How to Make a Semantic Web Browser

Dennis Quan
IBM T. J. Watson Research Center
1 Rogers Street
Cambridge, MA 02142 USA

dennisg@us.ibm.com

ABSTRACT

Two important architectural choices underlie thecsgs of the
Web: numerous, independently operated servers speahmmon
protocol, and a single type of client—the Web bremwsprovides
point-and-click access to the content and sendiceshese decen-
tralized servers. However, because HTML marriesestrand pres-
entation into a single representation, end userofien stuck with
inappropriate choices made by the Web site desufrtesw to work
with and view the content. RDF metadata on the &&maveb
does not have this limitation: users can gain tiescess to the
underlying information and control how it is pretshfor them-
selves. This principle forms the basis for our SsinaWeb
browser—an end user application that automatidattates meta-
data and assembles point-and-click interfaces &@ombination of
relevant information, ontological specifications)dapresentation
knowledge, all described in RDF and retrieved dyinalfy from the
Semantic Web. With such a tool, naive users caimthegliscover,
explore, and utilize Semantic Web data and serviBesause data
and services are accessed directly through a $teredalient and
not through a central point of access (e.g., apprtew content and
services can be consumed as soon as they becoitablavadn this
way we take advantage of an important sociolodmale that en-
courages the production of new Semantic Web cobtergmaining
faithful to the decentralized nature of the Web.

Categories and Subject Descriptors

D.2.2 [Software Engineerind: Design Tools and Techniques
programmer workbench, user interfaces.

General Terms
Human Factors, Design

Keywords

Semantic Web, RDF, user interface, Web Servicesmfbrmatics

1. INTRODUCTION

1.1 Motivation

The World Wide Web revolutionized the Internet bypyiding a

number of mutually reinforcing capabilities. HTTReted a simple
standard by which information could be fetched framy Web

server. HTML provided a uniform syntax in which fisbers could

present information that would be rendered in hureaable form
in a Web browser. And URLs gave a way for any Wagepto refer
to any other Web page, regardless of its locafl@ken together,
these capabilities meant that a lay user could Issaty browse the

Copyright is held by the author/owner(s).
WWW 2004, May 17-22, 2004, New York, New York, USA.
ACM 1-58113-844-X/04/0005.

255

David R. Karger
MIT CSAIL
200 Technology Square
Cambridge, MA 02139 USA

karger@theory.lcs.mit.edu

entire space of Web information, viewing informatiwithout con-
cern for location and using a simple point andkciitterface to
navigate from any Web page to others that it refaze.

Though substantial, the powerful information accegsability en-
gendered by the Web has its limitations. Througtugte of HTML
and HTTP servers, the Web demands the productiocootent
already formatted for presentation in a particileman-readable
fashion. Implicit is the idea that a publisher vl able to figure out
the right way to present its information to endrssé should be
clear, however, that the informati@onsumer will often have the
best sense of what is important in the fetchedrinébion and how
best to make use of itEvery Web browser offers its user some
limited ability to override presentation characttics such as the
font and font size. Stronger evidence of the needlfents to con-
trol the presentation of information can be seethédevelopment
of HTTP content negotiation standards, in whichdlient describes
its capabilities and hopes that the server wiliveelsomething that
can be presented reasonably [33], as well as tHe Aldeessibility
Initiative’s attempt to develop guidelines for tired presentations
of Web pages so that they can be used by peoptedigabilities
[34]. Finally, efforts such as NewslIsFree show tm&ans as ex-
treme as screen scraping are employed in ordenables Web site
content to be viewed in alternate ways (in thiecas RSS news
feeds in news tickers, news alert tools, etc.).[36]

The Semantic Web offers a particularly extreme etarof differ-

ently-abled clients: nonhumans. In the Semantic Wedon,

autonomous agents will be able to pull informatfam the Web
and manipulate it on behalf of their users. HTMklesarly a terrible
data presentation language for such applicatiatssvisual markup
hides the semantic content that agents actually about. This
problem has motivated the development of RDF, guage for
describing semantic information in a machine-retfdym without

the distraction of presentation markup.

We argue that beyond its support for automatiom Sémantic Web
lets us dramatically improve the way peogilectly access informa-
tion. The Semantic Web gives us the opportunitgdparate con-
tent—the proper purview of the publisher serving theiimfation—
from presentatior-an issue in which the end user or their local
application, aware of the uses to which they atérmuthe informa-
tion, should have substantial say. The fact tHatimation is seman-
tically marked up, instead of just being formatteddisplay, makes
it possible for end user applications to make ligtht decisions on
how to present the information based on the puspfusenhich it is
being used. One application may show more detéigg dnforma-
tion object, another less. One may present visuialyattributes of

1 Arguably, this is an application of the classid«o-end argument
[32] that lower levels of an application should r@ making
choices best left to the top elements that undetstae overall
goals of the system.

an object, another focus on textual or audible ex@ntAn applica-
tion accessing a city description for the purpasfesavel planning
can present entirely different information from dmeing used to
prepare a history report or evaluate a businessroppty.

1.2 Approach

In this paper we describe Haystack, an applicatiah can be used
to browse arbitrary Semantic Web information in mulce same
fashion as a Web browser can be used to navigat®/dgb. Hay-
stack aggregates RDF from multiple arbitrary lanatiand presents
it to the user in a human-readable fashion, witimtpand click se-
mantics that let the user navigate from one pidécgemantic \Web
data to other, related pieces. Haystack's presentaf the informa-
tion is controlled by presentation “recommendatiomsuch like
cascading stylesheets, that are themselves desénbRDF; such
recommendations can be issued by the content dmrvean also be
made by context-specific “applications” that untsmd how the
information can best be presented to meet a pltioeed or com-
plete a particular task, or even by a third paffgrimg helpful view-
ing advice. Finally, to support information gatingrand structuring,
Haystack offers a rich model of collections. Ussan build collec-
tions of links to Semantic Web objects with mucé game ease as
they presently have creating bookmarks; at the Stimme Hay-
stack’s rich presentation layer can display thoskedions as
thumbnails, Web pages, taxonomies, or various ofie@rs that can
help the user exploit the collections once created.

Overall, our approach is based on the principlé ¢batent can be
broken down into its key elements, i.e., data, ergion recom-
mendations, and functionality, and that these altsnean be indi-
vidually published and consumed by users. Indiidiadéa, presen-
tation styles, and pieces of functionality are dbable in RDF and
can be incrementally pieced together by Haystatteatlient end to
form custom user interfaces and functionality fartigular indi-

viduals and applications.

We believe that our approach &mantic Web browsing offers
several key benefits that motivate its adoptiondorariety of end
user applications. For example, separate piecegoniation about
a single resource that used to require navigatimough several
different Web sites can be merged together ontcsorezn, and this
merging can occur without specialized portal sgegsoordination
between Web sites or databases. Furthermore, egiajiplicable to
some piece of information need not be packagedtiaNeb page
containing that information, nor must informatioe bopied and
pasted across Web sites to access services; insezadntic match-
ing of resources to services that can consume taenbe done by
the client and exposed in the form of menus.

The separation of content from presentation meamerk the bar to
publishing, since individuals can now produce “unfatted” se-
mantic information, relying on end user clientsfigure out good
ways to present it. Conversely, users can pubkshways of look-
ing at existing information without modifying theiginal informa-

tion source.

The existence of a good Semantic Web browser nsaysgleed the
proliferation of the Semantic Web. Much has beedaraf the po-
tential for the Semantic Web to support powerftimation inter-
change and automation, but to date the amountcekaible Seman-
tic Web information remains rather small. Argualitye rapid, or-
ganic growth of the Web was due in large part éuhiquity of the
Web browser—a universal client that provides immatedaccess to
new content as soon as it comes online. This ylidit new Web
sites to be instantly available to users is a k&yjosogical driving

256

force that should not be underestimated: it engagaaumerous
individuals to produce content, in the knowledgat tinere will be
easy access to it. An effective Semantic Web browss allows
users similarly instant access to newly publisheth&tic Web
information may likewise motivate individuals tolpish Semantic
Web content.

