
Flexible On-Device Service Object Replication with Replets
Dong Zhou

DoCoMo USA Labs
181 Metro Dr., STE 300

San Jose, CA 95110, USA

zhou@docomolabs-usa.com

Nayeem Islam
DoCoMo USA Labs

181 Metro Dr., STE 300
San Jose, CA 95110, USA

nayeem@docomolabs-usa.com

Ali Ismael
DoCoMo USA Labs

181 Metro Dr., STE 300
San Jose, CA 95110, USA

Ismael@docomolabs-usa.com

ABSTRACT
An increasingly large amount of such applications employ service
objects such as Servlets to generate dynamic and personalized
content. Existing caching infrastructures are not well suited for
caching such content in mobile environments because of
disconnection and weak connection. One possible approach to this
problem is to replicate Web-related application logic to client
devices. The challenges to this approach are to deal with client
devices that exhibit huge divergence in resource availabilities, to
support applications that have different data sharing and
coherency requirements, and to accommodate the same application
under different deployment environments.

The Replet system targets these challenges. It uses client, server
and application capability and preference information (CPI) to
direct the replication of service objects to client devices: from the
selection of a device for replication and populating the device with
client-specific data, to choosing an appropriate replica to serve a
given request and maintaining the desired state consistency among
replicas. The Replet system exploits on-device replication to
enable client-, server- and application-specific cost metrics for
replica invocation and synchronization. We have implemented a
prototype in the context of Servlet-based Web applications. Our
experiment and simulation results demonstrate the viability and
significant benefits of CPI-driven on-device service object
replication.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: Distributed
Systems – Client-server, distributed applications.

General Terms
Measurement, Performance, Design

Keywords
Service, replication, preference, capability, reconfiguration,
synchronization

1. INTRODUCTION
With the growing popularity of wireless Internet and the advance
of mobile access technologies, Web applications are increasingly
accessible for wireless devices such as cell phones, PDAs and
WiFi-enabled laptops. Particularly, dynamic Web page generation
techniques, such as Java Servlet and CGI, have become a trend to
provide personalized Web pages and context -aware Web services
to the wireless devices. However, traditional means of optimizing

dynamic Web content generation and delivery are not well suited
to the nature of unstable wireless connectivity. When a wireless
client loses connection (either voluntarily or involuntarily) or
roams into an area with weak connectivity, common optimization
techniques, including static page prefetching [3], dynamic content
caching [6][1][14][27][7], data replication
[8][16][13][17][15][9][11][18], and content adaptation
[5][28][22] as well as application offloading, will fail to maintain
effective interactive operations (e.g., querying account
information, filling survey forms, checking product inventory) as
they do not eliminate the need to go through the wireless
connection for dynamically generated content.

One solution to enabling disconnected or weakly connected
operations is on-device service object replication. As wireless
devices become more powerful and possess more capacity, it
becomes feasible and foreseeable to replicate some application
service objects from the server to client devices. A typical
dynamic Web application can be divided into three parts: Web-
related application logic, back-end application logic, and
application data. On-device service object replication targets the
Web-related application logic part, as well as application data
relevant to that specific device (or user). An example of user-
specific application data is a portfolio of a user’s mutual fund
account. Note that we assume the Web-related application logic
performs varying functions from simple Web operations (such as
converting underlying data to HTML form) to complex tasks
(such as “thinking” in reaction to user moves in an online board
game).

On-device service object replication is by no means a new
concept. Previous works such as Coda [20], Rover [12], Active
Cache [4], Active Names [24], and Client-side Include [19] have,
to varying extents, investigated this concept. However, none of
such existing research works fully exploited the main distinction
between server managed service object replication (which is
mainly for availability and reliability) and on-device service object
replication: the asymmetry between the server replica and a device
replica and the asymmetry among device replicas, caused by the
differences in hardware capabilities and user preferences.

More specifically, these existing works do not adjust their
replication strategies for,

• Divergent device capability, including processor speed,
available memory and power, and network bandwidth. A
specific service object may be replicable to some devices but
not to others. Conversely, a device may be able to replicate
some service objects but not others.

• Different application, user and server needs , such as data
consistency requirements and latency tolerance levels. For
example, devices with different degrees of connectivity call
for different degrees of data consistency or freshness. A
device with WiFi connection can subscribe to live streaming
stock quotes, while a device with GPRS connection charged

Copyright is held by the author/owner(s).
WWW 2004, May 17–22, 2004, New York, New York, USA.
ACM 1-58113-844-X/04/0005.

131

by number of packets may only need a refresh at the end of
the day.

• Evolving environmental conditions, such as changing
connectivity or changing server load. A device moving
between good and bad connection may want to change its
choice of caching strategies, and a server under changing load
condition may adjust limits on clients’ access rates.

Such limitations confine their applicability and the range of
applications they support.

In this paper we describe Replet, a flexible system for customizing
and dynamically adapting the replication of application service
objects to user devices. At the center of the Replet system is a
mechanism for the user devices, the application and the server to
specify their preferences and expressing runtime capability. The
preference and capability information from different entities might
be conflicting or overlapping. For instance, the current server load
and the behavior of clients can yield different preferences in
tolerable latency for service responses. The system gathers
preferences and capability information from different entities,
combines them, and resolves any conflicts among them.

Preference and capability services provide the foundation for the
customizability and adaptability of the replication process of
Replets. In particular, the invocation of a Replet involves decision
objects using runtime capability information to decide, for each
service request, whether to invoke the Web-related application
logic replicated on the device, or its counterpart on the server.
Such decision objects, called Client-side Invocation Helper (CIH)
and Server-side Invocation Helper (SIH), are defined through
preferences and thus can come from the device, the server, or the
application. A sample CIH is a decision object that chooses the
replica with lower estimated response time between invoking
device replica and server replica, and a sample SIH is a decision
object that always chooses the server replica unless a server load
threshold is exceeded.

