<|||

Web Services Flow Language
(WSFL 1.0)

May 2001

By Prof. Dr. Frank Leymann, Distinguished Engineer
Member IBM Academy of Technology
IBM Software Group

IBM Software Group

Notices

The authors have utilized their professional expertise in preparing this report. However,
neither International Business Machines Corporation nor the authors make any
representation or warranties with respect to the contents of this report. Rather, this report is
provided on an AS IS basis, without warranty, express or implied, INCLUDING A FULL
DISCLAIMER OF THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE.

Acknowledgments

The Web Services Flow Language is the result of a team effort:

Francisco Curbera, Frank Leymann, Dieter Roller and Marc-Thomas Schmidt created the
language and its underlying concepts.

Matthias Kloppmann and Frank Skrzypczak focused on its lifecycle aspects. Francis Parr
worked on details of the example in the appendix.

Many others helped by reviewing and discussing earlier versions of the document, most
notably Sanjiva Weerawarana and Claudia Zentner.

Note: IBM intends to work with partners on the creation of a standard in the subject area.
This specification is the IBM input to the corresponding standardization effort.

Web Services Flow Language ii

IBM Software Group

Contents

1 Introduction
N Flow Models
.2 Global Models
.3 Recursive Composition
4 Hierarchical and Peer-to-Peer Interaction
.5 Relation to Web Services Stack
.6 Document Organization
Language Overview
2.1 Use Cases
2.2 A Quick Tour of WSFL
3 Service Composition Metamodel
3.1 Flow Metamodel
3.1.1 Syntax
3.1. Activities
3.1 Control Links
3.1. Transition Conditions
3.1. The Origin of Flow Dynamics
3.1. Control Links As Edges
3.1. Forks And Parallelism
3.1. Joins and Synchronization
3.1. Join Conditions
3.1. Start and End Activities
3.1.1. Exit Conditions
3.1.1.11 Loops
3.1.1.12 Data Links
3.1.1.18 Input and Output of Flows
3.1.1.14 Instances and Models
3.1.1.15 Service Providers
3.1.1.16 Endpoint Properties
3.1.2 Operational Semantics
3.1.2.1 Dead-Path Elimination
3.1.2.2 Summary: Operational Semantics
3.2 Lifecycle Interface
3.3 Business Process Lifecycle
3.4 Activity Lifecycle
3.5 Recursive Composition Metamodel
3.5.1 Composition Metamodel Overview
3.5.1.1 Global Models
3.5.1.2 Service Providers as Components
3.5.1.3 Connections between Service Providers
3.5.1.4 Flow Models as Service Providers
352 Graphical Representation of Port Types and Service Provider Types
353 Operations As Activity Implementations
3.5.4 Which Operation Is the Activity Implementation?
355 Realizing Activity Implementations
3.5.6 Exporting Operations
3.5.7 Plug Links
3.5.8 Flows and Plug Links
3.5.9 Making Things Convenient
3.5.10 Mapping Data
3.5.11 Aggregating Web Services
3.5.12 The Global Model
4 Language Description
41 Document Structure and Naming
4.2 References to External Definitions

—_ 4 4

©CONOUT™ WN =

TG UG G GG G G G G G T G U G
—_

Web Services Flow Language

ONNNNOODOOO OO

IBM Software Group

(@]

4.3 Flow Models
4.4 Service Providers and Service Bindings
4.41 Service Provider Types
4.4.2 Service Providers
443 Service Locators
4.5 Defining Business Processes
451 Activities
4.5.1.1 Activity Implementation
4.5.1.2 Exit Condition
4.5.1.3 Join Condition
4.5.1.4 Container Materialization
4.5.1.5 Summary: Activity Schema
452 Control Links
4.5.3 Data Links and Data Mapping
4.6 Defining the Interface of a Flow Model
4.6.1 External and Internal Interfaces
46.2 Internal Implementations
46.3 Exporting Activities
46.4 Exporting Operations
4.6.5 Support for Lifecycle Operations
4.6.5.1 Lifecycle Operation spawn
4.6.5.2 Lifecycle Operation cal |
4.6.5.3 Lifecycle Operation enqui r e
4.6.5.4 Lifecycle Operationterm nate
4.6.5.5 Lifecycle Operation suspend
4.6.5.6 Lifecycle Operation resume
4.6.6 Putting Things Together: The External Interface of a Flow
4.7 Plug Links
4.8 Global Model
Appendix A: WSFL Schema
Appendix B: Internal Activity Implementations
6.1 EXE Files
6.2 Customer Information Control System (CICS) Programs
6.3 Java Classes
Appendix C: Endpoint Property Extensibility Elements
7.1 Execution Limits
7.2 Escalation
7.3 Observation
7.4 Contacts
Appendix D: The Ticket-Order Example
8.1 Overview
8.2 Messages for the Ticket-Order Example
8.2.1 Short Description and Graphical Definition
8.2.1.1 The Credit Card Message
8.2.1.2 The Participants Message
8.2.1.3 The Journey Message
8.2.1.4 The Trip Order Message
8.2.1.5 The Legs Message
8.2.1.6 The Ticket Order Message
8.2.1.7 The ltinerary Message
8.2.2 Additional Messages
8.2.3 Message Definition File
8.3 Port Types Externalized by the Flow Models of the Travel Example
8.4 The Flow Models for Airline and Agent
8.4.1 Service Provider Type Definitions
8.4.2 The Airline Flow Model
84.3 The Travel Agent Flow Model
8.5 The Global Model t ri pNTi cket

Web Services Flow Language

42
43
43
44
45
48
48
48
50
50
51
51
52
54
55
56
57
57
58
58
59
60
60
61
61
62
62
65
66
70
78
78
80
81
83
83
83
83
83
85
85
86
86
86
87
89
89
90
91
92
92
92
97
99
99

100

102

105

IBM Software Group

9 References 107

Web Services Flow Language %

1.1

1.2

1.3

1.4

IBM Software Group

Introduction

The Web Services Flow Language (WSFL) is an XML language for the description of Web
Services compositions. WSFL considers two types of Web Services compositions:

» The first type specifies the appropriate usage pattern of a collection of Web
Services, in such a way that the resulting composition describes how to achieve a
particular business goal; typically, the result is a description of a business process.

» The second type specifies the interaction pattern of a collection of Web Services; in
this case, the result is a description of the overall partner interactions.

Flow Models

In the first case, a composition is created by describing how to use the functionality provided
by the collection of composed Web Services. This is also known as flow composition,
orchestration, or choreography of Web Services. WSFL models these compositions as
specifications of the execution sequence of the functionality provided by the composed Web
Services. Execution orders are specified by defining the flow of control and data between
Web Services. For this reason, in this document, we will also use the term flow mode/to refer
to the first type of Web Services compositions. Flow models can especially be used to model
business processes or workflows based on Web Services.

Global Models

In the second case, no specification of an execution sequence is provided. Instead, the
composition provides a description of how the composed Web Services interact with each
other. The interactions are modeled as links between endpoints of the Web Services’
interfaces, each link corresponding to the interaction of one Web Service with an operation
of another Web Service’s interface. Because of the decentralized or distributed nature of
these interactions, we will use the term global mode/in this document to refer to this type of
Web Services composition.