The Haystack system, which embodies the ideasiledcin this
paper, is an Open Source RDF-based information geament envi-
ronment [1] [7]. Haystack is written in Java andbiglt into the
Eclipse platform [6], providing a stable basis éotension writers
(another important feature of the Web browser).cfeanshot of
Haystack appears in Figure 1. To demonstrate thaipality of our
approach, we have applied Haystack towards an bamotarget
domain for the Semantic Web—bioinformatics, an arela with
various kinds of resources (protein structure dgagtic sequences,
published papers, etc.), metadata connecting thechservices that
operate on these objects [38]. Just as anyoneromrsé and publish
to the Web without understanding how Web servenkwmnaking
the Semantic Web accessible to scientists who »gerts in their
domains but not necessarily on the supporting tdolgy is a cru-
cial first step to expanding the reach of the Seimakieb. Further-
more, bioinformatics is rich with cross-linked infeation, making it
well-able to take advantage of the cross-linkiqgesentation that is
central to the Semantic Web. In this way it isiinto many other
domains, including personal information managemetiter re-
search areas, and even business process integfitiaily, bioin-
formatics provides us with real, large data souticasare expressed
in RDF via the Life Science Identifier (LSID) stard [5].

1.3 Outline of the Paper

The paper starts off with a summary of importatstesl work. Then
we characterize our approach in a bottom-up fashtost we de-
scribe the critical elements of a resource namihgmme: universal-
ity and the ability to retrieve metadata. Next vigcdss our strategy
for managing connections to disparate RDF repasg&@nd various
approaches for federating metadata that take ctouat the diver-
sity of store implementations and network inefficies. We de-
scribe Haystack’s support for LSID and HTTP URIa @i caching
metadata store and show why universal retrievahportant from
the perspectives of both automation and usabiifierwards, we
introduce Haystack's user interface paradigm amdvibualization
ontologies that support it. We talk about colleasie-a powerful
RDF-based mechanism for grouping related itemsthegereflect-
ing the frequent use of Web pages to aggregatedellems and
building on the notion of customization introdudeg bookmark
managers in the Web browser. Furthermore, we show dne
might apply Haystack's user interface techniquesetwice discov-
ery and invocation. We tie up our discussion withexample of
Haystack being used to browse several bioinformatitabases and
build up a collection of interesting items. Finallye discuss practi-
cal issues of publication to the Semantic Webt tingerence, and
dealing with ontological mismatch.

1.4 Related Work

An important distinction between the approach pregk in this

paper and other Semantic Web metadata visualizafimnoaches
can be found in examining who maintains controlravieat meta-
data is shown to the user and how this metadgbeesented. For
example, with a semantic portal (e.g., SEAL [2B@mantic Search
[8]), it is the administrator who aggregates semalhy-classified

information in a centralized location for dissentioa to users.
Because these portals often use Web servers tibdist their in-

formation, server side HTML templates are typicaipployed to
convert metadata into a human-readable presentdtiensemantic
portal approach has the advantage of maintainglslitce all of the
presentation logic and choice of data sources @wégtred in one
central location. Furthermore, Semantic Web infdionacan be
consumed by users of the existing Web; end usénsagaess to
important metadata without needing to be aware R is in-
volved.

Unfortunately, the dynamicad hoc nature of the Web—anyone
being able to author a piece of information thainnediately
available to everyone—is thus buried within ostelgsmonolithic
aggregations under centralized control. In pawicuif someone
wishes to publish information reflecting a new sohe no portal
will be able to present it unless and until thet@oadministrator
maodifies his or her display system. This model distvacts from the
free contribution of content because it forces @tet producer to
either set up or locate a specialized semanti@aptwrthost the new
content.

On the other hand, if users are allowed to direatigess informa-
tion sources, then we could return content prodadt its powerful
decentralized behavior. Users would gain immediateess to the
growing range of available RDF-based data and asviEnabling
users to feel the network effects of the Semantb’@/expansion is
crucial to gaining greater acceptance of the Seémavieb and its
potential to enable agent-based automation.

Although the effective separation of content fromgentation might
conceivably be achieved using a properly desigredes that
fetches content and presentation from outside wiesded, the
decision to eliminate the centralized administratid presentation

knocks out the main argument for a server modstead, we have
chosen to implement our Semantic Web browser aspalication
running on the user’s local machine because imiplsr to imple-
ment, is more scalable, and provides a higherifjdaser interface
than an equivalent server-based setup.

Other systems exist for visualizing RDF metadaga thke the form
of end user applications. These systems commonplognauto-

matic form generation techniques seen in deskttgbeae applica-
tions; a good example is Protégé [30], an ontoledior. Such
systems are capable of taking a schema or ontalefigition and

presenting specialized, key-value pair-based fdomthe user that
allow instances of classes in the ontology to eated, modified,
and queried. This is one approach used by ourintegface frame-
work, which also incorporates human-computer iatarfinspired
points of flexibility, such as the ability to groygpoperty fields into
lenses and to allow for multiple styles of prestoita(views) for

instance resources.

Other applications take another approach to vizatiin that is

inspired by the notion of the Semantic Web beingesension of
the existing Web. Systems such as Magpie augmantlatd \Web
browsers with the ability to act on resources dieedrin Web pages
and to find resources semantically related to a Pége [31]. Tools
such as Annotea allow users to embed and read REdted tex-
tual annotations in Web pages from a Web browdeif [primary

difference between these approaches and the ongbéesin this

paper is that we are providing support for visuatjZRDF metadata
in its own right, not just the metadata connectingembedded in
Web pages. In other words, Haystack iSemantic Web browser,

not just a Semantid/eb browser.

B Haystack - urn:Isid:ncbi.nim.nih.gov.lIsid.i3c.org:genbank:nm_001240 -

Ele Edit Mavigate Search Project Haystack Run Window Help

Sle s a0 DM |[S-|| 2[%

'l urn:lsid:nchinim.n

|
@j i
% Commands
File away
Rename 3
iew in QMol Bl Pubmed
Search using % Cooperative interaction between HIV-1
MNotQuiteABlast regulatory proteins Tat and Vpr modulates Name:

transcription of the viral genome.

- Cydin K functions as a COKS regulatory subunit
and partidpates in RNA polymerase 11
transcription.

. Identification of multiple cydin subunits of
human P-TEFb,

© Interactions between human cydin T, Tat, and
the transactivation response element (TAR) are
disrupted by a cysteine to tyrosine substitution
found in mouse cydin T.

% Myc recruits P-TEFD to mediate the final step in
the transcriptional activation of the cad
promaoter,

- Optimized chimeras between kinase-inactive
mutant Cdkd and truncated cydlin T1 proteins
efficently inhibit Tat transactivation and human
immunodeficiency virus gene expression.

