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ABSTRACT
Recent observations through experiments that we have performed
in current third generation wireless networks have revealed that the
achieved throughput over wireless links varies widely depending on
the application. In particular, the throughput achieved by file trans-
fer application (FTP) and web browsing application (HTTP) are
quite different. The throughput achieved over a HTTP session is
much lower than that achieved over an FTP session. The reason for
the lower HTTP throughput is that the HTTP protocol is affected
by the large Round-Trip Time (RTT) across Wireless links. HTTP
transfers require multiple TCP connections and DNS lookups be-
fore a HTTP page can be displayed. Each TCP connection requires
several RTTs to fully open the TCP send window and each DNS
lookup requires several RTTs before resolving the domain name to
IP mapping. These TCP/DNS RTTs significantly degrade the per-
formance of HTTP over wireless links. To overcome these prob-
lems, we have developed session level optimization techniques to
enhance HTTP download mechanisms. These techniques (a) min-
imize the number of DNS lookups over the wireless link and (b)
minimize the number of TCP connections opened by the browser.
These optimizations bridge the mismatch caused by wireless links
between application-level protocols (such as HTTP) and transport-
level protocols (such as TCP). Our solutions do not require any
client-side software and can be deployed transparently on a service
provider network to provide 30− 50% decrease in end-to-end user
perceived latency and 50−100% increase in data throughput across
wireless links for HTTP sessions.

Categories and Subject Descriptors
C.2 [Computer Systems Organization]: Computer-Communication
Networks; H.4.m [Information Systems]: Miscellaneous

General Terms
Performance

Keywords
Wireless, Web, Optimizations

1. INTRODUCTION
In current third generation wireless networks, the wireless links

have very large and variable Round-Trip Times (RTTs) [10]. This
is due to the need for buffering and retransmissions from the base
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station to the mobile node (MN) at the link-layer to compensate
for packet losses [2]. Experiments conducted on deployed systems
show that the RTTs experienced across the wireless link vary from
400 msec up to 1 sec. Because of this, user experienced throughput
for specific applications is much lower than the maximum possible
physical layer data rate. For example, with CDMA2000-1xRTT [1]
physical layer, the maximum physical layer data rate is 153.6 Kbps.
With this, the maximum TCP throughput (with protocol overhead)
works out to be 128 Kbps. But our measurements have shown
that for FTP, the throughput achieved in an unloaded CDMA2000-
1xRTT cell is in the range of 100 − 120 Kbps, and for HTTP the
throughput is much lower and is in the range of 50−70 Kbps. With
FTP connections, the throughput does approach that of raw TCP as
the connections are usually long-lived. But HTTP throughput is
degraded mainly due to the following two reasons.

DNS Queries: Popular web pages usually contain several em-
bedded objects hosted under different domain names. For example,
sites such as www.weather.com, finance.cnn.com, etc. have embed-
ded objects that point to many distinct domains. This behavior is
seen even with URL-rewritten [25] pages where the embedded ob-
jects are rewritten to point to Content Delivery Network’s (CDN)
server. For example, the embedded URLs in the top level pages for
Shari’s Berries (www.berries.com) and Britannica (www.britannica.
com), both of which are URL-rewritten, point to sixteen different
Akamai domain names. The web browser performs DNS queries
for these domain names, each of which incurs one to three seconds
delay. On top of this, the time-to-live (TTL) parameter for DNS
responses to the popular web sites is kept small so that DNS based
load-balancing to one of multiple servers is possible [22]. With
web sites that are served through CDNs, this is certainly a require-
ment so that the CDN service provider can redirect requests to an
“optimal” server in their network. A smaller TTL suppresses the
advantages of DNS caching and leads to the browser making very
frequent queries to the DNS server to resolve domain names. For
a better discussion on the overhead of DNS queries on Web traffic,
please refer to [22, 16].

TCP Connections: The web browser at the MN opens at least
one (possibly more) TCP connection to each domain name referred
to by the embedded objects in a top level web page. Thus, even if
the browser and the server support persistent connections (HTTP/1.0
keep-alive or HTTP/1.1), given that at least one persistent HTTP
connection has to be opened to each distinct domain, if the number
of distinct domain names that host the embedded objects is large,
the number of TCP connections opened is also substantial.

The above behavior affects web browsing performance in wire-
line networks as well but in wireless networks, the effect is ampli-
fied due to the large and varying RTT across the wireless link. A
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large RTT increases the delay incurred by DNS lookups; with very
many DNS lookups per web page, this delay increase is substantial
to affect the user perceived performance. A large RTT also leads
to an increase in TCP connection establishment and the ramp up
delay. Again, with the need to establish many TCP connections
per web page, this affects user perceived performance. Thus, TCP
setup delays of a large number of TCP connections and delays due
to DNS queries can account for a significant overhead leading to
decreased HTTP throughput and degraded user perceived perfor-
mance. Notice that the FTP application, whose throughput is close
to the theoretical maximum, performs only one DNS lookup for
the server name and uses only one long-lived TCP connection to
transfer the data.

The focus of this paper is to design solutions to mitigate the ef-
fect due to the above mentioned problems. We propose session
level optimization techniques to enhance the current HTTP down-
load mechanisms, to “mimic” the behavior of FTP over the wire-
less link to achieve better throughput. These techniques strive to
(a) minimize the number of DNS requests made across the wire-
less links and (b) minimize the number of distinct TCP connections
opened across the wireless links when web pages are downloaded.
In other words, most of the DNS lookups and short-lived TCP con-
nections are pushed to the wireline part of the network, making the
wireless part behave like an FTP session. The solutions are HTTP
standards compliant and do not require any changes to be made to
either web clients, web servers or DNS servers. We propose how
our solutions can be deployed transparently (to the web clients, the
web servers and the DNS servers) on a service provider network
and how they can gracefully handle client mobility. Through ex-
periments we demonstrate that the solutions can provide 30− 50%
decrease in end-to-end user perceived latency and 50 − 100% in-
crease in data throughput across wireless links for HTTP sessions.