Likewise, the synchronization of application data in the Replet
system involves querying a Synchronization Helper (SH) acquired
from preferences to determine when to sync application data
replicated on device with the copy residing on the server, and
whether to lock server copy to ensure serializability. A sample SH
is one that suggests synchronizing data only when no such
synchronization has happened yet for that day (or week).

Replet addresses the divergent device capability problem as it uses
device capability information and application characteristics to
guide the selection of devices for replication. It addresses different
application, server and user needs by allowing each of them to
specify customized invocation and synchronization strategies. It
addresses the evolving environmental condition issue by profiling
of runtime capabilities that dynamically guides the invocation and
synchronization processes to adapt to environment changes.

We have implemented a prototype of Replet system and have
converted several servlet applications into Replet services. The
prototype does not disable existing devices without Replet, which
can still access Replets as a normal servlet application. For clients
with Replet support, our experiments show that Replet can
improve system performance by reducing response time and
network traffic for client, reducing server load, and enabling
disconnected operation.

Our contributions are as follows: First, to the best of our
knowledge, Replet is the first system for runtime on-device
replication targeting dynamic Web applications. Second, our
preference and capability centered approach allows per-request

dynamic selection of replica invocation, incorporating client-,
application- and server-specific cost metrics. It is the first to
introduce dynamic replica selection in on-device service object
replication. Third, the same preference and capability-centered
approach combined with the data synchronization framework
gives Replet system extremely flexible support for a broad
spectrum of consistency schemes. Fourth, our prototype system
and performance experiments show that, without disabling existing
clients that do not have Replet support, the Replet system can
improve system performance by reducing response time and
network traffic for client, reducing server load, and enabling
disconnected operation.

The rest of the paper is organized as follows: Section 2 presents
the Replet model, its preference and capability services, and the
process of Replet replication. Section 3 describes a prototypical
implementation and related experiences. Section 4 evaluates the
system with experiments and simulations. We compare Replet
system with related work in Section 5. Section 6 concludes the
paper.

2. REPLET SYSTEM
In this section, we first present the Replet model, followed by
discussion on capability and preference management in the Replet
system. We then describe in detail how to use capability and
preference information for flexible on-device service replication.

2.1 Replet Model
A Replet is a replicable object, and is part of a Replicable Service
deployed on a server. A Replicable Service consists of one or more
Replets and, optionally, other non-replicable objects. Each Replet
of a Replicable Service represents one service interface of the
Replicable Service. A Replet handles the requests from clients and
generates results for these requests. Each Replet can have multiple
replicas, one of which is a primary replica (or Server Replica) that
resides on the server, while others reside on client devices
(henceforth Client Replica). Intuitively, a Replet is similar as a
usual service object such as a Servlet [23], except that it can be
copied to client devices and serve requests locally.

Figure 1: Dissection of a Replet Server Replica

A Replet replica is explicitly divided into code, immutable data
and mutable data (Figure 1). The code part includes the class files
that define the Web-related application logic, and it is identical for
all replicas of the same Replet. However, the mutable and
immutable data (which can be a combination of in-memory
objects, files and mobile database tables with records and
attributes tailored to client’s needs) of a specific Client Replica
can be different from that of a Server Replica or other Client
Replicas. For example, a Client Replica can have rows of a
database table filtered out, which are different from another Client
Replica. The mutable data of a replica, which can be modified by
clients, is further divided into a public fragment and a private

132

fragment. The public fragment is shared by a number of clients,
thus is accessible to the Server Replica and the Client Replicas on
those clients. The private fragment is specific to a client and is
only accessible to the Client Replica and its Server Replica.

Figure 1 depicts a Server Replica. Client Replica on a client device
is slightly different in that it only has the private mutable data for
that given client.

At a given moment, for a given client, a Server Replica can be in
one of following three states (Figure 2):

• App-Synchronized: the Server Replica has up-to-date public
mutable data but does not have up-to-date private mutable
data for the client;

• Client-Synchronized: the Server Replica has synchronized
copies of both public mutable data and the private mutable
data for that given client;

• Invoked: the Server Replica was in Client-Synchronized state
and has been selected to serve a request from the client, and
the invocation is in the process.

App
Synchronized

Client
Synchronized

Invoked

Service
Response

Service Request

Sync. With Client
private mutable data

Figure 2: State transition of a Server Replica

App
Synchronized

Client
Synchronized

Invoked

Service
Request

Service Response

Sync. with public
mutable data

Selected

Populate

Cache
Flush

Figure 3: State transition of a Client Replica

Note that a Server Replica can be in Client-Synchronized state for
one client, but in App-synchronized for another.
A Client Replica has an additional Selected state, meaning that the
Replica has not yet been populated with code and data, or the
code and data have been removed to allow the replication of other
applications (Figure 3). Note that after invocation, a Server
Replica transits into App-Synchronized state, while a Client
Replica transits into Client-Synchronized state.

Service
Engine

Replication
Manager

Service
Engine

Wrapper

Replet Arena

Preference
Management

Capability
Management

Replicas

To/from server or
other Replet Arena

Intercepted Requests
Responses

Figure 4: Replet Arena

Replicas of Replets live inside Replet Arenas (Figure 4). A Replet
Arena is a runtime environment for replicas of different
applications. A replica in an Arena can either be the Server Replica
of an application or a Client Replica of the application. A Replet
Arena consists of following components:

• The Service Engine Wrapper
• Preference and Capability Managers
• The Replication Manager

The Service Engine Wrapper implements the Service Engine
Interface and is the delegate for the external service engine chosen
by the Replet Arena. The Service Engine Interface defines
methods for deploying and removing a service, and for getting a
service container for a particular service request to serve the
request. While the Service Engine Interface is identical for all
Replet Arenas, different Arenas use different Service Engine
Wrappers when they employ different service engines. For
example, one Replet Arena running on a desktop computer could
use the Service Engine Wrapper for Jakarta Tomcat [2], while
another running on a PDA could use the wrapper for Jetty [10]
that can be configured to less than 300KB.