13 more items (19 total)

-3

Relevant contexts
Length:

No suggestions

Topology:

Division:
Available views

=

Date Last

Debixivicy Modifizd:

Explore relationships
Show all information
Web browser

Source:

Organism:

Taxonomy:
External Reference

E Seguence

Vs

)ﬂﬂl@(ﬂ urn:lIsid:ncbi.nlm.nih.gov.Isid.i3c.org:genbank:nm_001240

=2 Sequen_ce Summary
Genbank Locus:

Strandedness:

Date Created:

/ T
o *a

& Active Tasks b4

\; Interesting stuff

% Interactions between human
cydin T, Tat, and the
transactivation response
element (TAR) are disrupted
by a cysteine to tyrosine
substitution found in mouse

|2

Mone specified; dickhere toadd = cydin T,

¥ Myc recruits P-TEFb to mediate
t-0012% the final step in the
transcriptional activation of
64 the cad promoter,
le-stranded L Optimized chimeras between
S kinase-nactive mutant Cdkg
i i and truncated cydin T
sl proteins effidently inhibit Tat
PRI transactivation and human
immunodeficiency virus gene
20-DEC-2003 expression,
} Navigate to an item of interest, then
19-MAR-1999 click here to add

urnzlsidincbinlm.nih.gov.lsid.i3c.or
to Interesting stuff

= » Open Interesting stuffin a new
windaw

Homo sapiens (human)

Eukaryots; Metazoa; Chordat&

Homo sapiens

» I'm done working with
Interesting stuff

4 2

Starting Points | Active Tasks |

Figure 1. Haystack displaying mRNA sequence data n@ed by LSID from multiple sources (side: anad hoc collection of related
resources collected by the user; thick box indicaseview selector control).

257

2. RESOURCE NAMING SCHEMES

A necessary piece of infrastructure for the SeroaMeb is an ap-
propriate shared naming scheme. There seems tqyeeesal con-
sensus around the ultimate arrival of some commBh s¢heme,
with some resolution layer that lets one fetchoalsome informa-
tion associated with a given URI. But this conssenbas yet to
evolve into a universal standard. In the meantivagipous groups
have attempted to jump-start universal naming Hinidg naming
schemes such as handles [26]. In this paper wepgitEular atten-
tion to Life Science Identifiers (LSIDs), a nhamisgheme being
pushed by life sciences informatics communities f6]arge num-
ber of biological resources, such as proteins,igigd papers, and
genetic sequences, are already named by LSIDs.URes, LSIDs
are URIs that contain a field that can usuallydsolived in DNS to
locate a server that can be contacted to resotegi@ie information
about) a given LSID. LSID servers can be accessed)@a SOAP-
based Web Services protocol to retrieve octetsoamiDF-encoded
metadata.

3. ACCESSING RDF SOURCES

Above URIs is the next important layer of the Seticaveb layer

cake—distributed pieces of RDF metadata. As with distributed

body of information, such as a distributed filetegs much infor-

mation of interest is stored remotely, and one si@fficient means
for tapping into the network. To achieve the gdahliowing users

to type in any URI and be immediately able to stevant informa-

tion, a simplistic approach would be to assume dlidfRIs have a
server field and to have the browser contact thiates to obtain the
chunk of all RDF statements related to the resoneseed by the
URI. This simplistic approach is actually the onlepted by LSIDs
and the subset of HTTP URIs that is actually hobte@eb servers
that can return RDF metadata today; the impliguagption is that
these URIs have an authoritative server that asayal be contacted
as a useful starting point.

The per-URI RDF download approach is not alwaysctima.
Sometimes, all that is needed is a focused answer complex
query, so it would be more efficient for this quasyoccur where the
data is located. Also, unlike the Web, the Semavteb allows
parties other than the authoritative server to igestatements
about resources, and these metadata residing @mageservers
should be accessible. For these reasons, many &miSitories on
the Semantic Web, such as Annotea [9], TAP [8], Joski servers
[16], can resolve queries over arbitrary resousggagen to fairly
expressive query languages. On the other hand, RBRyreposito-
ries are simply RDF files sitting on an HTTP or F3&ver. In this
case, it may be desirable to download the enteeafid to host it in
a local database capable of answering queriesdier @ minimize
network traffic.

For Haystack’s implementation, we have chosen tdeinthe vari-
ous kinds of RDF sources mentioned above witlRRR store ab-
straction [29]. Specifically, Haystack’s notion of an RDFor& al-
lows specific forms of queries and optionally akoRDF statements
to be added and removed. Furthermore, HaystackE &bre ab-
straction supports an event mechanism: componantde notified
when statements matching specific patterns aredaider removed
from the store. Haystack includes a default RDFestmplementa-
tion built on top of a database and an instantiaticthis implemen-
tation that we refer to as the “root” RDF store,ighhis used to
locally store metadata created by the user (weusisases for this
store throughout this paper). To support RDF sausoeh as LSID,
Annotea, TAP, and Joseki, one can imagine implemguat virtual

258

read-only RDF store adapter that accepts quertktranslates them
into the appropriate protocol understood by a giRIDF query

service. In this fashion, new RDF sources can bdena@ailable to
Haystack by providing plug-ins.

For network efficiency reasons, we have chosereadsto wrap

many of these RDF sourcesashing RDF stores—ordinary local

RDF stores that cache data from another sourcthelrcase of a
read-only RDF file on a Web server, the procesiraghtforward:

a blank RDF store is instantiated and the RDFidilenported into

it. In the case of a query service, the wrappingcess works as
follows. When requests for information are madeiregahe store
(e.g., by the user interface), they are resolvatgube data already
in the store (which may produce empty result ettsere are unre-
solved URIs); meanwhile, in a background threadesmived URIs

mentioned in the query are resolved against theycgezvice, and
the new metadata is added to the store. As newniafn is incor-

porated into the store, events are fired, notifigagyices, user inter-
face components, and other listeners of the fattupdated infor-
mation satisfying their queries is available. Whikching and an
event mechanism are not necessary to create a énothigy do

provide a useful way to implement asynchronous diaading and

rendering of information to the screen.

For example, built into Haystack is a caching RBRffesthat handles
LSID URIs. When a user requests to see informatioran LSID-
named resource, he or she initially sees a blagl,paut as the
background thread resolves the LSID, the RDF dagsgithe re-
source incrementally pops onto the screen (muehititages back-
ground-loading in a Web browser). In this fashiosers can enter
URIs (in this case LSIDs, but metadata-backed HTJMs are
similarly supportable) they find in papers from titerature, e-mails
from colleagues, or maybe one day even advertissnaerd bill-
boards, and the system takes care of locating ¢essary server
and retrieving the necessary metadata.

Furthermore, Haystack supports metadata coming fnauttiple
RDF sources at once with the notion of a feder&Bd store: a
store that exposes an RDF store interface butildigts queries
across multiple RDF stores. There is much worlheliterature on
federating RDF sources together [21] (especialiyufe in portals
[2]), but these efforts are mainly focused towaedsironments in
which a database administrator or other expertésgmt to set up
connections to data sources and to define ont@bgiappings. We
focus on the problem of providing end users wittissutomatic
database federation while still giving a fine lewélcontrol over
which repositories are being used for those whal itesince many
users want to know where information is coming frionorder for
them to form valid judgments on its trustworthinassl usefulness.
(The issues of trust and ontological mapping aseusised further in
Section 8.) Part of the job of federating datasresth the user inter-
face, which is discussed in Section 4.

Initially, Haystack’s root RDF store and the LSIBching store are
federated together. For those users who need rooteot; the In-

formation Sources pane shows users the list of freali RDF

sources, i.e., the RDF sources that have beenatedeinto Hay-
stack. Users can easily mount additional RDF stthraisspeak An-
notea’s RDF store protocol [9] or RDF files thatsexon the Web;
support is being added to enable other protocoish &5 Joseki
[16]. For users who wish to explore developing tfoe Semantic
Web, we feel being able to mount a set of known RDE&rces in
order to begin browsing and “playing” with the canédl data set is
an intuitive way to get started.

4. PRESENTING RDF TO USERS

Haystack’s user interface has the challenge ofigiry a sensible
presentation to the user given the metadata alaiialit. As a basic
paradigm, we have chosen to center the presentatimmd one
resource at a time, just like the Web browser mddefact, Hay-

stack's user interface works more or less like & WWewser: users
can type URIs into the Go to box or click on “hylpes” shown on

the screen to navigate to resources. We also @dadk, forward,

and refresh buttons on the toolbar. Of coursekerdi\Web page, a
Semantic Web resource has no predefined presentspiecifica-

tion; instead, the metadata describing that resoomast be lever-
aged to generate an intelligent presentation.

