].

6.2 Finding Operations to Invoke
On a Web page describing some item, it is not uncommon to find
links to services that can be used on that item. For example, a prod-
uct might contain a “buy” button that activates a service and initiates
a commercial transaction. Similarly, we want to show users what
Semantic Web Services are available given the current resource
being displayed.

With semantically marked up operations, we can automate the same
process in Haystack. Haystack exploits annotations that declare
which operations can be invoked on which data items. To show the
available services, Haystack exposes the Commands pane, seen in
the top left of Figure 1. (In actuality, the Commands pane is simply
a lens that has been docked to the left hand side.) Here, the Search
using NotQuiteABlast service (in this case, an operation) is shown
because it has a parameter that type-checks against the mRNA re-
source being viewed. Additionally, users may right-click on objects
on the screen (e.g., titles of resources shown in lenses) and see con-
text menus listing the operations and services appropriate to those
objects. In this sense, the Commands pane is simply a permanently
open context menu bound to the current object.

The set of services relevant to a given item is, of course, a collection,
to which one can bring to bear all of Haystack’s collection browsing
capabilities. Menus are a convenient lightweight collection display
that are effective when a user basically knows what they want to do.
A user in need of more guidance, however, may choose to browse to
a full-screen view of the collection of available operations, where
they might find descriptions of what each operation does and what
parameters it takes. The “Starting Points” display, the first view
encountered when a user starts up the system, is essentially such a
view.

6.3 Customization
Another important benefit of our first class representation of opera-
tions is that it lets users customize their operations. For example,
since menus are simply collections, users can employ collection
management tools to add operations and otherwise rearrange or
create menus as they see fit.

A deeper type of customization is the derivation of new operations
from existing ones at runtime. Users are able to save an in-progress
operation closure and turn it into a new operation by selecting the
option from the user interface continuation’s context menu that
instructs the system to bind the state of the current operation to-
gether with the already specified parameters [4]. One benefit of this
technique is its ability to allow users to create specialized operations
suited for users’ own purposes. For example, if a specific product
ordering service is frequently invoked with one or more fixed pa-
rameters (e.g., account number, shipping method, etc.), then the user
can easily create a custom operation using this technique that has
these parameters pre-specified.

6.4 Accessing Remote Web Services
As Semantic Web Services standards become finalized, we antici-
pate incorporating support for making Semantic Web Services act as
remote operations. As with other remote invocation systems, prob-
lems such as marshalling resources and literals into specific data
formats and dealing with object identity must be dealt with. One
benefit to Semantic Web Services, when used in conjunction with
LSIDs or resolvable HTTP URIs, is that resources can simply be
passed by reference, since the contents of the resource can be re-
solved separately by the receiving end, simplifying marshalling. In
the end, the idea is to use the operation support in Haystack to give

262

users the ability to invoke Semantic Web Services directly on the
resources they are browsing within the same environment without
the need for specialized clients.

When we consider remote services instead of those already installed
in Haystack, we must also solve the problem of finding those ser-
vices. The fragment of RDF that is retrieved from the HTTP or
LSID server when the resource is originally resolved can include
references to relevant services. However, the authoritative HTTP or
LSID server is not likely to return information about services that
are not hosted by the party controlling that server. One could imag-
ine there being RDF sources that act as Semantic Web Services
directories at some point; a user could query such a service (or ar-
range for their browsers to do so automatically). On a side note,
such RDF sources could themselves be Semantic Web Services
[20]; mounting such a source could be as simple as typing in its
well-known URI, letting the system download the service’s meta-
data, and invoking the “mount” operation on it.

If the user were instead interested in locating the service before
specifying the data to act on, then a client such as Haystack could be
used more directly to browse the space of services. Services are of
course themselves resources, and their URIs could potentially be
typed in to browse to service descriptions. Another possibility is to
have a collection named by a resolvable URI that contains a set of
useful services. As the user browses forward to services of interest,
their descriptions would in turn be downloaded into the system.

7. PUTTING IT TOGETHER
To see how the various elements of our Semantic Web browser
work together to enable users to browse the Semantic Web, let us
return to the screenshot in Figure 1. The screen shown is a result of
the user typing in an LSID URN, perhaps obtained from a paper he
or she was reading, into the Go to box. As a result of being told to
navigate to the resource named by that LSID, Haystack performed
an RDF query to determine the types specified for the resource.
Initially, the system knew nothing about the resource, so the query

returned an empty result set, prompting Haystack to show the Stan-
dard Properties and All Properties lenses. The All Information view
also registered for events to find out when new information about
the resource’s RDF types entered the system.