Preference and Capability Management provide information used
by the Replication Manager to direct the process of replication:
from the selection of a client device for replication, and populating
the device with code and data, to synchronizing replicas and
choosing a synchronized replica for serving a request. We describe
Capability and Preference management, and the Replication
Manager in detail next.

2.2 Capability and Preference Management
Replet uses capability and preference information to direct the
process of replication. Capability is some system status
information gathered or estimated at the runtime, such as available
memory, and the response time estimation. Preference information
consists of preferences pre-specified by the application server, the
user, or the application, such as the required memory and the
preferred response time. Comparing preference and capability
information, Replet can determine which replica to use or whether
to download a replica from the server. In this subsection, we’ll
describe Preference and Capability Management in detail.

2.2.1 Preference Management
Three participating entities, also called roles, take part in
preference derivations: the client, the server and the application.
But the entities often have conflicting or overlapping preferences.
For example, an impatient user wants to get the results in 10
seconds while the application estimates the acceptable response
time to be within 15 seconds. Preference Management merges

133

potentially conflicting partial preferences from different roles into
a unified global preference.

Device Preference
<<ClientInvocationHelper, Client>, 5>
<<ResponseTime, 10s>, 8>

App. Preference
<<ClientInvocationHelper, Client>, 6>
<<ResponseTime, 12s>, 6>

Server Preference
<<ClientInvocationHelper, Server>, 4>
<<ResponseTime, 15s>, 7>

Global Preference
<ClientInvocationHelper, Client>
<Response_Time, 10s>

Preference Derivation Template
ROLES={"device", "application", "server"}

ATT_NAME="ClientInvocationHelper"
MAX_PRIORITIES={8, 7, 5}

ATT_NAME="ResponseTime"
MAX_PRIORITIES={8,5,7}

Figure 5: Examples in Preference Management

Figure 5 illustrates how Preference Management works. Each
entity specifies a partial preference that consists of a set of partial
properties. A partial property is a <property, precedence>
pair, where property is a property, while precedence is a
number denoting priority. Each property is a <name, value>
pair, where name is a string and value can be an arbitrary object.
For instance, <<ResponseTime, 10s>, 8> in Device Preference
means that the device preferred response time should be within 10
seconds with a precedence level of 8.

In order to derive a global preference, we first validate each partial
property with Preference Derivation Template. The Preference
Derivation Template sets maximum priority levels for each partial
property. If a partial property contains a precedence value higher
than the maximum level specified in the template, the partial
property will be considered invalid. For example, ResponseTime
in Application Preference is invalid because its precedence (i.e., 6)
exceeds the maximum priority (i.e., 5).

Afterwards, we merge all valid properties into Global Preference.
If there are conflicting properties, we only keep those with higher
precedence values. For example, there are two valid
ResponseTime properties specified in Client Preference and
Server Preference, respectively. We keep the one in the Client
Preference because its precedence value (i.e., 8) is higher.

2.2.2 Capability Management
Replet Arena’s capability service maintains capability and
profiling information of the client, the server, and the application.
Client capabilities include amount of memory or storage available
on the device, its CPU processing power, the availability of just-
in-time compiler, down- and up-link bandwidth, and round-trip
time to the server. A server’s capabilities include its CPU
processing power, and its load. Application profiling data includes
storage and memory requirement on some typical device types,
the range of costs for processing requests on several typical
devices, observed responses time for requests, current number of
client replicas for the Replet, as well as the application’s
requirement for the software environment (such as requiring a
specific JAR file).

Some of such capabilities or characteristic data (such as installed
memory) are static, while others (such as current server load) are
dynamic. For dynamic information, the Capability Profiler also
provides statistics for such information, and regression tools for
fitting and prediction.

Since capability information has distributed sources, Capability
(and Preference) Management of client and server side Replet
Arenas need to exchange their local information to construct the
global capability information. Such exchange will be described in
detail in subsection 2.3. Also, Capability Management allows
other components of the program to subscribe to individual
capability items, so that they can be notified when the value of
such capability items change.

2.3 Replication Process
The Replication Manager in the Replet system manages the
replication process of the Replets. A Replet’s replication process
includes four phases: (1) the selection of a particular client for
replication (the Selection phase); (2) the populating of the selected
device with code and data (the Populating phase); (3) the
invocation of a replica (the Invocation phase); and (4) the state
synchronization among multiple replicas (the Synchronization
phase). An important distinction between Replet and a typical
replication system is that the replication process in the Replet
system relies heavily on capability and preference information of
the client, the server and the application, so that the entire process
is highly flexible.

2.3.1 Replication Device Selection
In Selection phase, the Replication Managers of both client- and
server-side Replet Arenas collaborate to determine whether the
client device should be one of the replication sites of an
application deployed on the server.

The client-side Replication Manager intercepts all the service
requests that come from the local client and are targeted to the
services residing in remote servers. For services that have not been
replicated locally, the Replication Manager will check local
Preference (which is derived from locally defined Client Partial
Preference and default Server and Application Partial Preferences)
and to examine if the local client currently allows Replet
replication. If it does, the Replication Manager can then attach an
optional Probe Flag to the request that is going to be forwarded to
the server. The Probe Flag indicates that the client allows Replet
replication.