Ontologies and schemas are specifications for yssofiware in
determining how to best process metadata writte¢hese specifica-
tions. These specifications are incorporated inaysthck when an
unknown RDF class is referenced by the resourcegbeiewed

(e.g., by andf:type statement) and the URI of the class resolves to

a piece of RDF containing this specification, ascdbed in the
previous section. However, typical schemas offée linformation
regarding the best means of presentation. For dearapcalendar
can easily be characterized by a DAML+OIL ontoldgyt a generic
display (usually a key-value pair editor or a dieecgraph display)
is unlikely to be intuitive to those unfamiliar withe abstract no-
tions of RDF. We argue that to support appropieiesentation of
Semantic Web information to end users, it will leeessary to de-
fine an ontology for describing presentation knalgke, such as
which are the important properties of a class. Wlrefer to this
ontology as VOWL.: the View Ontology Web Languageystack
uses VOWL in addition to the RDFS and DAML+OIL soie
description languages in an effort to bridge the lgetween a user's
display needs and the underlying data model.

In this section we discuss what presentation gagldtaystack can
derive from standard ontological specifications argat else must
be provided by VOWL to produce a better presemidiio a given

resource. This additional presentation knowledgiself describ-
able in RDF and can be added to the RDF-encodedlogital

specifications returned when the class URI is vesblRather than
giving RDF/XML examples, we have chosen to use éyel ex-

planations and diagrams in this section to expth&m important
concepts in Haystack’s user interface; specificslwa found at the
project Web site [37].

4.1 Views

There is no single way a generic Semantic Web resamust ap-
pear in a browser as there is with an HTML pagdaa, it is often
useful to look at a resource in many different ways a result, we
have abstracted the notion of multiple presentasigtes into the

concept ofviews. For any resource, multiple views exist; we focus

on one particular view in this section, which shawstadata as a
segmented form. Other views are discussed lathidrpaper. Users
are given control over which view of a resourcey/tvant by means

of theview selector, seen in Figure 1. More details on Haystack’s

view mechanism can be found in previous papers aystdck [1]

(3.
4.2 Titles

Perhaps the most basic view of an object is a simgference to it
on the screen by a human-readable name. The wtifafiback
name for any object is its URI, but URIs tend rbe meaningful
or memorable for humans. Insteadddftitle or rdfs:label proper-
ties are provided, Haystack will use one of theislof these prop-
erties, giving higher priority tdc:title. At the schema level, one can

259

explain how to title all resources of a given clegsannotating the
class with avowl:titteSourcePredicate property, telling Haystack
which property contains a literal suitable for @sethe resource’s
title. For example, in Haystack, the title sourcedicate for the type
mail:Messageis mail:subject.

4.3 The All Information View

The All Information view is the default view shovior resources
with non-HTTP URIs if Haystack has no further knedde of how
to display the resource. (As a heuristic, resounzesed by HTTP
URIs are, in the absence of an RDF type specificahown in a
Web browser view.) The All Information view rendeogiether the
lenses that apply to the types of the resource beinglalsgl. A lens
is defined to be a list of properties that makessepeing shown
together. The reason for defining lenses is thatetitould poten-
tially be an infinite number of predicate/objecirp&haracterizing a
resource; lenses help filter the information begimgsented to the
user. Lenses are shown as panels that display fagment of
information about a resource. When a new applicigis that can
display further information fragments is defindak All Information
view will automatically incorporate it. An exampdé a customized
version of the All Information view is shown in ki 2; it contains
three lenses specific to flights and two that acadly applicable.

£ Haystack - Flight to San Francisco - Eclipse Platform
Fle Edt Navigste Search Project Haystack Run Window Help

I3 G2 dONM K- |2 |% e -9 -
=

£ Flight to San Fran X | l
| S %_----_-gﬂ---d

o
| Flight to San Francisco

O Flight Information
Name: ight to San Francisco x:

time:

El Weather forecast for destination

Weather for San Francisco, CA
(94127)

Last updated 11 AM PST 16 DEC 03
Sunrise 7:18 AM; sunset 4:52PM

Airine: ABC Arines

Fiight 123
number;

Grigin: Boston

El Contacts residing at the destination

S Bob Smith
S Carol Mclntre
S Ted Johnsan

Destination: SF

All Properties

Standard Properties

Figure 2. A flight itinerary shown in All Informati on view.

The three specialized lenses, Flight Informatiomnt&cts residing at
the destination, and Weather forecast for destinatire specialized
lenses for the Flight type. The Flight Informatiens is straightfor-
ward to define in that it is simply a list of RDIFoperties. In con-
trast, the remaining two flight lenses make useidtial proper-

ties—connections between one resource and anotheratbanot

materialized in the RDF representation for efficiemeasons. To
motivate the need for virtual properties, it is orant to bear in
mind that a significant amount of Semantic Web ohetiz originates
from relational databases whose schemas were @ésigith the

objectives of consistency and optimized access imd.mOn the

other hand, a user may also care about propeniesate derivable
from or are redundant with properties already gikgrihe schema
or ontology, such as Contacts residing at the mhgin. For this
reason, Haystack allows virtual properties to bitndd and used in
the specification of lenses. It is, of course, fiesto implement
virtual properties using an inference engine; irydtiack, an ex-

tremely limited form of forward-chaining inferenée employed to
support virtual properties.

4.3.1 Defining Lenses

A lens is defined by specifying a (DAML+OIL) listf properties.
When Haystack renders a lens to the screen, it snage of infor-
mation that likely already exists in the ontology:

e The human-readable names of the properties (e.g.,
travel:origin) are specified bydfs:label properties in the
schema, as described in Section 4.2.

* Referring to the screenshot in Figure 2, one netibat
some fields have an Edit button and some do nope?+
ties that are defined to have tygaml:UniqueProperty
are assumed to be single-valued, and Haystacknaill
display the Edit button in those cases. (UsesHerEdit
button are discussed later in Section 6.1.)

* Haystack also uses knowledge of whether the priepert
being displayed have thdaml:DatatypeProperty or
daml:ObjectProperty types to determine whether to
show a text field or a list of resource hyperlidisplayed
using their titles according to the rules givenSiection
4.2), respectively.

For Haystack to know which lenses are availableafgiven class,
the vowl:hasLens property of the class is used. When the All In-
formation view is displayed for a resource, it deerall RDF
sources for the RDF types of the resource and adetms all of the
lenses that correspond to those types. Two sdenisgs are implic-
itly associated with all types: the All Propertiens shows every
single property and value associated with the mesouhile the
Standard Properties lens shows a bundle of prepdrm the Dub-
lin Core ontology, such as title and author/creatdrich seems to
be useful for a wide variety of types.

4.3.2 Defining Virtual Properties

Contacts residing at the destination and Weathrecést for desti-
nation are examples of lenses involving only orgperty, here a
virtual property. Virtual properties can be defineda number of
ways, but perhaps the simplest is in terms of afF BE2ph match-
ing pattern. For example, the Contacts residinthatdestination
virtual property is defined by the thick dottecdlias follows.

Flight
itiner-

Destination

A 4

Lives in
L 4

L 4
Contact residing atve .
destination (in-
ferred)

The Weather forecast for destination property carthbught of as
having a literal value that is defined in termsha result of a Web
Services invocation, which involves scripting. Adead support for
defining virtual properties and rendering formattext is described
in the Haystack documentation on our Web site amather papers
[1] [7] [37].