Recursive Composition

WSFL provides extensive support for the recursive composition of services: In WSFL, every
Web Service composition (a flow model as well as a global model) can itself become a new
Web Service, and can thus be used as a component of new compositions. The ability to do
recursive composition of Web Services provides scalability to the language and support for
top-down progressive refinement design as well as for bottom-up aggregation. For these
reasons, recursive composition has been a central requirement in the design of the WSFL
language.

Hierarchical and Peer-to-Peer Interaction

WSFL compositions support a broad spectrum of interaction patterns between the partners
participating in a business process. In particular, both hierarchical interactions and peer-to-
peer interactions between partners are supported. Hierarchical interactions are often found
in more stable, long-term relationships between partners, while peer-to-peer interactions
reflect relationships that are often established dynamically on a per-instance basis.

Web Services Flow Language 6

1.5

1.6

IBM Software Group

Relation to Web Services Stack

The guiding principle behind WSFL is to fit naturally into the Web Services computing stack.
It is layered on top of the Web Services Description Language (WSDL) [1]. WSDL describes
the service endpoints where individual business operations can be accessed. WSFL uses
WSDL for the description of service interfaces and their protocol bindings. WSFL also relies
on an envisioned “endpoint description language” to describe non-operational
characteristics of service endpoints, such as quality-of-service properties. Here, we will refer
to this language as the “Web Services Endpoint Language” (WSEL), which is briefly
introduced in Section 7 “Appendix A: Endpoint Properties Extensibility Elements.” Together,
WSDL, WSEL, and WSFL provide the core of the Web Services computing stack.

Document Organization
This document is organized as follows:

» Section 2 “Language Overview" provides an example and a brief overview of the
WSFL language.

» Section 3 “Service Composition Metamodel” describes the metamodel underlying
WSFL.

« Section 4 “Language Description” presents a detailed description of the elements of
the language.

e Section 5 “Appendix A: WSFL Schema*“ features the schema for WSFL.

» Section 6 “Appendix B: Internal Activity Implementations” defines WSDL extensibility
elements needed to bind to selective executables providing internal activity
implementations.

e Section 7 “Appendix C: Endpoint Properties Extensibility Elements” features an initial
set of extensibility elements that describe endpoint properties of activities.

» Section 8 Appendix D: “The Ticket-Order Example” contains main parts of a more
complex example of WSFL usage.

2 Language Overview

2.1

Before getting into a more detailed description of WSFL, we will sketch two use cases for the
application of Web Services composition.

Use Cases

In the first use case, an enterprise wants to implement a business process for processing
purchase orders using a set of Web Services.

They would identify the:

» Business process (for example, check credit history of the customer, reject order,
process order, ship goods)

» Business rules for sequencing of these steps (for example, first check credit, then
depending on the outcome, either reject the order or process the order followed by
shipment of the goods)

e Flow of information between the process steps (for example, take purchase order as
input to the process, pass it on to check credit, and so on).

In this “bottom-up” development scenario, they would find Web Services already offered by
other vendors and companies that can be used to realize the various processing steps (for

Web Services Flow Language 7

IBM Software Group

example, a credit-checking service offered by a financial institution, a goods-production
service offered by their favorite supplier, and a shipping service). They would then use WSFL
to formally define the new business process.

<servi ceProvi der > y__ﬂ

| <flowSource> |

| <serviceProvi der Type> |

‘ <transitionCondition>

‘ <wsdl : oper ati on> ‘

‘ <control Li nk

> |

<pl ugLi nk>

IIHIHHHIHIHI ’ //_‘ <f | owibdel >
// \\
// ,/,
4 - <export >
/" [<mp>]_/@mz [<export> |
// /
1
l ___///7 ‘II' ||||M
‘ <dat aLi nk> ‘ " X >0
"""" = @ O
A E—

| <gl obal Model > |

A WSFL flow model defines the structure of the business process: WSFL activities (circles in
the figure above) describe the processing steps, and WSFL data and control links represent
the sequencing rules and information flows (eventually performing necessary data mapping)
between these activities. For each activity, they would identify the WSFL service provider
responsible for the execution of the process step (for example, services offered by shipping
company A or by goods-supplier company B) and define the association between activities
in the flow model and operations offered by the service provider using WSFL export and
plug link elements. The resulting flow model is shown in the center of the figure above with
"swim lanes” representing the association of activities with service provider roles.

The second use case is a variant of the previous example. Here, an enterprise wants to offer
a Web Service that mediates between service requesters (customers) who want to order
goods and service providers who produce and deliver goods.

As in the previous example, the enterprise would define the business process for handling
purchase orders as a WSFL flow model. In this case, however, they would not bind the
activities to particular service providers. Instead they would identify the kind of service
provider (role) they want for each activity (for example, some goods supplier for activity
process order, some shipping service for activity ship goods).

They would then define the WSDL Web Service interface of the flow model, that is, the WSFL
Service Provider Type of the flow model. This interface has two facets: One facet defines the
interface that a customer would use when requesting processing of a purchase order, that
is, the operations that the Web Service provides for use by service requesters. For example,
the new service would provide an operation that takes a purchase order as input and passes

Web Services Flow Language

2.2

IBM Software Group

it on (through a WSFL flow source) to the activities in the flow model for processing. The
other facet identifies the operations that the service requires from the other service
providers.

For each activity, there is one (proxy) operation on the external interface of the flow model
that the service would use to interact with a service provider implementing that activity. The
resulting Web Service is depicted as the dark shape around the flow model in the figure
above. This Web Service can now be advertised in a service repository where it would
attract two kinds of parties: those who want to use services provided by the Web Service (in
our case, customers who want to place orders) and those who want to play the role of a
service provider (in our example, a shipping or a goods supplying service).

To make this model work, the activities in the flow model must be connected to operations
that actually perform the process steps represented by each activity. This is done by a WSFL
global model (the outermost box in the figure above), which describes the interaction
between service providers and requesters. Our enterprise would use WSFL service provider
locators to define criteria for selection of a particular service provider and WSFL plug links to
associate operations on service provider elements with the service-requesting operations on
the interface of the flow model.

A Quick Tour of WSFL

The purpose of a WSFL document is to define the composition of Web Services as a flow
model or a global model. Both models have a declared public interface and an internal
compositional structure. The composition assumes that the Web Services being composed
support certain public interfaces, which can be specified as a single port type or as a
collection of port types. We call this collection a service provider type.

The following code is a simplified example of a WSFL service composition defining a flow
model called t ot al Suppl yFI ow. The syntax of many elements has been abbreviated in the
interest of conciseness. The example assumes a set of WSDL port type and operation
definitions as public interface of the service provider types referred to: the suppl i er and
shi pper service provider types are somehow assumed by the flow model; the

t ot al Suppl y service provider type appears to be defined by the flow model, but it has
been already defined somewhere else, which is perfectly valid. Note that the flow model
imposes “sequencing constraints” for the execution of operations of the t ot al Suppl y
service provider type.