We now discuss how our schemes fit within the realm of a mul-
titude of solutions that have been proposed to improve data perfor-
mance over wireless links. As shown in Figure 1, solutions have

Application Layer Optimizations
(e.g. compression)

Transport Layer Optimizations
(e.g. TCP optimizations, ACK regulator)

Physical/Link Layer optimizations
(e.g. QoS, FEC)

Session Layer Optimizations
(e.g. URL Rewrite, DNS Rewrite)

Figure 1: Different data optimization solutions.

been proposed at various levels of the protocol stack, such as the
physical/link layer (MAC optimizations) [20, 6, 5], the transport
layer (TCP optimizations) [3, 4, 13, 9, 10, 7, 23] and the applica-
tion layer (data compression) [15, 14].

In the literature, physical/link/MAC layer enhancements have
been proposed that aim to provide improved scheduling algorithms
over the wireless links to increase the total system throughput [5,
6], provide fairness or priorities between the different users [20, 6],
assure minimum transmission rates to each user [5] and incorpo-
rate forward error correction on the link to reduce retransmissions.

The scheduling algorithms aim at controlling the system or user
throughput at the physical layer.

For data applications, it is equally important to consider the data
performance at higher layers in the protocol stack, especially at
the transport (TCP/IP) layer. It has been observed that the round
trip time for TCP packets can abruptly increase and lead to de-
lay spikes (due to lower-layer retransmissions, channel condition
changes, handoff delays or priority scheduling) over wireless links
[10]. These delay spikes may cause TCP timeout, which triggers
the congestion control mechanism in TCP, leading to a decreased
TCP window size and consequently low throughput performance
[10, 7, 23]. Techniques such as the ACK Regulator [10] or Flow
Aggregation [9] have been proposed to minimize the impact of
burstiness in TCP. The motivation for these solutions is to increase
fairness, and avoid buffer overflow and the resulting congestion
avoidance mechanism of TCP.

At the application layer several data compression techniques have
been proposed [15, 14, 12] to increase the effective throughput of
wireless links. Examples include degrading the quality of an im-
age, reducing the number of colors, compressing texts, etc. To
overcome some of the application-level performance problems of
HTTP in wireless links, several proposals have suggested the use
of a special client-side software to implement new wireless specific
protocols [18, 8] or client-side includes to minimize the amount
of data sent over the last mile [21]. Other application-level opti-
mizations try to improve how application-level protocols such as
HTTP perform in these wireless links. Examples include the use of
HTTP1.1 request pipelining [8].

The techniques proposed in this paper can be thought to fall be-
tween application layer optimizations and transport layer optimiza-
tions and hence can be categorized as session layer optimizations
(see Figure 1). These solutions are independent of optimizations at
other layers and are complementary to those solutions. To the best
of our knowledge, this is the first research work that proposes to
enhance web browsing performance over wireless link using ses-
sion layer techniques without adding any client and/or server side
components.

The rest of the paper is organized as follows. The next section
explores some obvious solutions to the HTTP throughput degra-
dation problem across wireless links and discusses their shortcom-
ings. Section 3 describes our session level optimization techniques.
Section 4 discusses experimental results that illustrate the benefits
of these optimization techniques. Numerical results show the im-
provements achieved by these techniques on user perceived delay
and throughput during HTTP downloads. Section 5 discusses how
the proposed scheme works with client mobility. Conclusions are
presented in Section 6.

2. POSSIBLE TECHNIQUES FOR SESSION
LEVEL OPTIMIZATIONS

In the previous section, we identified TCP setup delays and de-
lays due to DNS queries as two major sources of decreased HTTP
throughput and increased user perceived response times. Before
we discuss our session level optimization techniques, we consider
other possible obvious solutions to solve these problems and ex-
plain their shortcomings.

2.1 Explicit Proxy Configuration
The web browsers can be configured explicitly to point to a proxy

cache which is on the wireline network. With such a configuration,
(a) once a DNS lookup is performed to map the proxy’s domain
name to an IP address, no more DNS lookups are needed (as long
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as the DNS cache at the MN does not time out; this timeout can
be made large using a large TTL for the DNS entry). The DNS
lookups required to identify the IP addresses of the domains that
host the embedded objects are now pushed to the proxy which will
perform these operations over the wireline network, and (b) the
browser needs to open TCP connections only to the proxy. With
support for persistent connections, only one or a few (for paral-
lelism) TCP connections will be opened and these will be kept per-
sistent over multiple top level web page downloads as well as em-
bedded object downloads. The overhead of opening multiple TCP
connections to different domains is now pushed to the proxy.

However, explicit proxy configuration is not a viable practical
option as service providers must setup and maintain client’s browser
settings to point to the proxy. This is a management overhead that
the service providers are not willing to take up. Another concern
with an explicit proxy configuration is that this provides the user
the flexibility to reconfigure the proxy setup in the browser and not
go through the service provider’s proxy. This is also a security con-
cern because the service providers implement URL filtering and
other security mechanisms at the proxy and being able to bypass
the proxy defeats these security mechanisms. One possibility is
for the browser to automatically detect and configure a proxy. But
there is no standard solution for automatic proxy configuration.

The most common approach for request redirection is the use of a
transparent proxy. With this approach, client traffic is transparently
redirected to a proxy using a Layer 4 switch [19]. More than 90%
of all proxy deployments happen in transparent mode [11]. But
redirecting traffic to a transparent proxy does not solve the afore-
mentioned problems due to TCP setup and DNS lookups. With a
transparent configuration, the browser still thinks that it is directly
connecting to a server and hence performs all the DNS lookups that
it usually performs and opens the same number of TCP connections
as it would without a proxy; now, all these TCP connections are ter-
minated at the transparent proxy without the browser’s knowledge,
but the TCP setup delay across the wireless link is still the same.

Our solutions discussed in Section 3 permit the deployment of
transparent proxies (i.e., no client configuration required), while
enjoying the benefits of an explicit proxy configuration, e.g., no
DNS lookups and few TCP connections.