260

5. COLLECTIONS

There is a diverse spectrum of different kinds ags on the Web.
Even so, one notices that a large fraction of Welepreal estate is
devoted simply to the task of listing links to athéeb pages. Good
examples include search results, product listiteggnomical classi-
fications (e.g., the Open Directory Project [18}gividuals’ publi-
cation lists, and RSS news feeds. We see thissasial phenome-
non not specific to HTML and anticipate that then&atic Web will
be similarly populated with purposefully-gatheredllections of
related resources. In fact, some of the above deanfipm the ex-
isting Web today are already part of the Seman&b Vs the Open
Directory and RSS 1.0 [22] Weblog feeds are botsciileed in
RDF.

As evidenced by the appearance of search resukniark, and
history panes in Internet Explorer and Mozilla,lections deserve
baseline support built into the browser. But howwt they be
displayed? One finds many examples of a user vgstinsee the
same underlying collection in different ways (eayproduct listing
sorted by price or rendered as a page of thumbnades, etc.). At
present, such multiple-view functionality is offérat the server end
or by Web-site-specific JavaScript. Individual sséieb pages,
often containing collections, do not even havedbmain-specific
multi-view support offered by more sophisticated b\&tes: one
will likely not be able to view them as hierarchies multiple col-
umns, or sorted by date. We can correct this proloie the Seman-
tic Web by using the RDF description of a collectto generate
multiple different views from within the browser.

5.1 Ontological Specifications for Collections
From an ontological standpoint, a collection—a uese that repre-
sents a set of resources—is conceptually simple:retationship,
often called “member-of’, ties a collection tontembers. However,
there are many variations on this pattern. For @&none can also
choose to model collections with added structusePAML+OIL
and OWL do with Lisp-style lists. One also has melngices on the
kinds of restrictions placed on membership in aigicollection
class. One simple baseline case is to have nactiests placed on
the kinds of resources that could belong to a cibdie (in
DAML+OIL, we would say that thedfs:range of the membership
predicate isdaml:Thing). The resulting arrangement—the hetero-
geneous collection—turns out to be extremely paviess we dis-
cuss later. Haystack predefines a heterogeneolsctomh class

called hs:Collection and an unconstrained membership predicate

hs:member. Naturally, more specialized, homogeneous cotesti
are useful for other applications, and these a®@ supported by the
system.

5.2 Browsing Collections

Haystack offers many collection visualizationspwaihg the user to
choose one depending on the particular task at. hEtmel default
view simply shows a list of the resources in thikection. The cal-
endar view shows the resources on a daily caleviéar, using
date/time information encoded in tlle:date predicate. (In Hay-
stack, a calendar is not a specific type; rathées & collection that
happens to contain resources with date/time infdoma The photo
album view shows the members of the collectiorhasnbnails, or
as tiles with the name of the resource inside tifitanbnail is un-
available (e.g., for resources that are not imadésplly, the Ex-
plore relationships between collection members \é&aws prop-
erty relationships among the resources that belorige collection
as a labeled directed graph; the arcs shown a@nggedescribed by
some appropriate lens. For example, Figure 4 skoedlection of

people in terms of the Human resources lens, atetsncludes the
“manages” property.

Bl Haystack - Weather for Cambridge, MA (02142) -

Weather for Cambridge, MA (02142}

Weather for Cambridge, MA 2
(02142)
Last updated 12 AM EST 13 NOV 03

Heyslabu o Bage Sunrise 5:32 AM; sunset $:24PM

| Weather for Cambridge, MA (02142)
Yahoo!

overnight | doudy with showers developing
after midnight...heavy at times, areas of dense
fog. temperatures steady 40 to 45 inland and 44
10 49 near the coast. southeast winds increasing
to 10 to 15 mph,

thursday
morning... then partly sunny with & chance of
showers from late morning through the
afternoon. heavy at imes. colder and windy.
temperatures steady or slowly falling into the mid

" showers early in the

40s. south winds 10 to 15 mph becoming west
late in the morning and increasing to 20 to 30
mph, chance of rain 80 percent.

thursday night " doudy with a chance of
rain or snow showers early in the evening...then
a chance of snow or rain showers from late
evening into the overnight hours, windy. lows in
the lower 30s. west winds 20 to 30 mph, chance
of precipitation 30 percent.

I'
Figure 3. Browsing a collection in double pane modghick box
indicates preview pane controls).

Collections are so pervasive that they appear imyrabghtly differ-

ent representationssets, ordered lists, directories, etc. In a big
picture sense these are subclasses of the catledties. We want a
way to ignore the superficial differences in reprgation and focus
on their fundamental “collectionness”, letting seranipulate them
as collections. Haystack provides the developeh wabls for ex-
plaining how a given class can be treated as aath; this allows
our collection views to be applied to things lik&NL+OIL lists
and file directories.

<

Additionally, the browser can be placed into onéhoée modes to
facilitate browsing through the members of a ctillec These
modes are enabled by means of three buttons otaktzar, indi-

cated in Figure 3. The single pane mode is theultediad mimics
the behavior of the Web browser: when users clickhygperlinks,

the pane navigates to the new page. The doublegmah&iple pane
modes allow a user to keep a collection on screlgife wiewing

members of the collection at the same time. (Highenbers of
panes can be set up through a dialog box.)

Figure 3 shows an example of browsing a collectthie user's

favorites collection) in double pane mode. Whenuber clicks on
the “Weather for Cambridge, MA (02142)” link on thedt, instead

of the entire window navigating to the weather ¢ast, the second
pane on the left is used to display it. Similaity,the triple pane
mode, hyperlinks activated in the second pane appeéhe third

pane, and so on. Incidentally, it is worth notimgtt Haystack’s
multi-pane functionality has been extremely usdéul browsing

collections, but any resource can be browsed wmigh rhechanism.
For example, if a user clicks on a link inside feg All Information

view of a resource when in double pane mode, tlgettdink’s re-

source will appear in the second pane.

5.3 Collections as a Bookmarks Facility

In addition to downloading Web pages and rendddmiylL to the

screen, Web browsers also play an important benafterlooked
role in helping users personalize portions of treb\Wost important
to them [10]. All of the major Web browsers includeokmark

261

facilities (of varying degrees of quality) that leters group related
pages into labeled, usually hierarchical contaireaited folders.
Some browsers let users export these bookmarktiéea into new
HTML pages; some, such as Lynx, store users’ bodisnan
HTML files to begin with. It is not uncommon to firhomepages
whose main purpose is to hold nicely formatted beenks. The
important point here is that the generic notiomaking collections
of Web resources is fundamental both to the phibg®f having a
Web and to a user’s own ability to keep track atipos of the Web
of personal interest.

Users can create their own local heterogeneousctiolh resources
by using the Create collection operation. Theséecibns can be
used to group resources together based on someawtity) such

as project, task, RDF type, similarity, or perhapsn a trait not
easily articulated but highly intuitive to the u§&2]. Furthermore,
users can drag and drop items they encounter Whil@sing into

collections; the metadata associated with the atadie is stored in
Haystack’s root RDF store.

There is an additional important usability bengditmodeling col-
lections (including bookmark listings) in RDF. lnch a model,
there are no infrastructural reasons for prohigitilembership of a
resource in more than one collection at once. mesfolder sys-
tems, such as the Windows file system or many é&-ama book-
mark managers, it is difficult to manage bookmdHet are placed
into multiple collections at once. But this is parily a problem
with the view rather than the underlying data modker studies
have shown that there is significant value in bebge to file re-
sources into multiple collections at once rathanthaving to am-
biguously choose between collections [12]. ThusHaystack we
provide views supporting easy multiple categoraratihat can be
applied when appropriate [11], as well as otherenstandard views
that emphasize the hierarchical/taxonomic aspefctsoltections.
Each is useful at different times, and each caappiied to the same
collection.