<f | owbdel name="t ot al Suppl yFl ow"
servi ceProvi der Type="t ot al Suppl y">

<servi ceProvi der name="mySupplier" type="supplier">
<l ocator type="static” service="qualitySupply.coni/>
</ servi ceProvi der >

<servi ceProvi der nane="nmnyShi pper" type="shi pper">
<l ocator type="static” servi ce="worl| dShi pper.coni/>
</ servi ceProvi der >

<activity nane="processPO >
<per f or mredBy servi ceProvi der="nySupplier”/>
<i npl enent >
<export>
<target portType="t ot al Suppl yPT"
oper ati on="sendProcOrder”/ >
</ export >
</i npl enent >
</activity>

Web Services Flow Language 9

IBM Software Group

<activity nane="accept Shi pnent Request " >
<per f or mredBy servi ceProvi der =" nyShi pper”/ >
<i npl ement >
<export >
<target portType="t ot al Suppl yPT"
operati on="sendSR’/ >
</ export >
</i mpl enent >
</activity>

<activity nane="processPaynent”>
<per f or mredBy servi ceProvi der="nySupplier”/>
<i npl ement >
<export >
<target portType="t ot al Suppl yPT"
oper ati on="sendPaynent "/ >
</ export >
</i mpl enent >
</activity>

<control Li nk source="processPQO' target="accept Shi pment Request"/ >

<dat aLi nk sour ce="processPO' target="accept Shi pmrent Request ">
<map sour ceMessage="anl NVandSR"' t ar get Message="anSR"/ >
</ dat aLi nk>

</ f | owivbdel >

The t ot al Suppl yFl ow flow model specifies how to collaborate with two service provider
types in order to offer to their joint customers a complete business process. Each of the two
service providers used within the flow model is represented by a separate

<servi ceProvi der > element. One service provider is of type suppl i er and is referred to
as nySuppl i er in the flow model. The other service provider is of type shi pper and is
called my Shi pper . Both service providers contain “binding” information as well. This
information is provided by means of a <l ocat or > element, which specifies the actual
service that will be used when the model is instantiated. In this case, binding information is
“static,” but more dynamic binding schemes are possible.

The business process represented by the t ot al Suppl yFI owflow model consists of three
business tasks, called activities, that have to be performed in order to successfully complete
the business process: A purchase order has to be processed, a shipment request must be
accepted, and money has to be received. Each of these activities is specified by a separate
<activity> element.

Web Services Flow Language 10

IBM Software Group

total SupplyPT

total SupplyFlow
sendProcOrde
J

mySupplier
~processPO

mySupplier sendPay L.

processPayment

myShipper il HH

~ acceptShipmentRequest

In our code example, the activities cannot be performed in any order, but there is a
sequencing constraint between them: the processing of the purchase order by the supplier
must precede the acceptance of the shipping request by the shipper; the money can be
received at any time. The precedence rule is specified by simply connecting the two
corresponding activities. Two kinds of connections are established, a control connection
(through a <cont r ol Li nk> element), and a data connection (through a <dat aLi nk>
element).

While the first connects the completion of one activity to the execution of another, the second
connection represents a data exchange between the two. Note the <map> element nested
inside the data link: it specifies what information needs to be transferred between the two
linked activities. Also note that the separation of control flow and data flow is very helpful. For
example, a service might only be enabled after the completion of another service without
explicitly passing data from the former to the latter.

Web Services interact in a peer-to-peer manner. This pattern is immediately reflected by the
interacting operations. For example, if a flow sends out a message via a notification
operation, this operation corresponds to a one-way operation at a service provider. Pairs of
corresponding operations in this sense are referred to as dua/operations. In our example,
the activity pr ocessPOhas to send out a process order. For this purpose, the

t ot al Suppl y service provider type declared by the flow model is assumed to include a
port type t ot al Suppl yPT with a sendPr ocOr der operation, which implements the activity.
An <i npl enment > element establishes this relation between an activity and its implementing
operation. The service provider who is supposed to interact with an activity’s implementation
(for example, to process the message sent) is defined through a <per f or mredBy> element.

To define the public interface of the composition, the <f | owvbdel > element includes a
declaration of the supported service provider type as an attribute of the flow model, and a
mapping of operations of the port types of this service provider type to activities of the flow
model. As indicated in the following figure, this mapping is specified by an <export >
element, which relates an activity of the flow model and an operation of its public interface.
This mapping defines the effect of each operation by relating it to the execution of the
internal composition. The public interface defines the interaction of a flow model with the
“outside,” that is, it specifies which messages are sent and which are used.

Web Services Flow Language 11

IBM Software Group

Usd
Services

plug link

WSFL

<operation>

WSDL

WSDL %

Typically, the operations of the public interface of the composition are not dual to any
operation of the service providers to interact with, that is, messages are not simply sent to
“anybody” or accepted by “anybody.” Messages are related to a particular operation of a
particular port type of the performing service provider. As indicated in the figure, the relation
between an operation of the public interface of a flow model and an operation of a service
provider is established through a <pl ugLi nk> element. Thus, a plug link represents the
inherent client/server structure of a Web Service.

In WSFL, plug links are typically specified within a <gl obal Model > element (although plug
links can be specified “inline” within a flow model). Note that the advantage of separating
plug links from flow models is that relations between operations of arbitrary port types or
service provider types can be defined, whether they stem from a flow model or not. From a
flow model perspective, a global model makes the interactions between service providers
explicit. The following example specifies the interactions between a supplier, a shipper, and
a total supplier.

<gl obal Model nane="mySuppl yChai n”
servi ceProvi der Type="suppl yChai n” >

<servi ceProvi der name="nmySupplier” type=“supplier”/>
<servi ceProvi der nanme="myShi pper” type=“shi pper”/>
<servi ceProvi der nanme="myTot al Suppl y” type="t ot al Suppl y”>
<export >
<source port Type="suppl yLi feycl e” operati on="spawn”/>
<target port T Type="manageChai n” operati on="order”/>
</ export >
</ servi ceProvi der >

<pl ugLi nk>
<source serviceProvi der="nyTot al Suppl y”
port Type="t ot al Suppl yPT"
oper ati on="sendProcOrder”/ >
<target serviceProvider="nySupplier”
port Type="suppSvr”
oper ati on="procPO'/ >
</ pl ugLi nk>

<pl ugLi nk>
<source serviceProvi der="nyTot al Suppl y”
port Type="t ot al Suppl yPT”
oper ati on="sendPaynent "/ >
<target serviceProvider="nySupplier”
port Type="suppSvr”
operati on="recPay”/ >
</ pl ugLi nk>

<pl ugLi nk>

Web Services Flow Language 12

IBM Software Group

<source serviceProvi der="nyTot al Suppl y”
port Type="t ot al Suppl yPT”
operati on="sendSR’/ >
<target serviceProvi der="nyShi pper”
port Type="shi pSvr”
operation="recSR’/ >
</ pl ugLi nk>

</ gl obal Model >

In the example, the suppl i er service provider type is assumed to support the port type
suppSr v with two operations: one for processing a purchase order, and one for receiving a
payment (processPOand r ecPay). The suppl i er service provider type may also define
restrictions on the sequencing of the two operations (for example, the execution of the first
operation must precede the execution of the second). For this purpose, the service provider
type could be defined as the public interface of another flow model (but this is not done in
our example). The shi pper service provider type is assumed to support the shi pSrv port
type including an operation for accepting and processing shipping requests (r ecSR). The
ny Suppl yChai n global model now plug links the operations of these two service provider
types with the t ot al Suppl y service provider type declared by the t ot al Suppl yFI owflow
model. The following figure depicts the plug links established by the example as dashed
arrows.

totalSupplyPT

total Supply

As each composition, the my Suppl yChai n global model of the example declares a service
provider type named suppl yChai n. This is done through an attribute of the

<gl obal Model > element. The service provider myTot al Suppl y exports the operation
spawn from its port type suppl yLi f ecycl e to the operation or der of the port type
manageChai n that represents the public interface of the sample global model. The spawn
operation is a lifecycle operation that allows the flow to kick off an instance of the

t ot al Suppl yFI owflow model: Thus, invoking the or der operation, which is delegated to
the spawn operation, will kick off the flow and will finally result in making use of the specified
plug links. The first plug link specifies that the “sendProcOrder” operation of the public
interface of the flow sends a message to the pr ocPOoperation of the suppSvr port type of
the supplier. The other plug links are similar.