2.2 Bundling Content
Another solution is to bundle content at the server and ensure that

all embedded objects in a single top-level page are downloaded in a
single file. The content could either be bundled at the server (which
is not as efficient, as different domains host different embedded ob-
jects, and only content hosted within a domain can be bundled) or
a web proxy can pre-fetch all objects within a web page, create a
single large file, and transfer it to the web browser. The browser
needs to break up the file into individual objects before display-
ing them. The goal here is to download one single file that carries
all the embedded objects and thereby try to achieve a throughput
performance across a wireless link that matches FTP performance.

There are two main problems with this approach. The first is
that traditional proxies are not able to bundle content. Therefore a
proxy that can bundle contents of a web page has to be built and
deployed. Second, content bundling requires installing a client side
component to break up the page into its individual components be-
fore passing them to the browser for display.

Both the aforementioned possible solutions can be used to en-
hance HTTP downloads. However, the solutions are not very prac-
tical. The goal of the session level optimization techniques pre-
sented in this paper is to ensure that the web browser fetches all
embedded objects from a single proxy without the need to explic-

itly configure the browsers to point to the proxy. At the same time,
our solutions will have the same benefits as an explicit proxy solu-
tion in that only the domain name of the proxy is looked up at the
DNS server and only one or a few TCP connections to the proxy is
opened which is then reused for multiple downloads. The solutions
work with any standard browser (e.g. Netscape, Internet Explorer)
and does not require any client-side modification. The next section
details the session level optimization techniques.

3. SESSION LEVEL OPTIMIZATION
TECHNIQUES

In this section, we discuss two different solutions for session-
level optimization. One solution is based on URL rewriting and
the other is based on DNS response rewriting. Each of these solu-
tions has its own advantages and disadvantages. We discuss them
qualitatively after presenting the solutions. In the remainder of the
paper, the terms Mobile Node, Mobile/Wireless Client and Mobile
User are used interchangeably.

3.1 URL Rewriting
Currently, some Content Distribution Network (CDN) service

providers use URL rewriting to redirect requests for embedded ob-
jects to servers in the CDN [25]. The CDN service providers rewrite
content on the origin servers by prefixing the URLs that refer to the
embedded objects with the domain name of the CDN [25]. The
browser gets a top level page from the origin server but because
the embedded object URLs are rewritten to point to the CDN, to
fetch the embedded objects, the browser sends DNS requests to re-
solve domain names within the CDN domain. These requests are
resolved by a DNS server in the CDN network which returns IP
addresses of servers in the CDN network. The embedded objects
are then fetched from these servers.

The URL rewriting technique that we propose for session level
optimization is quite similar to URL rewriting performed by CDN
service providers except that the URL rewriting is performed closer
to the client by a URL rewriting proxy. Further, instead of prefix-
ing the URLs with domain names, the URLs are prefixed with the
IP address of a caching proxy on the wireline network. The URL
rewriting mechanism works as follows. When the browser sends a
request to a top level page, the request as well as the response from
the origin server are intercepted transparently by the URL rewriting
proxy. The response is parsed by the URL rewriting proxy which
rewrites the URLs of the embedded objects by prefixing them with
the IP address of a caching proxy. The URL rewriting proxy and
the caching proxy could be co-located or could be different entities
on different machines.

Figure 2 shows an example of this process. Assume that the
browser retrieves the top level page from www.foo.com. The URL
rewriting proxy transparently intercepts this page and prefixes the
embedded URLs with the IP address of the caching proxy (which is
10.0.0.12). For example http://i.cnn.net/images/plane.jpg is changed
to http://10.0.0.12/i.cnn.net/images/plane.jpg. When the browser is
required to fetch this embedded object, it opens a TCP connection
to 10.0.0.12 and requests the URL i.cnn.net/images/plane.jpg. This
is similar to a request that would be sent by the browser if it had
been explicitly configured to connect to the caching proxy. The
caching proxy connects to i.cnn.net to retrieve /images/plane.jpg or
serve the object if it is locally available. Note that no DNS requests
are made by the browser during this process as the IP address is
prefixed to the embedded URLs. The only DNS request made is
the one to resolve the domain name of the server that hosts the top
level page. The DNS request for i.cnn.net is made by the caching
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<img src = http:// 10.0.0.12/i.cnn.net/plane.jpg>

<img src = http:// 10.0.0.12/images.yahoo.com/news/world.jpg>
<img src = http:// 10.0.0.12/www.news.com/news/roundup.gif>

<img src = http:// 10.0.0.12/www.foo.com/views/latest.gif>
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Original
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<img src = http://i.cnn.net/images/plane.jpg>
<img src = http:// www.foo.com/latest.gif>
<img src = http:// images.yahoo.com/news/world.jpg>
<img src = http:// www.news.com/news/rpundup.gif>

Figure 2: Example of URL rewriting.

proxy, if need be, over the wireline network.
Once a TCP connection is established to 10.0.0.12, the browser

uses this connection to retrieve other embedded objects (i.e., the
gif and jpg images as shown in Figure 2). Other top level pages
are rewritten to prefix embedded URLs with the same IP address
and thus more objects are retrieved through the same connection
until the connection is teared down for some reason; thus TCP con-
nection setup across the wireless link is restricted to only one (or
a few if connections are opened in parallel) TCP connection to the
caching proxy. As evident from the description, with URL rewrite,
all the embedded objects in all top level pages from all web sites
come from the same caching proxy.

3.2 DNS Rewriting
This mechanism for session level optimization rewrites the DNS

responses to point to the caching proxy. When the browser makes
a DNS request for a domain name (both to fetch top level pages as
well as embedded objects within the pages) the DNS responses are
intercepted by a DNS rewriting proxy. The DNS rewriting proxy
and the caching proxy could be co-located or could be different
entities on different machines. A DNS response may contain a list
of IP addresses. The IP address of the caching proxy is added to the
top of the list (so that this is the first IP address that the browser tries
to connect to) and the original IP addresses in the list (that point to
origin server IP addresses) are left as they are. This is done so that
if the wireless client has roamed out and is not able to connect to
the caching proxy, it can try to connect to one of the origin server
IP addresses. We will consider in more detail the impact of client
mobility in Section 5.