A server that does not support Replet replication ignores the
Probe Flag in the request. However, a server that does support
Replet replication, upon receiving such flag in the request, checks
if the Replet for the requested service allows itself to be
replicated. If it does, then the server attaches Server and
Application Partial Preferences and capabilities to the usual
service response, and sends them back to the client. Also attached
to the response is a Client ID that can later be used to distinguish
different clients, and to server as a proof of permission for
replication from the server. The Client ID expires after an amount
of time determined by the Preference.

Back at the client, when the Replication Manager receives a
response with server and application CPI and Client ID, it checks
the Replet’s resource requirement (such as memory and CPU
usage) against resources available on the device to determine
whether the device should be a replication site for the Replet. In
addition, Server and Application Partial Preferences are used to
replace default values to complete the client-side derivation of the
Preference.

2.3.2 Populating a Replication Device
The Populating phase starts when the client sends the server a
usual service request with an attached Download Flag. Note that
this Populating phase can start at any time between the end of the

134

Selection phase and the expiration time of the Client ID. A client
can use this flexibility to start the Populating phase after enough
resources have been allocated for replication, or when it expects
server to be under lower loads.

The server can choose to send requested code and data back to the
client immediately (along with usual service response), or
temporarily decline the client’s populating request, in which case
the client can make another populating attempt later. The code and
data to be sent can be specified by the Replet itself, and the Client
ID can be used to the further customized the data sent to the
specific client.

When the Push Endpoint field is present, the server has the option
of asynchronously pushing requested code and data to the client at
a time deemed proper by the server, rather than having to attach
the requested code and data with the service response. This Push
Endpoint is also used for push-based data synchronization (see
subsection 2.3.4).

2.3.3 Service Invocation
At the end of the Populating phase, the Client Replica of the
Replet is created and its state is set as Client-Synchronized, i.e.,
the replica’s client-specific mutable data is up-to-date. A Client
Replica in Client-Synchronized state is able to serve service
requests that only access client private data, without having to
synchronizing public data with the server.

During the Invocation phase, the Replication Manager intercepts
the service request from the local client, and then consults the
Client-side Invocation Helper (CIH) for suggestions on where to
serve the request. A suggestion returned by an Invocation Helper
(IH) contains two fields: one indicating whether to use the Client
Replica or the Server Replica for the request, the other indicating
the confidence of such suggestion. Such suggestion will be
followed if the confidence level is higher than a threshold defined
by the Preference: if the suggestion is to use the Client Replica,
then the request is served locally; otherwise, the Replication
Manager forwards the request to the server, and relay response
from the server back to the client, where both the forwarded
request and response may contain synchronization information for
client private data.

In the cases where the client can’t make decisions by itself (that is,
when the confidence of CIH’s suggestion is below a threshold
defined by the Preference), it also forwards the request to the
server, attaching an Adaptive Invocation Flag to the request,
indicating that it is up to the server to decide where to serve the
request. Upon receiving such a service request, the server-side
Replication Manager consults the Server-side Invocation Helper
(SIH) for suggestion. If the suggestion from the SIH is to serve the
request on the server, then the Server Replica is used. Otherwise,
the request is bounced back to the client for handling.

The challenging issue in service invocation is selecting the right
replica to invoke. The suggestions are typically made according to
a particular cost model. However, cost models often vary with
different applications, devices and servers. There is no optimal
cost model that can be predetermined.

Replet provides a flexible cost model framework through its
Preference Management. All three entities, the device, the server,
and the application can specify an IH class that implements a
particular cost model (see Figure 5) in their partial preferences.
Preference Management will decide which Helper class to use by
merging them in Global Preference. An IH has access to the
Preference and profiled capabilities, as well as the replica itself, in

implementing the chosen cost model. The following list shows
some sample cost models we have implemented IHs:

• A cost model based on user perceived response time, where
an IH uses profiled capabilities, including previously
measured request processing time, previously measured
request and response message sizes, and network
characteristics, to compare the estimated costs of using the
Client Replica or the Server Replica. A device moves
between good and bad connection areas can use this model
to improve user experience.

• A cost model based on server load, where the SIH bounces
Adaptive Invocation requests back to client (along with
updated server load estimator) when the server load is higher
than a threshold. The corresponding CIH uses server load
estimator to predict current server load, and uses Client
Replica when predicted server load is higher than a
threshold.

• A cost model based on total amount of communication
between the server and the client, where an IH uses profiled
data including request and response message sizes, CPI
exchange overhead, and data synchronization cost to choose
a replica for the request to minimize the communication
cost.

2.3.4 Data Synchronization
Until now we have assumed that a service invocation either does
not access the mutable data of a replica, or that it only accesses
the portion of mutable data that is private to the client, for which
it is trivial to synchronize and maintain the consistency as there is
no concurrent accesses on the same data on multiple replicas.

Data synchronization and consistency management is much more
complex when an invocation on a Client Replica reads and/or
writes public data of a Replet. The Synchronization phase in
Replet Replication is separated into two stages by the invocation
phase: a Read Stage before the Invocation phase, and a Write Stage
after the Invocation phase (see Figure 6):

• Read Stage: On the client side, when the Replication Manager
decides to serve a request locally, it consults the client copy
of the Synchronization Helper (SH) specified by the
Preference to see if there is a need to read the most up-to-
date version of the Replet’s public data from the Server
Replica. On the server side, when such read request is
received, the Replication Manager consults the server copy
of the SH for the client to determine if it is necessary to
apply a write-lock to the Server Replica to prevent
concurrent accesses. The lock expires after a time defined by
the Preference. Note that since there is one Preference for
each client, potentially each client can have a different SH.