Web Services Flow Language 13

IBM Software Group

The following figure depicts the complete suppl yChai n service provider type defined by
the mySuppl yChai n global model.

supplyChain

total SupplyPT

total Supply

Web Services Flow Language 14

3.1

IBM Software Group

Service Composition Metamode/

This section describes at the conceptual level how Web Services are wired together into
flows that represent business processes (see Section 3.1 “Flow Metamodel”). Section 3.2
“Lifecycle Interface” describes how instances of such a business process are manipulated
as a whole. In Sections 3.3 “Business Process Lifecycle” and 3.4 “Activity Lifecycle,” we
sketch a minimum set of states and the transitions between them that further describe a
business process and each of its encompassed activities. Finally, Section 3.5 “Recursive
Composition Metamodel” gives an overview on how new Web Services are composed out of
other Web Services.

Flow Metamodel

This section describes the main concepts of the metamodel underlying WSFL for specifying
flows. This is done by describing its syntax as a special kind of directed graph (Section 3.1.1
“Activities”) and its semantics by showing how each of the syntax elements is to be
interpreted in concert with the other syntax element (see Section 3.1.2 “Operational
Semantics”).

3.1.1 Syntax

This section describes the various ingredients of the metamodel in detail and explains their
operational semantics.

3.1.1.1 Activities

Operations of Web Services are used within business processes as implementations of
activities. An activity represents a business task to be performed as a single step within the
context of a business process contributing to the overall business goal to be achieved. The
operation used may be perceived as the concrete implementation of the abstract activity to
be performed. Refer to Section 3.5.4 “Which Operation Is the Activity Implementation?” for
more details.

Activities correspond to nodes in a graph. Each activity has a signature that is related to the
signature of the operation that is used as the implementation of the activity. Thus, an activity
can have an input message, an output message, and multiple fault messages. Each
message can have multiple parts, and each part is further defined in some type system.

M .
] ' :

Web Services Flow Language 15

IBM Software Group

The figure above depicts an activity A with input message M and output message M’. Input
message M has three message parts called p,, y,, and p,. Output message M’ has two
message parts, called p, and p,. Message part y, is defined through an XML schema the
root of which is a <sequence> that contains some other complex type, a decimal simple
type and a simple type that may hold multiple string fields.

3.1.1.2 Control Links

Activities are wired together through control links. A control link is a directed edge that
prescribes the order in which activities will have to be performed (that is, the potential
“control flow” between the activities of the business process). The endpoints of the set of all
control links that leave a given activity A represent the possible follow-on activities A,, ..., A
of activity A.

n

3.1.1.3 Transition Conditions

Which of the activities A,,..., A, actually have to be performed in the concrete instance of the
business process (that is, the concrete business context or business situation) is determined
by so-called transition conditions. A transition condition is a Boolean expression that is
associated with a control link. The formal parameters of this expression can refer to
messages that have been produced by some of the activities that preceded the source of
the control link in the flow.

When an activity A completes, exactly those control links originating at A are followed to their
endpoints the transition conditions of which evaluate to true. This set of activities is referred
to as “actual follow-on activities” of A in contrast to the full set {A,,..., A} of “possible follow-
on activities.” It is said that “control flows from A to the actual successors of A,” or that the
“control flow visits the actual successors of A,” or that “navigation proceeds from A to its
actual successors,” or something similar like that.

In the following figure, activity B might need to be performed after activity A completes. The
transition condition of the corresponding control link is specified as an XPath expression that
references the output message of A: Activity B will be performed (“control flows to B” or
“navigation proceeds to B”) if, and only if, the integer value returned by A will have a value

greater than 42.
f/g/h>42 e

X
-
(reeoeD)

3.1.1.4 The Origin of Flow Dynamics

Note especially that this mechanism is the origin of the whole dynamics within the control
flow of business processes: Activities produce actual data values for their output messages,
and these values will be substituted as actual parameters of the formal parameters of
transition conditions. Exactly those control links will be followed whose transition conditions
evaluate to true in their actual parameters. And exactly the endpoints of those control links

Web Services Flow Language 16

IBM Software Group

are the activities that have to be performed next “in the current business context.” Thus,
whenever an activity completes, that is, the operation of the Web Service that implements the
activity returns data, this actual data can be made the basis for deciding which activities
have to be performed next. And these activities are typically highly dependent on the data
returned.

3.1.1.5 Control Links As Edges

Control links are the first kind of edges in the graph structure that we use to represent
models of business processes, or simply, flows. First of all, such an edge is directed,
pointing from its source activity to its target activity, that is, from an activity to its (or one of
its) potential successor activities. Next, such an edge is “weighted” by a transition condition,
determining the actual flow of control. We do allow at most one control link between two
different activities. Finally, the resulting directed graph must be acyclic, that is, we do not
allow loops within the control structure of a flow (however, see Section 3.1.1.11 “Loops,” on
how loops are supported in a controlled manner).

Note that tools supporting the graphical construction of WSFL-compliant flow models can
choose to support drawing loops. But the loops supported by the tool must be able to be
transformed into the restricted variant of loops supported by WSFL. This restricted variant
basically corresponds to “do until” loops.

3.1.1.6 Forks And Parallelism

An activity (like activity A in the following figure) is called a fork activity if it has more than one
outgoing control link. When activity A completes, all control links leaving A will be
determined and all associated transition conditions (p,; and p,. in the figure) will be
evaluated in their actual parameters. The target activities of all control links whose transition
conditions evaluated to true are exactly the activities that are to be performed next within the
flow. For example, if p,, evaluated to true but p,. evaluated to false, exactly activity B will be
scheduled to be performed; if p,, evaluated to false and p,. evaluated to true, exactly C is to
be performed next.

In case both p,, and p,. get the truth-value of true assigned based on the actual parameters,
and both activities B and C will have to be performed next. (We will explain later what
happens along paths that are determined by a control link whose transition condition
evaluated to false. See 3.1.2.1 “Death-Path Elimination”). In particular, it is very easy to
achieve parallelism in the execution of flows: Simply introduce a fork activity and the
“subgraphs” that are spawned-off by the control links with a true transition condition will be
performed in parallel.

Web Services Flow Language 17

IBM Software Group

3.1.1.7 Joins and Synchronization

Typically, parallel work has to be synchronized at a later time. Synchronization is done
through join activities. An activity is called a join activity (like activity F in the figure above) if it
has more than one incoming control link. By default, the decision whether a join activity is to
be performed or not is deferred until all parallel work that can finally reach the join activity
has actually reached it (see 3.1.1.8 “Join Conditions” for potential deviations from this default
behavior). In the figure above, when p,, and p,. had been evaluated to true, B and D can be
performed in parallel with C, and F cannot be performed until control passed from C to F and
from D to F. At that time, the truth-value of the transition conditions pg. and p. are known;
based on these truth-values it can be specified whether F should be performed if, and only
if, both parallel executions successfully reached F (“ppr AND pce”), or whether it suffice that
at least one of the parallel executions reached F successfully (“ppr OR pce’), and so on.