At the same time, the time-to-live (TTL) for the caching proxy IP
address is set to a large value so that this is cached at the client for a
reasonably long interval. When the browser receives the rewritten
DNS response, it connects to the IP address of the caching proxy
to retrieve the web pages. Because all DNS responses are rewritten
to add the IP address of the same caching proxy to the top of the
list, the browser opens a TCP connection to this caching proxy and
reuses this connection to fetch multiple top level pages and all em-
bedded objects contained within them. Note that unlike the URL
rewriting mechanism, with DNS rewriting, DNS lookups are made
for the domain names of the embedded URLs, but these are made

only once and are cached and reused.
When DNS responses are rewritten, a question arises as to which

DNS responses should be rewritten. DNS requests do not carry
TCP port numbers and hence it is not possible to identify DNS
requests that correspond to HTTP requests from those that corre-
spond to other applications such as FTP and telnet. We suggest
that the DNS rewriting proxy consult a pre-configured list of do-
main names (similar in concept to lists used for applications such
as content filtering [24]) to decide which DNS responses should be
rewritten. Only if a domain name is found in this list will the cor-
responding DNS response be rewritten. In addition DNS responses
for any domain name that starts with a “www” may also be rewrit-
ten.

ZZZ�IRR�FRP
�������������&DFKLQJ�

3UR[\
���������

'16�6HUYHU

,3�����������
������������������
*(7��LQGH[�KWPO�
+773����
+RVW��ZZZ�IRR�FRP 1DPH��ZZZ�IRR�FRP

,3��"""
1DPH��ZZZ�IRR�FRP
,3���������������
77/�����VHF1DPH��ZZZ�IRR�FRP

,3��"""

1DPH��ZZZ�IRR�FRP
,3���������������
77/�����VHF

1DPH��ZZZ�IRR�FRP
,3�����������
77/����GD\
,3���������������
77/�����VHF

1DPH��ZZZ�IRR�FRP,3��"""

���

���
���

���
'16�

5HZULWLQJ�
3UR[\

���
��� ���

���

���

Figure 3: Example of DNS rewriting.

Figure 3 illustrates the DNS rewriting process where the browser
retrieves http://www.foo.com/index.html. The browser makes a DNS
request to the DNS server to resolve www.foo.com. The DNS
server responds with the IP address 193.123.25.10 with a TTL of
10 seconds. The DNS rewriting proxy intercepts this response
and adds the IP address 10.0.0.12 (which is the IP address of the
caching proxy) and sets the TTL for this entry to be 1 day. The
original IP address is left as is. When the browser receives this re-
sponse, it makes a request to 10.0.0.12 to fetch /index.html. The
Host header in the HTTP request contains the original domain
name www.foo.com. The caching proxy will connect to www.foo.
com to retrieve /index.html and send it to the client or serve the
object to the client if it is available locally. As shown in the figure,
when the caching proxy makes a DNS request to the DNS server to
resolve the domain name, the DNS response does not go through
the DNS rewriting proxy and is not rewritten. Only DNS requests
from the MN will lead to DNS responses being rewritten to add the
IP address 10.0.0.12 and so the MN will fetch all objects through
the caching proxy and can use a persistent connection (or a few
connections) to the caching proxy to fetch all the objects.

3.3 Comparison of Different Techniques
Table 1 compares the two flavors of session level optimization

techniques (URL Rewriting and DNS Rewriting) with Explicit Proxy
and Content Bundling techniques discussed earlier. The two major
issues that favor URL rewriting and DNS rewriting over the other
two techniques are the first two shown in the table.

4. EXPERIMENTAL RESULTS
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Explicit URL DNS Content
Proxy RW RW Bundling

Free from browser
configuration

No Yes Yes No

Client-side compo-
nent not required

Yes Yes Yes No

Works with legacy
caching proxies

Yes Yes Yes No

Table 1: Comparison of different techniques.

We implemented prototypes of the proposed session level op-
timization techniques in Linux and conducted some controlled ex-
periments to measure the quantitative benefits of the proposed tech-
niques. In this section we present the experimental setup and the
summary of the results obtained from the experiments we con-
ducted.

4.1 Experimental setup
The experimental setup we used is shown in Figure 4. There are

six components to the experimental configuration.

'16�
6HUYHU

6TXLG�
&DFKLQJ
3UR[\

&OLHQW�0RELOH�1RGH
�0R]LOOD�%URZVHU�

Internet

:L'6(�
��[577�

3(3
�'16B5:�
85/B5:�

Transparent 
redirection

$SDFKH�:HE�6HUYHU
�9LUWXDO�+RVWLQJ�

Figure 4: Experimental setup.

(1) Performance Enhancing Proxy (PEP): We built the DNS
rewriting proxy and the URL rewriting proxy on Linux. Both of
them are co-located in a machine. We use the term Performance
Enhancing Proxy to refer to these proxies. Of course, both prox-
ies will not be active at the same time; experiments with the DNS
rewriting proxy and URL rewriting proxy are performed indepen-
dently.

(2) Squid Caching Proxy: We used the Squid Proxy as the caching
proxy. In the case of URL rewriting, the embedded URLs are
rewritten by PEP to point to this proxy. Similarly in the case of
DNS rewriting, the DNS responses are rewritten by PEP to point to
this proxy.

(3) Apache Web Server: To perform the experiments with spe-
cific web pages in a controlled environment, the top level pages
and the embedded objects in them from the web sites were copied
to a local machine running apache web server. To run one set of
experiments, the top level pages from the top 100 sites were copied
(as determined by www.hot100.com). To run another set of exper-
iments, the top level pages from Yahoo, CNN and Britannica were

copied. The statistics for these sites are:

• Yahoo (www.yahoo.com): It has 16 embedded objects hosted
in 3 different domains. The size of the page is 74 KB. This
constitutes a typical web site with small number of domains.