Meanwhile, in a background thread, the LSID cache store picked up
on the query containing an LSID, found that the LSID had not been
resolved, extracted the authority name from the LSID, and looked it
up using DNS. The LSID cache store then contacted the server us-
ing the resolved hostname via the LSID Web Services protocol and
requested the RDF metadata associated with the LSID. The returned
metadata, which included a specification of the resource’s RDF
type, were added into the cache store, causing an event to fire to the
All Information view.

The view reacted to this event by finding the known lenses for the
newly discovered types of the resource. Four lenses, Sequence
Summary, Sequence, External Reference, and Pubmed, were dis-
covered and rendered to the screen. These lenses are built into Hay-
stack, though ultimately they might be retrieved by an appropriate
search of the Semantic Web, so long as the RDF types are named by
resolvable URIs and the metadata returned upon resolution of RDF
class resources contain links to lenses (which could also be named
by resolvable URIs).

Each lens in turn contained a list of properties to be queried, so the
lenses queried for the values of these properties of the resource. In
the case of the Sequence Summary and Sequence lenses, these were
literal values, which were immediately shown. In the case of the
External Reference and Pubmed lenses (Pubmed is the name of a
literature database, and this lens shows a list of referenced publica-
tions), resources named by LSID were found. (The External Refer-
ence lens is collapsed in the screenshot.) The user interface queried
for the dc:title and rdfs:label properties (there is no
vowl:titleSourcePredicate for mRNA sequences), but found noth-
ing, so it displayed the raw URIs for these resources. Again, the user
interface registered to be notified when information on the dc:title

Figure 4. Form for collecting information for Semantic Web Services invocation (bottom).

263

or rdfs:label properties of these resources was added. Also, the
LSID cache store’s background thread noticed queries being made
on unknown LSIDs—potentially with different authority names
from the original LSID—and resolved them. Events were fired as
the dc:title property was found for each of the resources, and the
user interface updated the display with the human-readable titles. In
this way, the display incorporated many aspects of the resource of
interest, some of which depended on information that came from
various other stores.

The user, noticing the rather large list of referenced publications,
chose to collect a subset for future research. He or she invoked the
Create collection operation from the side pane’s context menu, cre-
ating a new collection named “Interesting Stuff”. The user then
dragged some interesting publications into this new collection. As is
the case with any other collection on the Semantic Web, this per-
sonal collection can be viewed in a number of different ways, in-
cluding as a relationship graph to see, for example, if the papers had
cited each other. After creating the collection the user could invoke
the File Away operation that places the just-created object into their
bookmarks (or another) collection for later use.

At this point, the user could elect to do one of a number of different
activities. One possibility is to invoke a Semantic Web Service on
this mRNA sequence, such as BLAST, a search engine commonly
used in the bioinformatics community to locate similar sequences
[35]. Such a service would be visible from the left hand pane. The
user could click on the BLAST command to invoke the service (we
have simulated this with a mocked up Semantic Web Service called
NotQuiteABlast). If other parameters are needed, the user would be
prompted for them with a form such as that shown in Figure 4. A
user could, of course, browse to other resources to find useful in-
formation and use drag and drop to directly fill in parameters, as is
shown in the example. After invoking the service, a collection of
similar sequences looking like the one the user created him or her-
self on the right side of the screen would appear. This is in contrast
to how services such as BLAST are made available from the Web
today; in general, either an identifier or a DNA sequence string
would need to be copied and pasted manually into the form. Fur-
thermore, the results returned would likely not be persistent unless
the user copied and pasted the results Web page into a file.

8. DISCUSSION AND FUTURE WORK
The Semantic Web browser we have outlined in this paper lays the
foundation for the construction of clients that can produce hyper-
linked presentations of resources from RDF metadata originating
from multiple sources. There are a number of additional issues we
have yet to resolve but that deserve further discussion, including
possible strategies for enabling users to contribute to the Semantic
Web, inference, trust, and ontological mismatch. We give some
comments on these problems below.