3.1.1.8 Join Conditions

Thus, the truth-values of transition conditions of control links that enter a join activity allow for
a more fine-grained mechanism of synchronizing parallel work at join activities. This
mechanism is introduced through join conditions: A join conditionis a Boolean expression
associated with a join activity, and the formal parameters of this expression refer to the
transition conditions of the incoming control links of the join activity.

Work along parallel paths reaches a join activity at different points in time. For example,
activity C in the figure before might have been completed fast and the transition condition p.
is evaluated while B is still running, that is, the transition condition p,. gets evaluated at a
later point in time. By default, the decision whether F is to be performed or not is deferred
until p,. has also been evaluated, even if the join condition is “ppr Or per,” for example, and
is known to be true long before the truth-value of p is known.

Thus, join conditions are really a means to synchronize parallel work, that is, to wait until
parallel work comes to an end and then decisions can be made how to proceed. Sometimes,
a weaker semantics of synchronization is appropriate and supported by the metamodel of
WSFL: As soon as the truth-value of a join condition is known, the associated join activity is
dealt with accordingly (that is, either performed or skipped). Control flow that reaches the
corresponding join activity at a later time is simply ignored.

3.1.1.9 Start and End Activities

But what about activities that have no incoming control connector (like A, B, and X in the
following figure), or outgoing control connector at all (like H, I, J, and X)? These kinds of
activities are called start activities or end activities, respectively. In the following figure,
activities A, B, and X are start activities, and activities H, I, J, and X are end activities.

Web Services Flow Language 18

IBM Software Group

Conceptually, each activity has a join condition associated: A node with a single incoming
control link can be perceived as having a join condition that consists of the transition
condition of the incoming control link. A start activity can be perceived as having a trivial join
condition that consists of the constant “true” predicate. With this convention in mind, an
activity can be started whenever its join condition is fulfilled. In particular, the join condition
of an activity with no incoming control link is fulfilled when the flow model is “started,” thus,
the corresponding activities are “start activities” also from that perspective.

When a flow model is instantiated, all of its start activities are determined and scheduled to
be performed. Based on the start activities of a flow, the “regular” navigation through the
graph representing the flow model continues. That means, when a start activity completes,
its actual successors are determined based on the control links originating at the completed
start activity.

When an end activity completes, navigation stops at this point because there is no possible
follow-on activity and thus, no actual successor to determine. But navigation might continue
in other parts of the graph, thus, a lot of activities of the overall flow might still be awaiting
their execution. But if all end activities within the graph have been reached, the overall flow is
done. When the last end activity completes, the output of the overall flow is determined and
returned to its invoker; and then, the flow ceases to exist.

3.1.1.10 Exit Condlitions

The following figure summarizes the flow-relevant fine structure of an activity introduced so
far. An activity is linked to the operation of a port type as its implementation, and if the
activity is a join activity, it has an associated join condition. What is also shown is the exit
condition associated with an activity: An exit condition is a Boolean expression, the purpose
of which is to determine whether or not the execution of the implementation of the activity
completed the business task represented by the activity. The expression can refer to the
output message of its associated activity or even to output of any activity that ran before on
the control path of the subject activity; the expression of an exit condition is provided in
XPath syntax like the expression of a transition condition is.

The exit condition is evaluated once the operation of the implementing port type terminates.
If the exit condition evaluates to true, the activity is treated as “completed.” If the activity is
completed, navigation continues and the next activities to be performed are determined
based on the just-completed activity; otherwise, the activity is executed again.

Web Services Flow Language 19

IBM Software Group

Operations

PortType P

For example, the exit condition can check particular reason codes or return codes of the
activity implementation In doing so, the activity can be retried if a code indicates an
implementation problem (for example, “automatic rollback due to detected deadlock”). Or
the application already aggregates lower-level reason codes and provides a return code that
basically says whether the implementation executed correctly or not. Or the exit condition
checks a field that is implicitly set by a user (“The customer did not answer the phone call-I'll
try at a later time”). As all of these examples show, the exit condition allows to distinguish two
events, namely the event that signals that the activity implementation returned from the event
that signals that the associated piece of work (the business task) completed successfully.
And navigation typically should continue only if the business task completed and not if the
implementation has been interrupted for whatever reason.

31.1.11 Loops

But there is another important use of exit conditions, namely for looping: An activity is
iterated until its exit condition is met. Often, this mechanism for realizing do-until loops is
used when an activity is implemented by another flow, that is, by means of the cal | lifecycle
operation (see Section 3.3 “Business Process Lifecycle” and 4.6.5.2 “Lifecycle Operation
cal | 7). Because the metamodel does not support cyclic graphs, cycles must be realized by
separate flows that are iterated based on exit conditions. This enforces a block-oriented
specification of loops well known from structured programming.

Supporting arbitrary loops would allow specifying situations that are ambiguous, difficult to
model unambiguously, and much more difficult to comprehend. The following figure shows a
cyclic graph. Assume that control flows from A to B to C, and D and E are actually executed.
We further assume, that when D completes, navigation can proceed to B again. When B
completes the second time, control flows to C, and may continue to E and D again. Many
problems and questions come up, for example:

» Bisajoin node. When control flows from A to B (the first time) the truth-value of the
transition condition of the control link from D to B is unknown. The join condition of B
must be an expression in ternary logic to specify the appropriate behavior.

Web Services Flow Language 20

IBM Software Group

* When C completes the second time, should control really flow to E again? Or does
the intended loop just consist of B, C, and D? If the control flow should proceed to E,
it might happen that E is still running because of its first invocation. What should
happen in this situation? Should E be immediately interrupted and started again, or
should the completion of E be awaited before its next invocation?

« When D completes and control flows back to B, and could also flow to F, should F
be really started? Or should only the “backward control link” be honored? If F should
be started, the same questions occur as for E before.

31.1.12 Data Links

There is a second kind of directed edges in the graphs of the metamodel, the so-called data
links. A data link specifies that its source activity passes data to the flow engine, which in
turn has to pass (some of) this data to the target activity of the data link. For example, the
next figure depicts that activity A expects input data from activity B, which is indicated by a
dashed directed edge (while we use solid edges to draw control links).

To make this meaningful, a data link can be specified only if the target of the data link is
reachable from the source of the data link through a path of (directed) control links. Thus,
“data always flows along control links.” This makes sure in an easy manner that a couple of
error-prone situations are avoided. For example, the spectrum of such situations extends
from trying to consume data that has not been produced yet, to dead-lock situations in which
one activity requires data from another activity as input but the latter activity needs the
output of the former as its own input.

It is not required that data be always passed to an immediate successor of its producer.
Many different activities might be visited along the path made from control links from the
source of a data link to the target of the data link.

An activity might be the target of multiple data links. For example, this allows aggregating
input from multiple sources, or it allows specifying alternative input from activities from
alternative parallel paths. To facilitate this, data links are weighted by so-called map
specifications. A map prescribes how a field in a message part of the target’s input message
of a data link is constructed from a field in the output message’s message part of the source
of the data link. It even allows that multiple maps to be defined for the same message part
target. This is needed, for example, when alternative paths in the control are specified and
data needed further on can be produced along each of the paths. If more than one map can
be applied at run time, precedence rules specify which map to apply (see Section 4.5.1.4
“Container Materialization”).