6. SEMANTIC WEB SERVICES

Another large part of the Web consists of form-eini\services that
let users submit requests to Web servers. Like Méth pages,
these service forms are largely meant for humaswoption. Addi-
tionally, services (e.g., purchase an item) arallysserved off the
same Web site as the data meant to be consumethbgervice
(e.g., items being sold on an e-commerce Web &i@hg a service
from one Web site on data from another involvestaof manual
effort, such as copying and pasting part numbartess the two
Web sites have a back-office arrangement in place.

With the growth of Web Services, many of these HTkbkm-
driven services are being exposed in a machinessitée fashion
[27]. As with content, we believe that servicesgeilescribed in a
machine-readable fashion can play a role in impigp¥he user ex-
perience. At present, standard Web Services désasp such as
those in WSDL format [17], only provide relativéty-level details
on how to connect to services. For example, aetiiat purchases
an item may be described as accepting two stringnpeters—the
expectation is that a developer, writing tools thatess the service,
will read documentation describing the semantidsoef the service
should be invoked. Some researchers have beguangider the
possibility of agents accessing Web Services autounsly. These
services will need a more semantic descriptionhef gervice pa-
rameters, e.g., that the two parameters above redact ID and a
credit card number. Services that are charactenizéetrms of what
they do and what kinds of resources they operateatimer than in

terms of the low level data types involved, haverbdubbed Se-
mantic Web Services [23].

As with content, we believe that services descrilmed machine-
readable, presentation-free fashion can also ptajean improving

direct human interaction with information. When véses are

marked up with semantics, we can build interfated belp indi-

viduals locate the appropriate services to invakeaf given task,
that help users fill in the necessary argumenthéoservices, and
that support naive-user customization of the sesvfor the users’
OWN purposes.

There are only a few drafts of standards availéedescribing
Semantic Web Services, such as DAML-S [24] and C8V[25],

none of which have been adopted formally by anydstads body at
the present time. As a result, Semantic Web Servaze even
scarcer than the Semantic Web metadata and resotlreg are
designed to consume. Nevertheless, we wish to dieame how
services would be incorporated into a Semantic Welwser, given
the importance of the analogous HTML form-basedices to the
existing Web.

Although not many Semantic Web Services exist yettfe wild”,
all of the actions that a user can take in Haystaukh as menu
commands, are actually implemented as a kind aflesimethod
“mini Web Service” called amperation. Operations are pieces of
functionality that take parameters and return set@lues, and they
are used in Haystack to implement commands in ke interface,
such as “e-mail a link to the current resourcekeLSemantic Web
Services, operations have parameter specificationstrained by
RDF types rather than XML Schema types. For exanthke “e-
mail link” operation might be configured to accepe parameter of
any type (the resource to send) and another that have type
hs:ldentity (e.g., a person or an e-mail agent).

6.1 Invoking Operations

One benefit to semantically marking up operatisrthat we can use
the markup to help users invoke them properly. Wherser starts
an operation, Haystack checks to see if the resocucrently in
view unambiguously satisfies any of the operatiop@ameter
types. If there are unresolved parameters or $miree type checks
against multiple parameters, Haystack displaysra frompting the
user for parameters. This form is actually a spe@sa of anopera-
tion closure resource configured to display a lens construfttad
the parameters to the operation. An operation moisua resource
that represents an operation invocation and hapragerties, the
parameters to that operation. The RDF that is tsatescribe the
current state of the operation closure is storetiagstack’s root
RDF store, as is metadata for user-created caketiUsers can fill
in the form by dragging and dropping items fromeothiews or by
using the Edit button, which exposes an appropirgtaface for
collecting the kind of resource or literal needed that parameter.
When the user is done, he or she can click the @tom to invoke
the operation.

There are many benefits to representing operatigncations as
resources, which are described in another papeQdé particular

feature we highlight here is our ability to reuse éxisting browsing
infrastructure to expose forms for parameter ctilac When a

service is described semantically, a form for aticgpparameters
from the user can be constructed automatically byskhck. Note

that the appearance of the form can be customézediscussed in a
related paper [1].

262

6.2 Finding Operations to Invoke

On a Web page describing some item, it is not umcomto find

links to services that can be used on that itemekample, a prod-
uct might contain a “buy” button that activateseavge and initiates
a commercial transaction. Similarly, we want towshasers what
Semantic Web Services are available given the mumesource
being displayed.

With semantically marked up operations, we canraate the same
process in Haystack. Haystack exploits annotatiivas declare
which operations can be invoked on which data itéifasshow the
available services, Haystack exposes the Commeauis, geen in
the top left of Figure 1. (In actuality, the Comrdarpane is simply
a lens that has been docked to the left hand ditdge, the Search
using NotQuiteABlast service (in this case, an afen) is shown
because it has a parameter that type-checks agagshRNA re-
source being viewed. Additionally, users may riglitk on objects
on the screen (e.g., titles of resources showargds) and see con-
text menus listing the operations and servicesagpjaite to those
objects. In this sense, the Commands pane is siamprmanently
open context menu bound to the current object.

The set of services relevant to a given item ispofrse, a collection,
to which one can bring to bear all of Haystack’emtion browsing

capabilities. Menus are a convenient lightweightection display

that are effective when a user basically knows it want to do.
A user in need of more guidance, however, may @tmbrowse to
a full-screen view of the collection of availablpepations, where
they might find descriptions of what each operatioes and what
parameters it takes. The “Starting Points” displig first view

encountered when a user starts up the systemsestesly such a
view.

6.3 Customization

Another important benefit of our first class rejrgstion of opera-
tions is that it lets users customize their operati For example,
since menus are simply collections, users can gmpddlection

management tools to add operations and otherwmearge or
create menus as they see fit.

A deeper type of customization is the derivatiomeiv operations
from existing ones at runtime. Users are able ¥e sa in-progress
operation closure and turn it into a new operabgrselecting the
option from the user interface continuation’s cahtmenu that

instructs the system to bind the state of the otiroperation to-

gether with the already specified parameters [# ©enefit of this

technique is its ability to allow users to cregiecalized operations
suited for users’ own purposes. For example, ipeciic product

ordering service is frequently invoked with onenaore fixed pa-

rameters (e.g., account number, shipping method, &ten the user
can easily create a custom operation using thtmigae that has
these parameters pre-specified.

6.4 Accessing Remote Web Services

As Semantic Web Services standards become finalzedantici-

pate incorporating support for making Semantic \8elvices act as
remote operations. As with other remote invocasgstems, prob-
lems such as marshalling resources and literats specific data
formats and dealing with object identity must baltdeith. One

benefit to Semantic Web Services, when used inucatipn with

LSIDs or resolvable HTTP URIs, is that resourcas sianply be

passed by reference, since the contents of thermmsecan be re-
solved separately by the receiving end, simplifyingrshalling. In

the end, the idea is to use the operation suppditistack to give

users the ability to invoke Semantic Web Servidesctly on the
resources they are browsing within the same envieon without
the need for specialized clients.

When we consider remote services instead of thHosady installed
in Haystack, we must also solve the problem ofifigdhose ser-
vices. The fragment of RDF that is retrieved frdme HTTP or
LSID server when the resource is originally resthean include
references to relevant services. However, the &tdtiee HTTP or

LSID server is not likely to return information aftcservices that
are not hosted by the party controlling that ser@ere could imag-
ine there being RDF sources that act as Semantlc Séevices
directories at some point; a user could query suebrvice (or ar-
range for their browsers to do so automatically). ®side note,
such RDF sources could themselves be Semantic VEehc&s

[20]; mounting such a source could be as simpléygiag in its

well-known URI, letting the system download thevesr's meta-
data, and invoking the “mount” operation on it.

If the user were instead interested in locating dbevice before
specifying the data to act on, then a client sscHaystack could be
used more directly to browse the space of servigessices are of
course themselves resources, and their URIs cantiehpally be

typed in to browse to service descriptions. Anottessibility is to

have a collection named by a resolvable URI thatains a set of
useful services. As the user browses forward taicess of interest,
their descriptions would in turn be downloaded i@ system.