Tim Berners-Lee’s original vision was of a Web in which users were
not only able to easily browse interconnected Web pages but also
able to contribute new content to the Web. Admittedly, some Web
browsers support HTML composition and expose functionality for
uploading pages to Web servers, but few users take advantage of
these features. In looking towards the Semantic Web, we feel there
is a renewed opportunity to create new opportunities for user contri-
bution. One factor making it easier to publish to the Semantic Web
than the original Web is the fact that the minimum unit of publica-
tion is simply a fact, such as one providing a person’s name, as op-
posed to an HTML document, which may require spellchecking,
proofreading, formatting or layout. The harder problem is finding

ways for users to input RDF metadata. Haystack includes support
for editing as well as browsing the metadata of resources, as was
hinted at in the earlier sections on collections and Semantic Web
Services. This topic is covered in more detail in other papers [1] [3].

In terms of publishing the metadata itself, Haystack provides sup-
port for sending RDF fragments between users [28] and for export-
ing RDF to files, but not yet for posting RDF fragments to some
shared site automatically. One possibility is to have Haystack host
an HTTP or LSID server and to serve out metadata to others, but
this approach may not work for mobile users. However, the more
difficult problem is one of privacy: even if we could easily publish
the metadata produced by every individual to the Semantic Web, we
must still find ways of describing which metadata is public and
which should not be readily disseminated.

On a related note, one relatively esoteric community where one
observes a group of Web users both contributing and consuming
content is the Web design community. Web sites devoted to the
issues of Web site design often include galleries of stylesheets,
HTML templates, widgets written in JavaScript, and images. Be-
cause of the way in which user interface presentation style can be
separated from metadata content on the Semantic Web, one can
imagine sites containing descriptions of views, lenses, and other
reusable elements becoming more mainstream, since the average
user would be able to take advantage of these components on his or
her own.

On the issue of inference, Haystack does not itself include support
for basic RDFS, DAML+OIL or OWL inference, but it is entirely
feasible to attach an inferential RDF store to Haystack, such as the
Jena RDF store [18]. Inference is one possible means for resolving
ontological mismatch—the problem that occurs when two data
sources that are to be used together are based on ontologies that use
different names for similar or identical concepts. Ontological map-
pings [14] could be downloaded from servers in much the same
fashion as views and lenses. However, another approach to address-
ing ontological mismatch is to simply provide lenses and other user
interface elements that make items from different ontologies at least
appear the same to the user. This is the approach we discussed ear-
lier to dealing with multiple forms of collections.

With respect to trust, we have taken the simplistic approach adopted
by Web browsers, which is in essence to trust all information that
enters Haystack. But here an important difference arises between the
current and Semantic Webs. With a real Web page, a user is better
able to judge the trustworthiness of content because there is often a
significant body of text, so the facts embedded in the page can be
judged with respect to the context of the whole page [13]. Also, the
entire Web page tends to come from a single source server whose
trustworthiness can be considered. On the Semantic Web, the fact
that an RDF presentation may incorporate facts from multiple
sources creates more difficulty. As a first cut, the user’s choice of
which RDF sources to “mount” determines a subset of trusted RDF.
At a finer grain, we are considering the idea of a belief layer placed
between the underlying RDF sources and the user interface that
would allow only those RDF statements signed by a party trusted by
the user to pass through to the user interface.

9. ACKNOWLEDGMENTS
We would like to thank Mark Ackerman and Joseph Latone for their
feedback on this paper. This work was supported by the MIT-NTT
collaboration and the MIT Oxygen project.

264

10. PREFIXES USED IN THIS PAPER
dc: http://purl.org/dc/elements/1.1/

rdf: http://www.w3.org/1999/02/22-rdf-syntax-ns#

rdfs: http://www.w3.org/2000/01/rdf-schema#

daml: http://www.daml.org/2001/03/daml+oil#

mail: http://haystack.lcs.mit.edu/schemata/mail#

travel: http://haystack.lcs.mit.edu/schemata/travel#

vowl: http://haystack.lcs.mit.edu/schemata/vowl#

hs: http://haystack.lcs.mit.edu/schemata/haystack#

11. REFERENCES
[1] Quan, D., Huynh, D., and Karger, D. Haystack: A Platform for

Authoring End User Semantic Web Applications. Proceedings
of ISWC 2003.

[2] Stojanovic, N., Maedche, A., Staab, S., Studer, R., Sure, Y.
SEAL: a framework for developing SEmantic PortALs. Pro-
ceedings of the International Conference on Knowledge Cap-
ture October 2001.

[3] Quan, D., Karger, D., and Huynh, D. RDF Authoring Envi-
ronments for End Users. Proceedings of Semantic Web Foun-
dations and Application Technologies 2003.

[4] Quan, D., Huynh, D., Karger, D., and Miller, R. User Interface
Continuations. Proceedings of UIST 2003.