• Write Stage: On the client side, after an invocation on the
Client Replica that modifies the Replet’s public data, the
Replication Manager again consults the SH to see if there is
a need to propagate the modification to the Server Replica
immediately. On the server side, when such modification
propagation message is received, the Replication Manager
consults the SH of the client to potentially detect update
conflicts and resolve such conflicts. The Replication
Manager then releases the lock on the Server Replica if the
client acquired one during the Read Stage. Finally, the
Replication Manager consults SHs of other clients to see if
the modification needs to be pushed to these clients.

135

Note that the actuation of the Read and Write Stages depends on
whether the invoked method reads or writes public data. If the
method does not read or write public data, then the Read or Write
Stage is bypassed.

SH is also part of the Preference, and can potentially be defined
by the client, the server, or the application. Some sample
consistency maintenance schemes that can be implemented using
SH include:

• Pessimistic replication, where one-copy serializability is
achieved by demanding to refresh from Server Replica before
each invocation that reads Replet public data, lock the
Server Replica after refresh, and contact Server Replica after
invocation for update propagation and lock release.

• Optimistic replication with 1/K synchronization, where the
data refreshment and update propagation is carried out once
for every K invocations that access public data, and no lock
is applied on the Server Replica.

• Optimistic replication with push approach, where the client
depends on updates pushed from the server to maintain the
freshness of the Replet’s public data.

The pessimistic replication scheme can be practical if only a small
fraction of the invocations involve accesses to public data, and/or
if data synchronization overhead is much less costly than the
overhead associated with the transport of request and response
messages and the processing of the request on the server. Other

sample consistency schemes include one that chooses right update
rate depending on client capability and current server load for self-
refreshing Web contents, and another enforced by a server under
unusually high load to temporarily disable a device from reloading
the content until sometime later.

3. IMPLEMENTATION
We have implemented a prototype of the Replet system in Java
for Web-based applications that use Servlets as service objects.
Figure 7 illustrates the high-level architecture of this prototype.
We chose Tomcat Servlet container from the Apache Jakarta
Project as service engine for the prototype, and we wrote the
Service Engine Wrapper for Tomcat.

Replet Arenas are implemented as standalone processes. For a
given application, the server-side Replet Arena (the Arena that
hosts the application) functions as a Web server with Servlet (and
Replet) support, while the client-side Replet Arena is configured
as a HTTP proxy of the client Web browser. Server-side and
client-side Replet Arenas communicate using HTTP protocol.
Fields of Replet replication protocol messages (such as various
flags, CPI, IH suggestions, and synchronization data) are
piggybacked with HTTP requests and responses in the form of
HTTP header fields.

A Replet extends J2EE HTTPServlet class, and implements the
Replet interface. The Replet interface specifies methods that can
be used by the Replication Manager to:

Figure 6: Flow chart for data synchronization

136

Remote
Replet
Arena

Local
Replet
Arena

Local
Service
Engine

Remote
Service
Engine

Browser

Client Side Server Side

Figure 7: Illustration of prototype implementation

• Get and set client-specific immutable and mutable (both public
and private) data: such data can be a combination of in-memory
objects, files and (usually filtered) database tables. The default
implementation of these methods assumes that there is no
immutable data, and that the public mutable data consists of
the entire Web archive (WAR) file of the replicable service
application except those under WEB-INF/classes and WEB-
INF/lib, while the private mutable data consists of the
HTTPSession object created for the client.

• Retrieve and apply updates for synchronization: updates can
also be represented using in-memory objects, files and tables.
The default implementation assumes that the entire Web
archive has been updated.

The development of a Replet also involves defining the Application
Partial Preference of the Replet, which includes specifying the classes
for IHs and SH, as well as their respective initialization arguments.
We have ported four originally Servlet-based applications using this
prototype: WebMail, which replicates emails to the client device
along with the object that handles emails; WebCalendar, which has
both private and shared calendar pages; WebChess, where users login
to their account to play against computer at different skill levels; and
PurchaseApproval, which emulates a sample corporate workflow.

During the course of implementing the prototype and the sample
applications, we identified several important issues that we discuss
next.

Nonintrusive replication: The replication process should be
nonintrusive to both the clients and the server. The most probable
source of intrusiveness is in the Populating phase, where the Replet
system needs to collect relevant code and data at the server side, send
them to the client, and properly install such code and data at the
client side. To an already overloaded server, this process may
exacerbate the load situation especially when populating is required
for many clients in a short period of time; to the client, this process
may stall the responsiveness of other requests as receiving the replica
and installing it may be costly for some devices. Our solution is to
give the server the option of populating a client only when the server
thinks it is the right time to do so, and we allow the server to
asynchronously push the replica to the client, so that populating can
occur between two requests and be less intrusive.

Server load information: A concise representation of dynamic
server load information that can be used to closely predict future
server load is important in the Replet system, as it can help optimize
the performance of the system with light cost. We have experimented
with the polynomial regression approach, and our conclusion is that
this approach offers similar precision with more compact
representation for the server traces that we targeted (see Section 4.3).
We also limited the dissemination of server load information so that it
is piggybacked with some of the responses to the client.

Session migration: Session migration is necessary to support
replication in the middle of a client session, and it is the default form
of populating client device with client-specific mutable data. Our
session migration implementation relies on cookie-based HTTP
sessions. During the migration, the client-side Replet Arena creates a
local session cookie and a new session object. The new session object
will be populate with contents from the original session on the server
session, and the newly created cookie will be returned to the client.

Public data access directives: We use XML-form external directives
to denote where the GET and POST handling methods of a Replet
reads or writes public data. However, a Replet is typically used for
different types of requests. Some of these requests may access public
data while others may not. To distinguish such request, an approach
similar to J2EE Servlet mapping is used. Each request type is
allocated a virtual Replet. While these virtual Replet map to the same
real Replet, public data access directives are generated for each
individual virtual Replet. For example, in the WebCalendar
application, creating an appointment accesses public data while
viewing an appointment does not. Although the same Replet handles
these two operations, their URI maps to different virtual Replets
with different access directives, so that the viewing operation can
always be operated locally for a Client Replica.