• CNN (www.cnn.com): It has 58 embedded objects hosted in
6 different domains. The size of the page is 197 KB. This
constitutes a typical web site with medium number of do-
mains.

• Britannica (www.britannica.com): It has 32 embedded ob-
jects hosted in 15 different domains. The size of the page is
178 KB. This constitutes a typical web site with large num-
ber of domains.

In order to focus specifically on the wireless link delay character-
istics, we downloaded and hosted all necessary objects on this web
server located within our experimental setup. We also hosted our
own DNS server with all necessary records to reproduce the exact
setup of the target Web pages. The Apache Web Server was made to
host the above three top-level domains as well as the domains that
host the embedded objects contained within these top-level pages.
The virtual hosting feature of the web server was used to accom-
plish this configuration. Each virtual host is assigned a different
virtual IP address on this web server. The Squid Proxy retrieves the
top-level pages as well as the embedded objects contained within
these pages from this web server rather than from origin servers on
the Internet.

(4) DNS Server: This is the DNS server to which DNS requests
from both the browser and the Squid Proxy are made. When a
request to fetch a top-level page is made, the DNS server is made
to return the (virtual) IP address of the web server in response to
requests to resolve these domain names. The DNS response from
this server to the browser (but not the response to the Squid Proxy)
is intercepted by the DNS rewriting proxy and rewritten to add the
IP address of the Squid Proxy.

(5) Wireless Data Service Emulator (WiDSE): WiDSE [17] is a
software emulator developed by Lucent Technologies to very ac-
curately emulate a CDMA2000-1xRTT [1] airlink. The emulation
environment supports multiple mobile users that connect to the em-
ulator using Ethernet and uses data captured over Ethernet. It al-
lows for error rates in fundamental and supplemental channels in
both forward and reverse directions to be configured. It also allows
for Radio Link Protocol (RLP) [2] retransmissions to be controlled.
Further, base station scheduling is emulated. The WiDSE runs on a
Linux PC and connects two LANs, one of which is the mobile LAN
(the mobile users on the wireless link) and the other is the network
LAN (wireline network). Ethernet packets from/to the mobile LAN
to/from the network LAN are captured at the WiDSE machine and
the entire protocol process from the mobile node to the PDSN (the
Packet Data Service Node in a CDMA2000 network which is the
gateway between the radio network and the IP network) is emu-
lated. More details on WiDSE are beyond the scope of this paper.
We use a different parameter setup on WiDSE to emulate different
wireless link and background traffic load behaviors.

(6) Client Mobile Node: We use a custom instrumented Mozilla
browser from the client to conduct the experiments. We use this
particular browser for the availability of its source code. We instru-
mented the browser to measure and print out the relevant statistics
(e.g., number of TCP connections and DNS requests made, page
download time, etc.). The browser supports persistent connections
but not request pipelining1 .

1We experimented with other popular browsers like Internet Ex-
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In a service provider deployment, HTTP sessions and DNS re-
quests and responses from the client could always go through the
PEP (i.e., when PEP is co-located within PDSN) or could be trans-
parently redirected to the PEP using techniques like Layer 4 switch-
ing [19] (i.e., when PEP is a separate network element). Note that
secure HTTP sessions (which use port 443) are not redirected to the
PEP cache and remain unaffected. With this setup, the web page
download is as follows:

URL rewriting: For this set of experiments, the URL rewrit-
ing proxy of the PEP is activated. DNS requests for the domain
names of the top level pages from the browser are responded to
by the DNS server with the IP address of the Apache Web Server.
The browser then makes HTTP connections to this web server to
fetch these top level pages and these requests are transparently in-
tercepted by the PEP. PEP forwards these requests to the Squid
Proxy. The Squid Proxy delivers the top-level pages (after fetching
them from the Web server if they are not locally cached) to the PEP
which then rewrites the embedded URLs with the IP address of the
Squid Proxy. The browser then fetches all the embedded objects
from the Squid Proxy by opening one or a few TCP connections
to it thereby emulating an explicitly configured proxy (these re-
quests and responses transparently pass through the PEP as well).
No more DNS requests are made over the wireless link. Of course,
the Squid Proxy, if it does not have the requested object, will re-
trieve it from the web server and issue the required DNS request(s)
to the DNS server.

DNS rewriting: For this set of experiments, the DNS rewrit-
ing proxy of the PEP is activated. DNS requests for the top level
pages are made from the browser to the DNS server (transparently)
through the PEP. The DNS responses are intercepted and rewrit-
ten by the PEP to include the IP address of the Squid Proxy. The
browser then makes a TCP connection to the Squid Proxy to fetch
the top level pages (these requests and responses transparently pass
through the PEP). Following that the browser makes DNS requests
to resolve the domain names of the embedded objects, again (trans-
parently) through the PEP. The responses to these requests are also
rewritten by the PEP to include the IP address of the Squid Proxy.
The browser then fetches the embedded objects from the Squid
Proxy over the same TCP connection(s) it had opened earlier to
the Squid Proxy.

One point to note here is that with URL rewriting, DNS requests
are made from the browser over the wireless link to resolve only the
top level domain names. With DNS rewriting, DNS requests for
the domain names that host the embedded objects are made once
over the wireless link as well, but because the TTL for the DNS re-
sponses is made large, the DNS responses are cached at the browser
for a long period of time and further DNS requests are minimized.
Also note that the total number DNS requests made to the DNS
server remains the same. But with session level optimization most
of the request-response is pushed to the wireline network, which
reduces the delay observed over the wireless link.

For clarity, in the description above, we describe the PEP and
the Squid Proxy as two separate devices. In our experiments, we
co-located the PEP and the Squid cache in the same device.

4.2 Results
With the above experimental setup, we measured three different

performance metrics with and without session level optimization
techniques. The results from these experiments are detailed below.

plorer and Netscape, none of which seem to support request
pipelining.