7. PUTTING IT TOGETHER

To see how the various elements of our Semantic Welnser

work together to enable users to browse the Sem#veb, let us
return to the screenshot in Figure 1. The screewslis a result of
the user typing in an LSID URN, perhaps obtainethfa paper he
or she was reading, into the Go to box. As a resfulieing told to

navigate to the resource named by that LSID, Helgsterformed

an RDF query to determine the types specified lier resource.
Initially, the system knew nothing about the reseuiso the query

returned an empty result set, prompting Haystachtow the Stan-
dard Properties and All Properties lenses. Thémidirmation view
also registered for events to find out when newrmfation about
the resource’s RDF types entered the system.

Meanwhile, in a background thread, the LSID catbeespicked up
on the query containing an LSID, found that the@&bd not been
resolved, extracted the authority name from theDl.@hd looked it
up using DNS. The LSID cache store then conta¢tedsérver us-
ing the resolved hostname via the LSID Web Seryicetcol and
requested the RDF metadata associated with the. I3i®returned
metadata, which included a specification of theowese's RDF
type, were added into the cache store, causinget ® fire to the
All Information view.

The view reacted to this event by finding the kndemses for the
newly discovered types of the resource. Four lenSesuence
Summary, Sequence, External Reference, and Pubmeed, dis-
covered and rendered to the screen. These leresesitirinto Hay-
stack, though ultimately they might be retrieveddnyappropriate
search of the Semantic Web, so long as the RDFS gqgenamed by
resolvable URIs and the metadata returned upotutesoof RDF
class resources contain links to lenses (whichdcaldo be named
by resolvable URIS).

Each lens in turn contained a list of propertiebdaqueried, so the
lenses queried for the values of these properfi¢iseoresource. In
the case of the Sequence Summary and Sequencs, lgese were
literal values, which were immediately shown. e tbase of the
External Reference and Pubmed lenses (Pubmed isathe of a
literature database, and this lens shows a listfefenced publica-
tions), resources named by LSID were found. (TheeriBal Refer-
ence lens is collapsed in the screenshot.) Theintseface queried
for the dcititle and rdfs:label properties (there is no
vowl:titleSourcePredicate for mRNA sequences), but found noth-
ing, so it displayed the raw URIs for these resesiré\gain, the user
interface registered to be notified when informatan thedc:title

&= Haystack - Search using NotQuiteABlast - Eclipse Platform
File Edit Mavigate Search Project Haystack Run Window Help

5 o0 Dm|[%-|| #]l%e-9 -

ﬁl & urn:lsid:nchi.nim. nib.gov Jsid.i3c.orgigenb... 3¢ || «@ People in department X |
B s
U standard Properties =]
i I = & Mary Smith) Biginformatics arrows
~— | Al Properties U available ® Human resources
o et & show arrows based on
the ontology
External Reference O Show arrows based on
. e Wiz . the schema
[Manages Manages Manages
¥
Name lNone specified; =...0x
Genbanh NM_001240 Add = 4 Donald Cox & Gregory 2 Anthony 3 Michael tam 2 Judy Harrison
Locus McCannley Edinburgh
Length 2568 Add =
Strandes single-stranded Add = Mangges Mepces Mo Maribaes Mo »3 Manages
Topolog) inear Add = B! 8
B
Division PRI Add & sam Johnson Ann 2 Dorald Jones 2 John Doe & Dennis Quan
Date 04-0CT-2003 Add= Hashimoto available
et for chat
Last
Modified -
5 Search using Na! x
The following information is required:
Account owner & Donald Jones =
Filter author None specified; dick here to add =
Sequences to search for urn:lsid:nchi.nim.nih.gov Isid.i3c.org:genbankinm_001240 x

Figure 4. Form for collecting information for Semartic Web Services invocation (bottom).

263

or rdfs:label properties of these resources was added. Also, theways for users to input RDF metadata. Haystacludes support

LSID cache store’s background thread noticed gsidréng made
on unknown LSIDs—potentially with different authgrinames
from the original LSID—and resolved them. Eventgentired as
the dc:title property was found for each of the resources, thad
user interface updated the display with the huneadable titles. In
this way, the display incorporated many aspecthefresource of
interest, some of which depended on information taane from
various other stores.

The user, noticing the rather large list of refessh publications,
chose to collect a subset for future research. Hshe invoked the
Create collection operation from the side panetsted menu, cre-
ating a new collection named “Interesting StuffheTuser then
dragged some interesting publications into this pelkection. As is
the case with any other collection on the Semantib, this per-
sonal collection can be viewed in a number of céffé ways, in-
cluding as a relationship graph to see, for exaniiplee papers had
cited each other. After creating the collection tiser could invoke
the File Away operation that places the just-cikatgject into their
bookmarks (or another) collection for later use.

At this point, the user could elect to do one atuianber of different
activities. One possibility is to invoke a Semaieb Service on
this mRNA sequence, such as BLAST, a search erggimenonly
used in the bioinformatics community to locate Emsequences
[35]. Such a service would be visible from the l&ind pane. The
user could click on the BLAST command to invoke $kevice (we
have simulated this with a mocked up Semantic Wahi& called
NotQuiteABlast). If other parameters are needesl uer would be
prompted for them with a form such as that showfigure 4. A
user could, of course, browse to other resourcémdouseful in-
formation and use drag and drop to directly filjparameters, as is
shown in the example. After invoking the service;adlection of
similar sequences looking like the one the useatedehim or her-
self on the right side of the screen would app#ais is in contrast
to how services such as BLAST are made availabla the Web
today; in general, either an identifier or a DNAq@ence string
would need to be copied and pasted manually ireofdahm. Fur-
thermore, the results returned would likely notpeesistent unless
the user copied and pasted the results Web paga fite.

8. DISCUSSION AND FUTURE WORK

The Semantic Web browser we have outlined in thfgep lays the
foundation for the construction of clients that gaoduce hyper-
linked presentations of resources from RDF metadatinating

from multiple sources. There are a number of aalkti issues we
have yet to resolve but that deserve further dsons including

possible strategies for enabling users to congilbatthe Semantic
Web, inference, trust, and ontological mismatch. §ilee some
comments on these problems below.

Tim Berners-Lee’s original vision was of a Web ihigh users were
not only able to easily browse interconnected Wagep but also
able to contribute new content to the Web. Admigtesome Web
browsers support HTML composition and expose fonetiity for
uploading pages to Web servers, but few users @dikantage of
these features. In looking towards the Semantic,\Wiebfeel there
is a renewed opportunity to create new opportumnitie user contri-
bution. One factor making it easier to publishite Semantic Web
than the original Web is the fact that the minimunit of publica-
tion is simply a fact, such as one providing a @&sname, as op-
posed to an HTML document, which may require sheli&ing,
proofreading, formatting or layout. The harder feabis finding

264

for editing as well as browsing the metadata obueses, as was
hinted at in the earlier sections on collectiond &emantic Web
Services. This topic is covered in more detailtireo papers [1] [3].

In terms of publishing the metadata itself, Haystpmovides sup-
port for sending RDF fragments between users [B8]far export-
ing RDF to files, but not yet for posting RDF fragmts to some
shared site automatically. One possibility is teendlaystack host
an HTTP or LSID server and to serve out metadatathers, but
this approach may not work for mobile users. Howetlee more
difficult problem is one of privacy: even if we ddweasily publish
the metadata produced by every individual to thee&@ic Web, we
must still find ways of describing which metadasapublic and
which should not be readily disseminated.