4. EVALUATION
In this section we evaluate the viability and benefits of on-device
service object replication in the Replet system based on our
prototype. We describe experiments and their results using some of
the sample applications we built, as well as simulations that are
based on one of those sample applications.

Table 1: Comparing size cost of replica populating against
typical responses (in KB).

 WebChess
(KB)

WebCalenda
r (KB)

Purchase
Approval (KB)

Populating 37 - 40 28 – 29.5 73 - 75.5

Typical
Response

6.5 – 9.6 4.2 – 6.3 5.5 - 6.7

4.1 Replica Populating Cost
In this experiment, we compare the cost of replica populating against
that of typical responses. Table 1: lists number of bytes in a typical
HTTP response (including images), and the number of bytes to be
shipped for replica populating (which also includes images) for three
applications. Considering each populated application can produce
multiple responses (this is the case even for Purchase Approval,
where a single approval may involve multiple steps, and the user
may check approval status for several times), the cost of replica
populating is not prohibitively high compared with costs for normal
service responses. For example, Figure 8 examines the response time
for the computation-intensive WebChess application. The X-axis
represents the number of steps of user interaction while the Y-axis
represents the response time. The upper two curves show the
response time with and without replication, including the populating
cost. We can see that the response time drastically drops after replica
populating occurs at Step 4. In fact, it becomes very close to the
response time during a low server CPU load (shown as the bottom
curve). The server used in this experiment is a desktop with 2Ghz P4
processor and 512MB RAM, and client is a ThinkPad T23 laptop
connected to the server via IEEE 802.11b wireless network. The load

137

on the server is created by running adjustable compute-intensive
tasks in the background.

4.2 Divergence in Request Processing Costs
This experiment uses two applications, WebChess and WebCalendar,
and two client devices, an iPAQ 3870 and a ThinkPad T23, to
demonstrate that profiled device and application capability is
important for on-device replication. Table 2: shows average
processing times of the two applications on the two devices.
Apparently, while the iPAQ, whose JVM does not have just-in-time

compiler, is capable of serving requests for WebCalendar, it is not
capable of serving requests for WebChess. This exp eriment
demonstrates that device and application capability information is
important in the selection of a device to replicate an application.

Table 2: Request processing time for WebChess and
WebCalendar on two client devices. (in second)

 Tablet PC (sec) IPAQ 3870 (sec)

WebChess 0.8 – 3.2 5.5 - 18

WebCalendar 0.01 – 0.095 0.03 – 0.029

4.3 Server Load Prediction
This experiment demonstrates the effectiveness of using polynomial
regression for the coarse-grained prediction of server load using
historic information. We arbitrarily selected two weeks’ trace of the
NASA Web server [21]. To predict the server load on any given day
of the second week, we use a cubic function to fit the load of that day
of last week, and then use the cubic function to predict the load on
that day of the second week. Figure 9 shows two curves: one for real
load on the server during the week of July 9-15, 1995, the other for
predicted load for the same week based on the actual load information
of the previous week. The load prediction curve is actually the

combination of 7 curves, each a cubic polynomial for one day. The
graph shows that, although polynomial regression over historic data
cannot precisely predict future server load, it is sufficiently accurate
for client to distinguish lower load periods from high load periods.

4.4 Simulation of Consistency Models
In this subsection, we use simulation to demonstrate the need and
benefits of having client-specific consistency models and client-
adjustable data freshness requirements. WebCalendar is used as the
sample application to derive base costs. We assume that for each
client there is a private calendar page and a public page. There are
four types of operations, one that reads (but does not write to) the
public page (PUB-R), one that reads and writes to the public page
(PUB-RW), one that reads private page (PRIV-R), and one that reads
and writes to the private page (PRIV-RW). The assumed combined
size (including header) of a HTTP request and its response for each
type of operation, as well as different distribution of each type of
operation for different scenarios, are listed in Table 3:.

We use Poisson distribution for request arrival rate, using C-RATE
to denote the rate for requests generated by the client under
inspection, while S-RATE for server observed overall rate (requests
from all clients except the one under inspection). We fixed C-RATE
at 6.67 for all experiments. The real unit of C-RATE does not matter
as only the ratio between C-RATE and S-RATE is of interest.

Table 3: Parameters for the simulation

 PUB-R PUB-
RW

PRIV-R PRIV-
RW

Request+Response
size

6KB 4.5KB 5KB 4KB

Balanced 35% 15% 25% 25%

Public-Read
Biased

80% 5% 10% 5%

Public-Write
Biased

50% 40% 5% 5%

Figure 8: Response time for the WebChess application (on-the-fly replica populating happened at step 4. Note that different steps

require different amount of computation)

138

Figure 9: Using Cubic Polynomial Function For Server Load Prediction.

Figure 10: Changing S-RATE under Public-Read Biased distribution.

Figure 11: Changing S-RATE under Public-Write Biased distribution.

139

Figure 12: Changing Synchronization Overhead (in KB)

Figure 13: Changing Conflict Resolution Overhead (in KB)

We compare the total amount of traffic for the inspected client under
five different schemes: no replication (NR), pessimistic replication
(PR), optimistic replication with 1/N synchronization (1/N), ideal
replication (Ideal) and, server push (Push). The Ideal scheme assumes
that a client knows every past operation of other clients, so that in
the Read-Stage, it knows whether it is necessary to refresh state from
the server, but in the Write-Stage, it will immediately propagate its
updates regardless future operations on shared state. In the Push
scheme, the server pushes modification to the clients and clients
never pull from the server in Read-Stage. The Push Latency, the time
before it reaches the client is made as a linear function of the server
arrival rate. We set the default costs for Read-Stage and Write-Stage
synchronization to 2KB when such synchronizations result in
communication with the server, and we set the default cost for
conflict resolution to 32KB. The optimistic scheme is further divided

into 1/2, 1/4 and, 1/8 three configurations, representing synchronizing
every 2, 4, and 8 public data accesses.