Web Services Flow Language 21

IBM Software Group

For example, activity A in the following figure expects input from both activity B and activity
C. This is specified through two data links, one pointing from B to A, and the other pointing
from C to A. The input message M of activity A consists of three message parts, called y,, W,
and p,. Message part |, is described by a root element ¢ that consists of a <sequence> of
elements amongst which a simple decimal type d and a simple integer type e is found. The
output message M’ of activity B consists of message part y, which is modeled as a
<sequence> called a, which in particular, includes a simple float type b. The output
message M” of activity C includes a message part y,, which is a <sequence> called f that
contains a data element g, which in turn, is another <sequence> that encompasses a
simple integer type h.

A map associated with the data link from B to A specifies that message part p, of message
M’ contains a field that is to be transformed into a field of message part p, of message M;
furthermore, the target field in p, is ¢/ d (XPath notation) and the source field in p, is a/ b (if
needed, an additional conversion routine can be defined). Similarly, a map is associated
with the data link from C to B, and this map specifies that field f / g/ h of message part y, of
message M” has to be copied to field ¢/ e of message part p, of message M.

31.1.13 Input and Output of Flows

Flows themselves can have input as well as output. To pass data from the input of a flow to
the input of (some of) its encompassed activities, data links and maps can be used to. For
this purpose, a flow source element is provided as part of the definition of a flow model that
can be used as the source of data links that target at activities within the flow. Similarly, a
flow sink element can be the target of data links that originate at activities within the flow. The
flow source represents the input message of the flow, and the flow sink represents its output.

Note that flows produce no fault messages themselves. The lifecycle operations used to
manage instances of a flow model return a fault message in erroneous situations (see
Section 4.6.5 “Support for Lifecycle Operations”). As a future extension of WSFL we envision
that a flow model will produce separate fault messages and that the data link construct will
be allowed to materialize fault messages. This will allow in particular a conditional mapping
taking into consideration whether or not an activity encompassed in a flow model returned a
fault message or a regular output.

Web Services Flow Language 22

IBM Software Group

31.1.14 Instances and Models

A flow modelis the specification of activities and their properties, as well as the associated
wiring of the activities by means of control links and data links. An /nstance of a flow model
or a flow, for short, results from navigating through the underlying graph of the instance or
flow. And navigation means, to interpret a flow model according to the rules we sketched
and that we will refine in Section 3.1.2 “Operational Semantics,” passing input to the
instance, determining its start activities and performing them, receiving output of completed
activities, determining their actual successors, materializing their input, performing them,
and so on. Navigation actually results in assigning states to the activities, managing the
context of the instance, and invoking operations.

31.1.15 Service Providers

A flow model specifies its requirements for services provided by a business partner when
instances are made from the model. Often, the same business partner has to perform certain
activities within a flow. And, often, the business partner has to offer the execution of these
activities in a particular order. This expected behavior of a potential business partner is
captured by the concept of a service provider. The service provider concept allows to
specify the “role” that is expected to be played by a potential business partner.

The corresponding requirements are specified through a service provider type. A service
provider type is just a named set of port types. The port types collected by a service
provider type may be derived from the public interface of a flow model or may be just
‘opaque” port types. If a port type stems from the public interface of a flow model, the
operations of the port type “inherit” restrictions from the flow model on the validity of
invocation sequences between the operations from the port type. If a port type is opaque, no
such restrictions exist. In this sense, flow models as well as port types represent a “type
system” for service providers.

Thus, the support of port types from the public interface of another flow model will be
specified (that is, the service provider is required to be of the corresponding service
provider type) if the order of invocation of operations matters, and opaque port types will be
specified if the order is immaterial. Note, that any mixture of opaque and “restricted” port
types is allowed to be collected into a service provider type. Furthermore, by associating a
set of activities of a flow model with the same service provider it is specified that at run time,
operations of the same service have to be used for implementing the activities.

Web Services Flow Language 23

IBM Software Group

This might be perceived as specifying “roles” that potential partners must be able to play in
order to do business with the organization that specifies an actual flow model. In order to
actually select a specific service provider to bind to in the actual business context (that is, an
“instance” of a role), so-called locators will be used: A /ocatoris a specification of how to find
a specific service provider. It can be a static locator that binds to a fixed service provider
(“always bind to my preferred ticket agent”), it can be a “mobility” locator that allows to
specify the actual service provider through messages exchanged as late as when the
corresponding port is to be invoked (“send the bill for the ordered goods to the following e-
mail address”), or it can be a query that further restricts in a declarative manner the set of
possible partners playing the role needed (“bind to the provider that needs the shortest
processing time”).

Actual service providers can be selected and bound to at different points in time: when a
flow model is instantiated, when the first of a set of activities associated with a service
provider is visited by the control flow, or whenever an activity is visited by the control flow.

In the figure above, partner P has a flow in which activities V and W need a service provider
that can play role 1. In particular, V. and W must be executed in the specified order. Partner
P1 is such a service provider, offering implementations A for V and C for W performed in
exactly the required order. The same is true for partner P3, who can play role 3 required in
P’s flow. Partner P2 offers simply a port type without any ordering constraints: L implements
activity Y. The dynamics of the binding are not shown in the figure.

31.1.16 Endpoint Properties

Typically, activities represent business tasks and interactions between trading partners (that
is, service providers). As such, they do have additional business semantics described by
properties like legal obligations of each partner side, costs and prices for performing an
activity, maximum duration and maximum number of retries, actions (for example,
escalations) that should happen if such thresholds are exceeded, contact points who are in
charge at both trading partners, security aspects (confidentiality, non-repudiation), at-least-
/at-most-/exactly-once execution, and so on. These properties are simply referred to a
senapoint properties.

Binding

Time Thresholds Pricing

Service providers are determined dynamically through service locators. The “most
appropriate” service provider has to be found, where “most appropriate” typically means
different things in different situations. For example, “most appropriate” can designate the
cheapest, or fastest, or most secure, or most reliable, or ... provider of a service that
implements an activity of a flow. To allow for the corresponding matchmaking, both activities

Web Services Flow Language 24

IBM Software Group

on one side and operations, port types, ports, or services on the other side must be
described by endpoint properties.

As a consequence, endpoint properties are neither WSFL-specific nor WSDL-specific, and
they have to be used within WSFL as well as WSDL. Because of this, we envision a separate
language for describing endpoint properties, here called Web Services Endpoint Language
(WSEL). WSFL foresees the usage of appropriate extensibility elements to describe endpoint
properties of activities, and assumes that Web Services will be described through endpoint
properties in such a way that matchmaking can be done through service locators (see the
following figure).

Used
Services

<operation>
WSDL 7

promises

<activity> I

3.1.2 Operational Semantics

A significant part of the operational semantics of our metamodel has already been discussed
when the various ingredients of the metamodel have been introduced. The most significant
piece missing is dead-path elimination, which is discussed in the next section, 3.1.2.1
“Death-Path Elimination.” Finally, in Section 3.1.2.2 “Summary: Operational Semantics,” we
summarize the operational semantics in the format of a list.