4.2.1 Number of TCP Connections and DNS Re-
quests

For this set of experiments, we copied the top level pages of the
top 100 URLs (as determined by www.hot100.com) as well as the
embedded objects on these pages and configured the web server in
our setup to deliver these objects. The browser was instrumented
to sequentially request this set of top 100 pages multiple times (20
in our experiment). Each time the set of pages was retrieved, we
measured the total number of TCP connections established and the
total DNS requests made. The results averaged over the 20 runs
with and without session level optimizations are shown in Figure 5.
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Figure 5: Number of TCP connections and DNS requests made
with and without session level optimizations.

Consider the number of TCP connections without session level
optimization (referred to as NULL). The number of TCP connec-
tions made is around 1110, which translates to an average of 11
connections per top level web page. During these experiments, the
browser and the server were configured to keep persistent connec-
tions. However, since the embedded objects were hosted on dif-
ferent domains, the browser still had to make multiple connections
to fetch a top level page. With URL rewriting, the browser makes
individual TCP connections to fetch the 100 top level pages; thus at
least 100 TCP connections will be made to the web server (which
are actually transparently redirected to the caching proxy). How-
ever, on top of this, a little more than 100 extra TCP connections
are made to fetch the embedded objects directly from the caching
proxy. With DNS rewriting, the results are quite similar. Now, the
100 top level pages as well as the embedded objects are all retrieved
directly from the caching proxy. However, due to the need for par-
allelism, a little more than 200 connections are used. Of course,
if the requests had been completely serialized, only one extra TCP
connection (which is now explicitly to the caching proxy) should
be needed. But browsers tend to open extra connections for paral-
lelism especially if an existing TCP connection is already in use.
This is the reason for the extra connections.

The number of DNS requests without session level optimizations
is around 300. This translates to an average of 3 different domain
names per web page. With DNS rewriting, the number of DNS
requests is about the same as the number of DNS requests for the
NULL case since all domain names need to be resolved. With URL
rewriting, the number of DNS requests is close to the number of top
level pages, i.e. 100, and much lower than for DNS rewriting or for
the NULL case. This is because with URL rewriting the browser
performs DNS requests only for the top-level pages. It does not
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perform any request for the embedded objects since all embedded
objects are fetched from the same source (i.e. the caching proxy IP
address).

Observe from the figure that both the number of TCP connec-
tions and the number of DNS requests are reduced with session
level optimization. The reduction is more significant in the case of
TCP connections.

4.2.2 Response Time
For this experiment, the Mozilla browser was instrumented to

compute the time between the sending of the request for the top
level page and the complete display of the page (including all em-
bedded objects). We refer to this as the user perceived response
time for the page. We measured this response time at the browser
to download three popular top level pages (Yahoo!, CNN and Bri-
tannica) and the embedded objects contained in them. Each of these
pages has different characteristics regarding the number of embed-
ded objects on the page, the number of distinct domains that host
the embedded objects, and the total size of the page.

The WiDSE emulator can be configured to provide different cell
characteristics and background traffic load by tuning the forward
and reverse error rates on the fundamental and supplemental chan-
nels, and the number of retransmissions on the radio-link. We con-
figured these parameters to emulate two cells with different per
user throughput and delay. As explained earlier, the maximum FTP
throughput that we observed in an unloaded cell is in the range of
100 − 120 Kbps. Using this as a yardstick and based on our own
measurements in a live CDMA2000-1xRTT network, an average
cell was configured to have an average per user FTP bandwidth of
around 78 Kbps and an average round-trip time from the browser
to the web server (within our controlled environment) of 400 msec.
A congested cell was configured to have an average per user FTP
bandwidth of around 56 Kbps and an average round-trip time from
the browser to the web server of 600 msec. Note that the congested
cell represents a scenario where the number of background users in-
creases significantly, emulating the peak hour characteristics seen
by a single user in a deployed cell.

The results are shown in Figure 6. The response times were
measured and averaged over 20 downloads of each of the top level
pages and the corresponding embedded objects. In both cell types,
response times for CNN and Britannica are much higher than that
of Yahoo!. This is because Yahoo! has lot fewer domain names
and embedded objects than the other two. Among CNN and Bri-
tannica, CNN has more embedded objects but fewer domains. The
time required for making DNS requests balances out with the time
required to download the embedded objects. This results in similar
response time for them. In all cases, the response time with session
level optimization is much smaller than without the optimization.
A mean decrease of around 30% is seen in the case of an average
cell and a decrease of around 50% is seen in the case of a congested
cell. The standard deviation was less than 10% for the average cell
and less than 20% for the congested cell. This decrease is an artifact
of saving several RTTs during the web page download. This is why
the decrease is much more prominent in the case of a congested cell
which has a higher RTT across the wireless link.

4.2.3 Throughput
We calculated the throughput for HTTP downloads and com-

pared them with that for FTP. The results are shown in Figure 7.
Firstly, from Figure 7 (a) observe that the achieved through-

put for all the three downloaded web sites was around 35-50%
higher with both URL rewriting and DNS rewriting compared to
the NULL case. Secondly, when we compare the HTTP download

throughputs with FTP, we find that Yahoo! achieves a through-
put that is closest to the FTP throughput. The reason for this is
that in our experiments, although both the browser and server use
persistent connections, pipelining is not enabled (not supported by
the browser). Because of this, although multiple objects are down-
loaded through the same TCP connection, an object has to be fully
downloaded before a request for another object is sent on the same
connection. This introduces a RTT delay during which the connec-
tion is idle. With Yahoo!, this effect is minimal because the number
of embedded URLs in the top level page for Yahoo! are not very
many and hence the number of such idle times are small. The other
two web sites have many more embedded objects and hence this
effect is more pronounced.