Figure 10 shows the communication cost on the inspected client
when the requests to the server are Public Read Biased, while in
Figure 11 the requests to the server are Public Write Biased. In both
graphs, S-RATE changes from 0.83 to over 100. Both graphs show
that the Push approach has higher costs because of the update
conflicts caused by the Push Latency. All other approaches that use
replication have lower costs than the No Replication approach.
Because reading stale information does not incur penalties similar to
conflict resolution cost, the 1/N approaches are better than the Ideal
approach in Public Read Biased distribution at the cost of reading
out-of-sync public mutable data. The Pessimistic approach under
Public Write Biased distribution offers performance closest to the

140

Ideal approach as it avoids update conflicts that are frequent under
this scenario.

Figure 12 compares the cost of different schemes when we fix the
cost of conflict resolution at 32KB, and vary the cost of
synchronization from 1KB to 64KB. S-RATE is set at four times of
C-RATE. Figure 13 compares the cost of different schemes when we
fix the cost of data synchronization at 2KB, and vary the cost of
conflict resolution from 1KB to 512KB. Again, we set S-RATE at
four times of C-RATE. In both simulations, we assume distributions
of operations are “Balanced”. The two graphs show that optimistic
approaches have advantages when synchronization cost increases.
But they are penalized when conflict resolution cost gets higher.
These simulations confirm the value of flexibility in supporting
different synchronization schemes and consistency models for
different applications and application deployment scales.

4.5 Analysis of CPI Overhead
Overhead of CPI is mainly from the Selection phase and the
Populating phase: the server will send server and application CPI to
the client if the server agrees to let the client to replicate the service,
and the client need to send its CPI to the server when it requests to
start populating. Such overhead is limited since:

• They are piggybacked with HTTP protocol messages.
• They occur once during the lifetime of a Client Replica.

CPI data items are compact, with various Helpers being only
exceptions. However, we don’t transport Helper object, rather, we
only transfer Helper class names and initialization arguments. We
assume Helper classes are retrieved through trusted code repositories
and can be cached on client devices and on server.

5. RELATED WORK
Previous work on server-managed replication is abundant in the
literature [8], [16], [13], [17], [15], [9], [11], and [18]. In such
systems, decisions involved in the replication process are typically
solely made by the server and client devices are not candidates of
replication sites. Hence server-managed replication does not support
disconnected environment. By contrast, the Replet system employs
on-device service object replication that enables disconnected
operations.

Coda [20], CSI [19], and Rover [12] are replication systems that
support on-device replication for mobile and disconnected
computing. These systems, however, do not specifically target
dynamic customization of replication. On the contrary, Replet
incorporates client capability and preference into the replication
process, enabling client-specific invocation and synchronization cost
metrics.

There has also been a lot of research on optimizing dynamic and
personalized Web content, including dynamic data caching
[1][1][14][27][7] and content adaptation [5][28][22]. However, their
approaches do not support disconnected computing because they do
not cache, replicate or adapt service objects at the client side. In
comparison, Replet replicate service objects to the client device,
enabling disconnected operations.

Active Cache [4] is closely related to our system in that it associates
a server-supplier code called Cache Applet with each URL. When
caching a document, a proxy also fetches the corresponding cache
applet, which can be invoked when a user request is received.
However, targeting caching proxies rather than end-user devices,
Active Cache cannot adapt the caching/replication process to
different client devices because it does not exploit client information.
In addition, it lacks the flexibility in synchronization among Cache

Applets of the same document. Compared with Active Cache, our
approach provides support for client divergence in both replication
and synchronization.

Our work is also different from the general Java Applet framework.
A Replet is intended to be executed on the server. It is only installed
and invoked on the device for performance optimization. For clients
of the same Replet, some of them may opt to install and run in on-
device, while others don’t. Even for the same client, the decision of
which replica to invoke can be made at runtime on per-request basis.
In addition, our system provides build-in support for
synchronization between a client and its server, which is not available
in the Applet system.

Composite Capabilities/Preferences Profile (CC/PP) is a framework
for describing and managing a user agent’s capabilities and the user’s
preferences for optimizing content processing and display [25][26].
While CC/PP is widely adopted and offers sophisticated
implementations, it only focuses on client CPI and does not address
server and application CPI, and does not address the runtime merging
and reconfiguration of it.

6. CONCLUSION, LIMITATIONS, AND
FUTURE WORK
In this paper we have presented Replet, a system that uses client,
server and application capability and preference information to
achieve flexible on-device replication of service objects, and to
incorporate client-specific cost metrics for replica invocation and
synchronization. We have implemented a prototype of the Replet
system in the context of Servlet-based Web applications. Our
experiments and simulations demonstrate the viability and significant
potential benefits of employing on-device service object replication
with Replets. Such potential benefits include reducing response time
and network traffic for client, reducing server load, and enabling
disconnected operation.

Our current system does not provide direct support for update
conflict detection and resolution, and it does not address security
issues involved in on-device service replication. Some of these issues
will be the focus of our future research. And for other issues, we will
look for available solutions to apply to our system

7. ACKNOWLEDGMENTS
We thank Sajithkumar Kizhakkiniyil and Dr. Wei Han for their help
during different phases of the project. We also thank Drs. Lawrence
Brakmo, Manuel Roman for reviewing the paper and providing
helpful suggestions. We greatly appreciate insightful comments from
anonymous reviewers of the conference, as well as those from Drs.
Minoru Etoh and Calton Pu.