3.1.2.1 Dead-Path Elimination

The following figure depicts a flow with start activities A and B. Thus, when the flow model is
instantiated, activities A and B will be scheduled to be performed. Assume that A completes
and that the transition condition p evaluates to true. Navigation will wait until the truth-value
of the transition condition g is available before deciding whether or not the join activity D has
to be performed (assuming that full synchronization at the join node is required).

Now, assume that activity B completes and that the transition condition r evaluates to false.
In this case, activity C will never be performed. But if C will not be performed, transition
condition g will never be evaluated. And, thus, the join condition of D will never be evaluated

Web Services Flow Language 25

IBM Software Group

and D will never be performed. This erroneous situation is avoided through dead-path
elimination.

Dead-path elimination has to take place whenever it becomes clear that a particular activity
will never be performed. This is the case when a join condition of a join activity evaluates to
false, or when the transition condition of an activity with exactly one incoming control
connector evaluates to false. Originating from such an activity, dead-path elimination has to
traverse the underlying flow model’s graph until the next join activity or end activity is
reached.

During this traversal, all visited transition conditions have to be assigned a truth-value of
false and have to be marked as evaluated. Assume that a join activity is reached: When the
associated join condition can already be evaluated, this is done; if the join condition
evaluates to true, the join activity can be performed, otherwise dead-path elimination
continues. When the join condition of the join activity reached cannot be evaluated yet, the
decision about whether or not the join activity will have to be performed is deferred.

3.1.2.2 Summary: Operational Semantics

At this point, we discussed all the fundamental ingredients of our metamodel and their
operational semantics. The following list summarizes this operational semantics by giving you
a sketch of the navigation algorithm used to interpret flow models:

1. When a new instance of the flow model is created, determine all start activities of the
graph, map the flow source to the input of the start activities, and perform them.

From then on, the navigation takes place whenever an activity implementation
returns, that is:

2. When the activity implementation returns, compute the exit condition of the activity.

a. Determine the actual values of all formal parameters of the Boolean
expression corresponding to the exit condition.

b. If the exit condition evaluates to false, repeat the execution of the activity
implementation with the same materialized input at the actual service
provider chosen.

3. If the actual activity completed, all control links leaving the activity are determined.
4. The transition conditions of these control links are determined.

5. The actual values of the formal parameters of the Boolean expressions
corresponding to the transition conditions are computed.

6. The truth-values of these Boolean expressions are computed based on the actual
parameter values.

7. The endpoints of these control links are determined (that is, the potential follow-on
activities of the completed activity are computed—we have to visit even endpoints of
control connectors with false transition conditions to determine whether these are
actual follow-on activities in case these are join activities).

8. Determine all non-join successors within the set of potential successors whose
incoming transition condition has been evaluated to false, and determine all join
successors within the set of computed successors whose join condition evaluate to
false (that is, the subset of “dead activities” within the computed set of successors is
determined).

Web Services Flow Language 26

3.2

IBM Software Group

10.

11.

12.

13.

14.

15.

16

a. Perform dead-path elimination originating at each of these nodes.

b. Each join activity reach that has a join condition that evaluates to true enters
the state “enabled.”

Determine all non-join successors within the set of potential successors whose
incoming transition condition has been evaluated to true.

All activities from this computed set enter the state “enabled.”

Determine all join activities within the set of potential successors whose join condition
evaluate to true.

All activities from this computed set enter the state “enabled.”

All other successors remain in their current state and must wait for a future navigation
step for a possible state change.

Determine the actual service provider for all activities that entered the state “enabled”
based on the steps before, that is, for each of these activities:

a. Determine its associated service locator.
b. Evaluate the service locator.
c. Chose an actual service provider.
Compute the input message of each “enabled” activity.
a. Determine all data links that target such an activity.

b. Determine the output messages or message parts referred to in a map of the
data link.

c. Apply the maps to materialize the input message.
Perform the operation with the materialized input at the actual service provider
chosen if the operation is an in or in/out operation. For out or out/in operations similar

processing has to be done.

If all other end activity has already completed, the flow has finished. Otherwise,
resume navigation.

. If the flow has finished, compute the flow sink based on the data links pointing to it.

Lifecycle Interface

Each flow model is always associated with a port type that allows managing the lifecycle of
instances of the flow model. For example, the port type provides operations for instantiating
the flow model and immediately executing it (spawn operation), for suspending and

resumi
(enqui
model

ng a given instance (suspend and r esune), for querying flow model information
re), and so on. It is assumed that each service provider supporting a particular flow
does provide ports that implement this port type by means of WSDL.

An instance of the flow model is represented by a unique instance ID. The instance ID is
used by lifecycle operations that operate on an instance of a flow model, for example,

suspe

nd. The instance ID is returned by the spawn lifecycle operation. The input message

Web Services Flow Language 27

IBM Software Group

(source) and the output message (sink) of a flow model are part of the signature of the
lifecycle operations (where applicable-see Section 4.6.5 “Support for Lifecycle Operations”).

The lifecycle operations can be used to include a flow model as an activity implementation in
another flow model. The spawn lifecycle operation allows starting a new flow model as an
activity step in another flow model. As a result, a new, independent flow is started that is
running independently. The cal | lifecycle operation allows running a flow model as an
activity in another flow. The end of the cal | operation marks the end of the activity and the
flow model navigation continues.

A flow model can have input and output data associated with it, for example, a supplier flow
model receives as input the ordering information and returns as output the information about
successful completion. In order to map the flow model input data to activities, a

wsf | : f | owSour ce element is used to represent the incoming data in the flow model. A
wsfl: fl owSi nk element is used to represent the flow model output data and can be used
to map the output data of activities to the output data of the flow model (see Section 4.5.3
“Data Links and Data Mapping” for more details on f | owSour ce and f | owSi nk).

The name of the lifecycle port type and operations are defined in the flow model definition.
The lifecycle operations that are supported by a flow model are defined by an export
element for every supported lifecyle operation. The following lifecycle operations are defined
in WSFL and can be exported:

+ spawn - Creates an instance of the flow model and starts it. The operation
returns as soon as the flow is started, passing the instance ID of the new flow
instance as a result.

« call - Creates an instance of the flow model and executes it. The operation
returns only after the flow instance has completed, passing the output message
of the flow as a result.

e« suspend - Suspends the flow model instance, that is, temporarily interrupts
the execution of the flow instance.

e resune - Resumes the flow model instance, that is, continues the execution of
a flow instance that was previously suspended.

Web Services Flow Language 28

3.3

3.4

IBM Software Group

* enquire - Queries the status of the flow model instance. As a result, the
status of the flow model instance is returned.

e termnate - Terminates the flow model instance.

As a future extension, we envision an “observer” concept that allows specifying to whom the
outcome of an operation is to be sent. For example, the instance created and started by the
spawn operation might finish long after the entity that issued the operation has ceased to
exist. Registering another entity to which the result of the instance has to be sent is a
valuable potential future extension.

Business Process Lifecycle

A flow instance is created through one of the lifecycle operations (spawn, cal |). After its
creation, the new instance will begin to be performed, which is reflected by the associated
state of “Running.”

Once the complete flow has been executed (that is, all the activities have been visited as
prescribed by the control links), the flow instance will cease to exist. When in state
‘Running,” the same can be achieved through the lifecycle operation t er mi nat e.