On a related note, one relatively esoteric commguwitere one
observes a group of Web users both contributing Gomuming
content is the Web design community. Web sites welvéo the
issues of Web site design often include galleriestglesheets,
HTML templates, widgets written in JavaScript, @nthges. Be-
cause of the way in which user interface presamtagtyle can be
separated from metadata content on the Semantic Wb can
imagine sites containing descriptions of views,sén and other
reusable elements becoming more mainstream, sieceaverage
user would be able to take advantage of these avemp® on his or
her own.

On the issue of inference, Haystack does not iiselfide support
for basic RDFS, DAML+OIL or OWL inference, but & entirely
feasible to attach an inferential RDF store to ltigls such as the
Jena RDF store [18]. Inference is one possible mé&anresolving
ontological mismatch—the problem that occurs wheo data
sources that are to be used together are basedt@ogies that use
different names for similar or identical concef@mtological map-
pings [14] could be downloaded from servers in mtieh same
fashion as views and lenses. However, another apprio address-
ing ontological mismatch is to simply provide lems@d other user
interface elements that make items from differemiblogies at least
appear the same to the user. This is the approadfissussed ear-
lier to dealing with multiple forms of collections.

With respect to trust, we have taken the simpligtiproach adopted
by Web browsers, which is in essence to trustndédirmation that
enters Haystack. But here an important differemisesbetween the
current and Semantic Webs. With a real Web pageseais better
able to judge the trustworthiness of content bex#usre is often a
significant body of text, so the facts embeddetha page can be
judged with respect to the context of the wholeegd@®]. Also, the
entire Web page tends to come from a single saeneer whose
trustworthiness can be considered. On the Sem#his, the fact
that an RDF presentation may incorporate facts fionitiple
sources creates more difficulty. As a first cug tiser’'s choice of
which RDF sources to “mount” determines a subsetusted RDF.
At a finer grain, we are considering the idea bkhef layer placed
between the underlying RDF sources and the userfane that
would allow only those RDF statements signed bgréyprusted by
the user to pass through to the user interface.

9. ACKNOWLEDGMENTS

We would like to thank Mark Ackerman and Joseplohatfor their
feedback on this paper. This work was supportethbyMIT-NTT
collaboration and the MIT Oxygen project.

10. PREFIXES USED IN THIS PAPER

dc: http://purl.org/dc/elements/1.1/

rdf: http://mww.w3.0rg/1999/02/22-rdf-syntax-ns#
rdfs: http://mww.w3.0rg/2000/01/rdf-schema#

daml: http://mww.daml.org/2001/03/daml+oil#

mail: http://haystack.Ics.mit.edu/schemata/mail#
travel: http://haystack.Ics.mit.edu/schemata/travel#
vowl: http://haystack.Ics.mit.edu/schemata/vowl#

hs: http://haystack.Ics.mit.edu/schemata/haystack#

11. REFERENCES

[1] Quan, D., Huynh, D., and Karger, D. Haystack: AfBten for
Authoring End User Semantic Web Applications. Peoliegs
of ISWC 2003.

[2] Stojanovic, N., Maedche, A., Staab, S., StuderSRre, Y.
SEAL: a framework for developing SEmantic PortAPso-
ceedings of the International Conference on KnogéeQap-
ture October 2001.

[3] Quan, D., Karger, D., and Huynh, D. RDF AuthorinE
ronments for End Users. Proceedings of Semantic Mdeb-
dations and Application Technologies 2003.

[4] Quan, D., Huynh, D., Karger, D., and Miller, R. Ub#erface
Continuations. Proceedings of UIST 2003.

[5] Werner, P., Liefield, T., Gilman, B., Bacon, S.dapgar, J.
URN Namespace for Life Science Identifiers.
http://www.i3c.org/workgroups/technical_architeesesource
s/lsid/docs/LSIDSyntax9-20-02.htm.

[6] The Eclipse Project. http://www.eclipse.org/.
[7] Haystack project home page. http://haystack.lcechit.

[8] Guha, R., McCool, R., and Miller, E. Semantic SkaRro-
ceedings of WWW 2003.

[9] Kahan, J. and Koivunen, M. Annotea: an open RDfagtfuc-
ture for shared web annotations. Proceedings of \DN/W

[10] Abrams, D., Baecker, R., and Chignell, M. InforraatArchiv-
ing with Bookmarks: Personal Web Space Construetiah
Organization. Proceedings of CHI 1998.

[11] Quan, D., Bakshi, K., Huynh, D., and Karger, D. tUsger-
faces for Supporting Multiple Categorization. Pextiags of
INTERACT 2003.

[12] Lansdale, M. The Psychology of Personal Informalitam-
agementApplied Ergonomics 19 (1), 1988, pp. 55-66.

[13] Lin, J., Quan, D., Sinha, V., Bakshi, K., Huynh, Ratz, B.,
and Karger, D. What makes a good answer? The falene
text in question answering systems. ProceedinfST&ER-
ACT 2003.

[14] Dertouzos, M. The Unfinished Revolution. New Yaxk/:
HarperCollins, 2001.

265

[15] Berners-Lee, T., Hendler, J., and Lassila, O. Téraghtic
Web. Scientific American, May 2001.

[16] Joseki. http://www.joseki.org/.

[17] Web Services Description Language 1.1.
http:/Amww.w3.org/TR/wsdl.

[18] Jena Semantic Web Toolkit.
http://mww.hpl.hp.com/semweb/jena.htm.

[19] Open Directory Project. http://www.dmoz.org/.

[20] Richards, D. and Sabou, M. Semantic Markup for $¢ima
Web Tools: A DAML-S Description of an RDF-StoreoPr
ceedings of ISCW 2003.

[21] Halevy, A., Ives, Z., Mork, P., and Tatarinov, taing up the
semantic web: Piazza: data management infrasteufduse-
mantic web applications. Proceedings of WWW 2003.

[22] RDF Site Summary 1.0. http://web.resource.org/i85/1

[23] Trastour, D., Bartolini, C., and Preist, C. Senmawni&b support
for the business-to-business e-commerce lifecileceedings
of WWW 2002.

[24] DAML Services. http://www.daml.org/services/.
[25] OWL-S. http://mww.daml.org/services/owl-s/1.0/.
[26] Handle System. http://www.handle.net/.

[27] W3C Web Services Activity home page.
http://Amww.w3.0rg/2002/ws/.

[28] Quan, D., Bakshi, K., and Karger, D. A Unified Atastion for
Messaging on the Semantic Web. Proceedings of W\Q98.2

[29] Beckett, D. The design and implementation of tiokared RDF
application framework. Proceedings of WWW 2001.

[30] Noy, N., Sintek, M., Decker, S., Crubezy, M., Fagu, R.,
and Musen, M. Creating Semantic Web Contents wibteBe-
2000.1EEE Intelligent Systems 16 (2), 2001, pp. 60-71.

[31] Dzbor, M., Domingue, J., and Motta, E. Magpie: to¥gea
semantic web browser. Proceedings of ISWC 2003.

[32] Saltzer, J., Reed, D., and Clark, D. End-to-endiragmts in
system desigrACM Transactions on Computer Systems 2 (4),
November 1984, pp. 277-288.

[33] RFC 2616. Hypertext Transfer Protocol -- HTTP/1.1.

http://mww.w3.org/Protocols/rfc2616/rfc2616.html.
[34] W3C Web Accessibility Initiative. http:/imww.w3.akyAl/.

[35] Altschul, S., Gish, W., Miller, W., Myers, E. andpman, D.
Basic local alignment search todburnal of Molecular Biol-
ogy 215, pp. 403-410.

[36] NewslsFree. http://www.newsisfree.com/.

[37] Haystack developer documentation site.
http://haystack.lcs.mit.edu/developers/.

[38] Wilkinson, M. and Links, M. BioMOBY: an open-sourg®-
logical web services proposakiefingsin Bioinformatics 3
(4), 2002, pp. 331-341.