8. REFERENCES
[1] Akamai Inc. Turbo-Charging Dynamic Web Sites with

Akamai EdgeSuite. White paper. 2002.

[2] Apache Software Foundation. The Apache Jakarta
Project. http://jakarta.apache.org/tomcat/

[3] AvantGo. http://AvantGo.com

[4] Cao, P., Zhang, J., and Beach, K. Active Cache: Caching
Dynamic Contents on the Web. In Proceedings of
Middleware '98, Sep. 1998.

141

[5] Chen, Y., Ma, W.-Y., Zhang, H.-J. Detecting web page
structure for adaptive viewing on small form factor
devices. WWW 2003: 225-233.

[6] Datta, A., Dutta, K., Thomas, H., VanderMeer, D.,
Suresha, and Ramamritham, K. Proxy -based acceleration
of dynamically generated content on the world wide web:
an approach and implementation. In Proceedings of the
2002 ACM SIGMOD International Conference on
Management of Data, June 2002.

[7] Gao, L., Dahlin, M., Nayate, A., Zheng, J., and Iyengar, A.
Application specific data replication for edge services. In
Proceedings of the Twelfth International World Wide
Web Conference (WWW), May 2003.

[8] Howard, J., Kazar, M., Menees, S., Nichols, D.,
Satyanarayanan, D., Sidebotham, R., and West, W. Scale
and performance in a distributed file system. ACM Trans.
on Comp. Sys. (TOCS), 6(1), 1988.

[9] Huang, Y. and Wolfson, O. A competitive dynamic data
replication algorithm. In Proceedings of Ninth
International Conference on Data Engineering (ICDE),
April 1993.

[10] Jetty:// Web Server & Servlet Container.
http://jetty.mortbay.com/jetty/index.html

[11] Johnson, G., and Singh, A. Stable and fault-tolerant object
allocation. In Proceedings of the Nineteenth Annual ACM
Symposium on Principles of Distributed Computing
(PODC), July 2000.

[12] Joseph, A., deLespinasse, A., Tauber, J., Gifford, D., and
Kaashoek, M. Rover: A Toolkit for Mobile Information
Access. In Proceedings of the Fifteenth ACM Symposium
on Operating Systems Principles (SOSP), Dec. 1995.

[13] Kim, M., Cox, L. P., and Noble, B. D. Safety, visibility, and
performance in a wide-area file system. In Proceedings of
USENIX Conf. on File and Storage Sys. (FAST), Jan. 2002.

[14] Li, W.-S., Po, O., Hsiung, W.-P., Candan, K. S., and
Agrawal, D. Engineering and hosting adaptive freshness-
sensitive web applications on data centers. In
Proceedings of the Twelfth International World Wide
Web Conference (WWW), May 2003.

[15] Liscov, B., Adya, A., Castro, M., Day, M., Ghemawat, S.,
Gruber, R., Maheshwari, U., Myers, A. C., and Shrira, L.
Safe and efficient sharing of persistent objects in Thor. In
Proc. of the ACM SIGMOD International Conference on
Management of Data, June 1996.

[16] Petersen, K., Spreitzer, M. J., Terry, D. B., Theimer, M. M.,
and Demers, A. J. Flexible Update Propagation for Weakly
Consistent Replication. In Proceedings of the 16th ACM
Symposium on Operating Systems Principles (SOSP-16),
Oct., 1997.

[17] Pu, C., and Leff, L. Replica Control in Distributed System:
An Asynchronous Approach, In Proc. of the ACM
SIGMOD International Conference on Management of
Data, May 1991.

[18] Rabinovich, M., Rabinovich, I., Rajaraman, R., and
Aggarwal, A. A Dynamic Object Replication and
Migration Protocol for an Internet Hosting Service. In
Proceedings of 19th ICDCS, June 1999.

[19] Rabinovich, M., Xiao, Z., Douglis, F., and Kalmanek, C.
Moving Edge-Side Includes to the Real Edge - the Clients
USENIX Symposium on Internet Technologies and
Systems. 2003.

[20] Satyanarayanan, M. The evolution of Coda. ACM Trans.
on Comp. Sys. (TOCS), 20(2), May 2002.

[21] Server trace for NASA Kennedy Space Center WWW
server. http://ita.ee.lbl.gov/html/contrib/NASA-
HTTP.html

[22] Steinberg, J., and Pasquale, J.. A Web Middleware
Architecture for Dynamic Customization of Content for
Wireless Clients. WWW 2002: 639-650.

[23] Sun Microsystems, Inc. Java Servlet Technology.
http://java.sun.com/products/servlet/

[24] Vahdat, A., Anderson, T., and Dahlin, M. Active Naming:
Programmable Location and Transport of Wide-area
Resources. In Proceedings of 1999 USENIX Symposium
on Internet Technology and Systems (USITS), Oct. 1999.

[25] W3C. Composite Capability/Preference Profiles (CC/PP):
A user side framework for content negotiation. W3C Note.
July 1999.

[26] W3C. Composite Capability/Preference Profiles (CC/PP):
Structure and Vocabularies. W3C Working Draft. March
2003.

[27] Yin, J., Alvisi, L., Dahlin, M., and Iyengar, A. Engineering
server-driven consistency for large scale dynamic Web
services. In Proceedings of the Tenth International World
Wide Web Conference (WWW), May 2001.

[28] Yuan, C., Chen, Y., and Zhang, Z.. Evaluation of edge
caching/offloading for dynamic content delivery. WWW
2003: 461-471.

142