[5] Werner, P., Liefield, T., Gilman, B., Bacon, S., and Apgar, J.
URN Namespace for Life Science Identifiers.
http://www.i3c.org/workgroups/technical_architecture/resource
s/lsid/docs/LSIDSyntax9-20-02.htm.

[6] The Eclipse Project. http://www.eclipse.org/.

[7] Haystack project home page. http://haystack.lcs.mit.edu/.

[8] Guha, R., McCool, R., and Miller, E. Semantic Search. Pro-
ceedings of WWW 2003.

[9] Kahan, J. and Koivunen, M. Annotea: an open RDF infrastruc-
ture for shared web annotations. Proceedings of WWW10.

[10] Abrams, D., Baecker, R., and Chignell, M. Information Archiv-
ing with Bookmarks: Personal Web Space Construction and
Organization. Proceedings of CHI 1998.

[11] Quan, D., Bakshi, K., Huynh, D., and Karger, D. User Inter-
faces for Supporting Multiple Categorization. Proceedings of
INTERACT 2003.

[12] Lansdale, M. The Psychology of Personal Information Man-
agement. Applied Ergonomics 19 (1), 1988, pp. 55–66.

[13] Lin, J., Quan, D., Sinha, V., Bakshi, K., Huynh, D., Katz, B.,
and Karger, D. What makes a good answer? The role of con-
text in question answering systems. Proceedings of INTER-
ACT 2003.

[14] Dertouzos, M. The Unfinished Revolution. New York, NY:
HarperCollins, 2001.

[15] Berners-Lee, T., Hendler, J., and Lassila, O. The Semantic
Web. Scientific American, May 2001.

[16] Joseki. http://www.joseki.org/.

[17] Web Services Description Language 1.1.
http://www.w3.org/TR/wsdl.

[18] Jena Semantic Web Toolkit.
http://www.hpl.hp.com/semweb/jena.htm.

[19] Open Directory Project. http://www.dmoz.org/.

[20] Richards, D. and Sabou, M. Semantic Markup for Semantic
Web Tools: A DAML-S Description of an RDF-Store. Pro-
ceedings of ISCW 2003.

[21] Halevy, A., Ives, Z., Mork, P., and Tatarinov, I. Scaling up the
semantic web: Piazza: data management infrastructure for se-
mantic web applications. Proceedings of WWW 2003.

[22] RDF Site Summary 1.0. http://web.resource.org/rss/1.0/.

[23] Trastour, D., Bartolini, C., and Preist, C. Semantic web support
for the business-to-business e-commerce lifecycle. Proceedings
of WWW 2002.

[24] DAML Services. http://www.daml.org/services/.

[25] OWL-S. http://www.daml.org/services/owl-s/1.0/.

[26] Handle System. http://www.handle.net/.

[27] W3C Web Services Activity home page.
http://www.w3.org/2002/ws/.

[28] Quan, D., Bakshi, K., and Karger, D. A Unified Abstraction for
Messaging on the Semantic Web. Proceedings of WWW 2003.

[29] Beckett, D. The design and implementation of the redland RDF
application framework. Proceedings of WWW 2001.

[30] Noy, N., Sintek, M., Decker, S., Crubezy, M., Ferguson, R.,
and Musen, M. Creating Semantic Web Contents with Protege-
2000. IEEE Intelligent Systems 16 (2), 2001, pp. 60-71.

[31] Dzbor, M., Domingue, J., and Motta, E. Magpie: towards a
semantic web browser. Proceedings of ISWC 2003.

[32] Saltzer, J., Reed, D., and Clark, D. End-to-end arguments in
system design. ACM Transactions on Computer Systems 2 (4),
November 1984, pp. 277-288.

[33] RFC 2616. Hypertext Transfer Protocol -- HTTP/1.1.
http://www.w3.org/Protocols/rfc2616/rfc2616.html.

[34] W3C Web Accessibility Initiative. http://www.w3.org/WAI/.

[35] Altschul, S., Gish, W., Miller, W., Myers, E. and Lipman, D.
Basic local alignment search tool. Journal of Molecular Biol-
ogy 215, pp. 403-410.

[36] NewsIsFree. http://www.newsisfree.com/.

[37] Haystack developer documentation site.
http://haystack.lcs.mit.edu/developers/.

[38] Wilkinson, M. and Links, M. BioMOBY: an open-source bio-
logical web services proposal. Briefings in Bioinformatics 3
(4), 2002, pp. 331-341.

265