In order to justify the above conjecture, we estimated the through-
put that could have been achieved with CNN if we had request
pipelining. At the browser, we observed an average of 4 simulta-
neous TCP connections to download embedded objects. Therefore,
each persistent TCP connection is used to download roughly 15 ob-
jects. This results in each connection being idle for about 14 RTTs,
or 14 x 400 msec = 5.6 sec. When we subtract the idle time from
the observed response time and compute the throughput, it turns out
to be around 73 Kbps, which is very close to the FTP throughput.

The results with a congested cell are even better. From Fig-
ure 7 (b) observe that the throughput achieved using URL rewrit-
ing and DNS rewriting is more than double compared to the NULL
case. Further, with URL rewriting, the throughput for Yahoo! is
almost the same as FTP throughput. The throughputs for the other
two sites are further away from the FTP throughput for the same
reasons as above.

5. EFFECT OF USER MOBILITY

We now consider the effect of mobility on the URL rewriting
and DNS rewriting techniques under different scenarios. For this
discussion, assume that the PEP and the Caching Proxy are co-
located (as it would normally be the case in a real deployment).
We refer to them as PEP since there is no ambiguity. Also recall
that HTTP requests are transparently intercepted by the PEP, i.e., a
Layer 4 switch transparently redirects all HTTP requests (i.e., port
80) to the PEP.

To study the impact of mobility we consider a mobile user mov-
ing from its current region to a new region, where “region” refers
to an area served by a single PEP infrastructure (Layer 4 switch
plus a PEP or a farm of PEPs). Such a definition is independent
of whether mobility takes place within a single service provider or
between different service providers. When a user moves from the
current region with PEP service to a new region with PEP service,
this means the user requests in the new region are serviced by a PEP
infrastructure that is different from the one in the current region.

There are three interesting scenarios to consider: (A) PEP ser-
vice is not available in the current region but is available in the new
region, (B) PEP service is available both in the current and new
regions and, (C) PEP service is available in the current region, but
not in the new region. For these scenarios we address the following
issues:

• In the case of URL rewriting, what is the effect of rewriting
the links to embedded objects in a top-level page with the
IP address of a specific cache? When a user either moves
from one region to another in the middle of a page download,
or reloads the top-level page from the browser cache after
having moved, what if this cache is inaccessible? Will the
retrieval of embedded objects fail in this case?
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Figure 6: Response time in different types of cells. The numbers on the bars show the percentage decrease compared to the NULL
case.
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Figure 7: Throughput in different types of cells. The numbers on the bars show the percentage decrease compared to the NULL
case.

• In the case of DNS rewriting, what is the effect of DNS
caching at the client? Given that the IP address of a specific
cache is returned to the client in response to domain name re-
quests (both for top-level pages and embedded objects) what
if the user moves and this cache is inaccessible? Because of
DNS caching, the client will still try to fetch objects from
this cache. Will these requests fail?

As we discuss next, both URL and DNS rewriting handle user mo-
bility in a graceful manner. We point out there relative advantages
and disadvantages under each scenario.

5.1 PEP service not available in the current
region but available in the new region

Under this scenario only new HTTP session requests (TCP SYNs)
are serviced by the PEP infrastructure in the new region while ex-
isting HTTP sessions initiated in the current region go directly to
the origin server. This is done by the Layer 4 switch to redirect
HTTP traffic to the PEP only if a TCP connection state already ex-
ists for a packet. Thus existing TCP connections from the current
region are used to complete all unfinished downloads from the ori-
gin server. New connections in the new region benefit from session

level optimizations.
The impact on the efficiency of the browser cache depends on the

actual session-level optimization used. While in the current region,
the browser cache indexes objects based on their domain names as
the key (e.g., www.foo.com/image.gif). With URL rewriting in the
new region, if the client refreshes a top-level page 2 the same em-
bedded objects can now be referred to with a different URL (e.g.,
10.0.0.12/www.foo.com/image.gif). This will cause the browser
to fetch some embedded objects even if they are cached locally,
though under a different name.

There is no impact on the browser cache with DNS rewriting.
Since DNS rewriting only changes the mapping between a given
domain name and its IP address, and does not require any changes
to the embedded URLs, the browser cache does not get affected as
the user moves and DNS rewriting becomes active.

5.2 PEP service available both in the current
and new regions

In this scenario the service remains uninterrupted both with URL

2This could happen if the top-level page has expired and need to be
refreshed, for example in case of a dynamic top-level page.
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rewriting and DNS rewriting. We discuss these issues below in
more detail.

5.2.1 URL rewriting
As the user moves, new connections for web pages get serviced

by the new region. If the user moves from the current region to
the new region in the middle of an object download, then two cases
arise: (i) If the current PEP is accessible from the new region, then
the existing TCP connections will still be serviced by the current
PEP while new connections will be serviced by the new PEP. This
situation is similar to Scenario A. (ii) If the PEP in the current re-
gion is not reachable from the new region, then the new PEP will
reset the TCP connection and the browser will automatically open
a new one to fetch the object.

The impact on browser caching in this scenario is minimal. Sup-
pose the current PEP has rewritten the embedded object URLs with
an IP address prefix of 10.0.0.12, and so the browser cache contains
objects with the same prefix (e.g., 10.0.0.12/www.foo.com/image.gif).
If the client now refreshes the top-level page in the new region
(due to the same argument as in the previous section), two cases
can arise depending on the IP address prefix used by the new PEP.
Usage of the same IP address (e.g., 10.0.0.12) results in browser
cache hit. If the IP addresses are different (e.g., 10.0.0.1 is used
by the new PEP) there is a browser cache miss for the object (e.g.,
10.0.0.1/www.foo.com/image.gif), and the object is fetched even
though it exists in the cache with a different key.

Usage of the same IP address technically poses no problem. Con-
sider Figure 2 where the links to embedded objects are rewritten to
point to IP address 10.0.0.12, which is the same as the caching
proxy. However, note that the IP address used to rewrite embed-
ded object URLs does not have to match the caching proxy’s IP
address. As a matter of fact, it could be any valid IP address. When
HTTP requests are made to the rewritten IP address, they are trans-
parently redirected to the PEP based only on the destination TCP
port number and not on the IP address. Therefore for the scheme to
work, a PEP can use a (virtual) IP address of its choice to rewrite
top-level pages. However, to improve the hit rate in the browser
cache, it is recommended that the same IP address is used by all the
PEPs. This requires pre-configuration of all PEPs to use the same
IP address to rewrite embedded object URLs.

5.2.2 DNS rewriting
The above discussion applies to DNS rewriting as well. In Fig-

ure 3, it is shown that in response to a DNS request for www.foo.com,
the IP address 10.0.0.12 is returned to the client. However, any
other IP address could have been used. Assume that the same IP ad-
dress is used by all PEPs to perform DNS rewriting (e.g. 10.0.0.12).
DNS requests for both top-level pages and embedded objects within
www.foo.com will return the same IP address. When the browser
makes requests to 10.0.0.12 to fetch the top-level page and the em-
bedded objects, these requests will be transparently redirected to
the PEP. When the client moves to a new region, new DNS re-
sponses will be rewritten with the same IP address 10.0.0.12. More-
over, requests for domain names previously accessed will again be
sent to 10.0.0.12. These requests will now be redirected transpar-
ently to a new PEP in the new region; thus the mobile client will not
perceive any service disruption. If the client moves in the middle
of an object download, the new PEP will reset the connection and
the browser will automatically open a new connection to fetch the
missing objects through the new PEP.

The effect of DNS rewrite on browser cache is same as in Sce-
nario A and is not discussed further.

5.3 PEP service available in the current region
but not available in the new region

In this scenario, a user moves from a region where PEP service is
available to a region where PEP service is unavailable (for example,
from an ISP who provides PEP service to another who does not).
Let us consider the effect of both URL rewriting and DNS rewriting
on embedded object retrieval in this scenario.

5.3.1 URL rewriting
Consider the situation where a user moves from a region with

PEP service to a region without PEP service in the middle of a
page download. Assume that the rewritten top-level page had been
downloaded and the embedded objects are being downloaded. The
requests to embedded objects from the new region will fail as the
browser will try to fetch them from a cache IP address (say, 10.0.0.
12). As the new region is unaware of the PEP service, there is no
transparent redirection to a cache, and requests to this (virtual) IP
address will fail. A similar situation occurs when a rewritten top-
level page is retrieved from the browser cache after the user moves
to a new region with no PEP service. The browser cache will try
to fetch the embedded objects that have been rewritten using the
10.0.0.12 IP address, and unless they are locally cached as well,
these requests will fail. If the top-level page itself is retrieved from
the network after the mobile node has moved to the new region,
all the operations will progress correctly; the top-level page and
the embedded objects will now be fetched from the origin servers.
However, similarly to Scenario A, the browser’s cache efficiency
will be reduced since existing cached objects are now referred un-
der a different name.

One possible solution to prevent requests from failing when the
browser cache tries to fetch objects with previously rewritten URLs
(e.g. 10.0.0.12), is to pick a public and globally routable virtual IP
address (e.g. 192.11.210.2) that is used by each PEP to rewrite em-
bedded object URLs. This IP address would represent one or more
caches in the current region’s network that are globally reachable
from any other region.

5.3.2 DNS rewriting
DNS rewriting is more resilient to this situation because of the

following reason. Consider the situation where a user moves in
the middle of a page download. The requests to retrieve embed-
ded objects in the new region will either lead to a DNS request, in
which case there will be no DNS rewriting and the objects will be
fetched from the origin server, or a DNS entry will be found in the
local DNS cache and the browser will make a request to the virtual
IP address used by the PEPs. If the virtual IP address is globally
routable and represents a globally reachable set of PEPs, then the
client will be able to fetch the content without any problem. How-
ever, if the IP address is not reachable from the new region, then the
initial request will fail, as it will be made to non-reachable PEP IP
address. However, as described in Section 3.2, DNS rewriting also
includes the IP address of the origin server as a secondary DNS
entry. This allows the client to revert to the IP address of the ori-
gin server and fetch the content without suffering any disruption.
To validate this scenario we studied the behavior of the most popu-
lar browsers under such a situation. We found that upon failure of a
given DNS record IP address, the browser will make requests to the
subsequent IP addresses in the list until one succeeds. Because of
this feature, the browser will make a request to the next IP address
in the list which will be the IP address of an origin server.

To summarize, both URL and DNS rewriting can handle mobil-
ity very gracefully when a user moves in regions with PEP service,
avoiding any service disruption and maintaining the efficiency of
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the browser cache. When a user moves between regions where one
has PEP service and the other does not, DNS rewriting can han-
dle mobility in a very elegant manner, with no service disruption or
cache impact. However, URL rewriting may lead to higher browser
cache miss. This is a minor problem and can be resolved with some
of the solutions mentioned above. In case of deployment, we be-
lieve that the choice of a particular session-level optimization tech-
nique will be greatly influenced by the device that would implement
the scheme. For example, a router or GGSN/PDSN may be better
suited to implement DNS rewriting since it does not parse HTML
pages, while a caching proxy may be better suited to implement
URL rewriting.

6. CONCLUSIONS

In this paper, we presented two session level optimization tech-
niques, namely URL and DNS rewriting, to enhance the perfor-
mance of HTTP downloads over wireless links. Two major issues
affect this performance and both of them are dependent on the large
and variable round-trip time over the wireless link. One is the TCP
setup delay due to multiple connections being initiated from the
browser over the wireless link to different servers to download a
single web page (and the embedded objects contained within it).
The other is the DNS lookup delay due to multiple DNS lookups
being performed over the wireless link. The techniques presented
in this paper overcome these problems by (a) minimizing the num-
ber of DNS lookups over the wireless link and (b) minimizing the
number of TCP connections opened by the browser. These tech-
niques do not require any client-side software and can be deployed
transparently on a service provider network. Experimental results
based on a prototype implementation of the techniques show a 30-
50% decrease in end-to-end user perceived latency and 50-100%
increase in data throughput across wireless links for HTTP ses-
sions.
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