Finally, running flows can be suspended through a respective lifecycle operation (suspend),
and resumed again (r esune). When suspended, individual activities may be completed, but
navigation through the flow instance is no longer advanced by the container managing it (the
“flow engine”). After resuming a suspended flow instance navigation continues where it was
left, considering activities that completed in between.

Not Existing Yet

Running

Suspend
Resume Suspended
End of Flow reached

Terminate

Not Existing Anymore

Activity Lifecycle

When a flow is instantiated, it might be perceived that all of the activities included in the
associated flow model are instantiated, too. Such an activity instance represents the usage
of the activity in the concrete instance, for example, the actual service provider supporting it,
and so on.

Activity instances do have states assigned. When an activity is instantiated, it assumes its
initial state of “inactive” until it is reached by the control flow. Once an activity is reached by

Web Services Flow Language 29

3.5

IBM Software Group

the control flow, there are two basic possibilities:

» The flow engine decides, based on the activity’s join condition, that this activity
will never be executed, and therefore puts it into state “Disabled.” Dead-path
elimination will take place for all paths leaving that activity (see Section 3.1.2.1
“Dead-Path Elimination”).

» The flow engine decides that this activity instance could now possibly be
executed and puts it into state “enabled.” Depending on the nature of the activity
and its associated operation, it might remain in that state until it is started
through an explicit request (for example, for /n or jn-out operations), or the flow
engine will start it right away (for example, for out or out-in requests). Once
started, its state will be “Running.”

After the associated operation has completed, continuation of the activity depends on its exit
condition. If this evaluates to false, the activity is iterated, by either continuing with “enabled”
or “running,” depending on the associated operation. If the exit condition evaluates to true,
the activity reaches the state “Complete.”

Il +
mactve

Reached,
start condition true,
implicit invocation

Reached, start condition true, no Reached, start
implicit invocation condition false

Enabled

A

Explicit Exit condition false, no
Invocation implicit invocation

Exit condition false,
implicit invocation

A
Complete @ Disabled

A

v

Running

Exit condition true

Recursive Composition Metamodel

We will now describe how new Web Services are composed out of existing ones. The base
for the composition metamodel of WSFL is port types and their grouping into service
provider types. Operations of service provider types’ port types are linked together to
specify the potential interaction between the corresponding business partners. Because
each flow model defines a service provider type, the composition metamodel includes in
particular the means to define the interactions between flows. We first give an overview of
the composition metamodel and provide more details afterwards.

3.5.1 Composition Metamodel Overview

In previous sections, we have seen how a business process is represented as a flow in the
metamodel of WSFL. Creating a flow model involves defining activities and creating a model
of execution by linking the activities using control and data links. The flow metamodel

Web Services Flow Language 30

IBM Software Group

described so far is the central abstraction used to represent the usage of existing programs
and Web Services in a business process and, in turn, to represent a business process as a
Web Service.

3.5.1.1 Global Models

In addition to the flow metamodel, WSFL relies on a simple recursive composition metamodel
to represent the ability to describe the interactions between existing Web Services and to
define new Web Services as a composition of existing ones. We use the term global mode/
for a model defined using the composition metamodel. From the perspective of the
composition metamodel, a business process described by a flow model is just another Web
Service.

A service provider type defines the interface of a Web Service; it represents a set of port
types that declare the operations supported by the Web Service. Service provider types
provide the building blocks for flow models as well as for global models; both models
provide complementary views on the overall interactions between service provider types.

A flow model defines the flow of control and data between a set of activities. Each activity is
associated with an instance of a service provider type, a service provider. This service
provider is responsible for the realization of the activity. Essentially, an activity defines the
requirements of the flow model on some service provider; the actual service providers are
chosen based on /ocators (see Section 3.1.1.15 “Service Providers”). A flow model itself
defines a service provider type, and the requirements of the encompassed activities on
external Web Services define a significant portion of the external interface of that service
provider type.

A global model defines the interaction between a set of service providers. Interactions are
modeled using plug links between “dual” operations on the service provider types involved
in the composition. For example, a notification operation on one service provider can be
“plug linked” to a one-way operation on another service provider, or a solicit-response
operation can be “plug linked” to a request-response operation.

The relation between the global and flow metamodels can then be stated as follows: The flow
metamodel supports to describe the internal behavior of Web Services, while the global
metamodel supports to define the interactions between Web Services. The two aspects are
very closely related, though, and the following sections describe their relationship.

3.6.1.2 Service Providers as Components

We have seen that service providers represent the functionality that a flow model requires
from other business partners. Service providers have a type (a service provider type) that
defines their external interface; again, the service provider type may actually represent the
external interface of a flow mode,| and this information can be used when the sequencing of
the interactions with a service provider is important.

In either case, a service provider presents a public interface in the form of a set of port
types, which define the ways in which a service provider can interact with other providers.
Essentially, service providers are “peer-to-peer” partners from the perspective of the global
model, and the global model facilitates the “match-making” between these peers. For
example, a solicit-response operation defined by another service provider defines the
requirements on a matching request-response operation to be provided by another service
provider.

Service providers are the units or building blocks of any composition from the composition
metamodel perspective. A composition consists of a set of connected service providers,
which may in turn become a Web Service and be used as a new service provider in other
compositions.

Web Services Flow Language 31

IBM Software Group

3.5.1.3 Connections between Service Providers

The interaction between service providers is conducted through the operations defined by
their public interfaces. These operations need to be connected to each other for the
interaction to take place; source and target operations of the connection must have “dual”
signatures: a solicit-response operation can be connected to a request-response operation,
and notification operations to one-way operations. Interactions between service providers
are represented in the composition metamodel of WSFL as a special type of link, a plug /ink.

In a way, a plug link can be interpreted as an invocation of a “serving” operation by a
“requesting” operation; this analogy is especially useful for request-response/solicit-
response operation pairs. A plug link can also be interpreted as event propagation (in the
messaging sense) between two components: the source component sends a triggering
event to the target and thereby triggers some action to take place on the receiving end. The
receiver may or may not respond to this event. The latter interpretation is useful for
notification/one-way interactions.

3.5.1.4 Flow Models as Service Providers

The previous section explained the general concept of defining interactions between any
kinds of service provider. It is important to note that from the perspective of the global
model, it is irrelevant whether or not a WSFL flow model defines the “internal behavior” of a
service provider. It is also important to understand how the service provider type of a flow
model is related to the internals of a flow model.

A flow model constitutes the definition of a new service provider type. The new service
provider type has at least one port type in its public interface, including the lifecycle
operations described in Section 3.2 “Lifecycle Interface.” It can have additional port types
that represent the requirements of the flow model on other business services that are used to
realize certain activities in the flow model.

For each activity in the flow model that requires an external service provider for its
realization, the external interface of the flow model defines one operation. The association
between the activity and this operation is defined using the export element in the activity
definition. The operation representing the activity defines the activity’s requirements on some
other Web Service to qualify as a realization of the activity. The actual association between
the activity and the realization is done in a global model that defines the interactions
between both Web Services through a plug link.

3.5.2 Graphical Representation of Port Types and Service Provider Types

In the following figure, we are representing port types as a rectangle and a set of arrows with
one or two heads. Note that the graphical representation suggested here is used for
illustration purposes only; WSFL modeling tools may use any representation they like. Each
operation is represented by a separate arrow. The following figure shows a port type called
pt with four operations. By convention, a two-headed arrow represents the head for the
direction of the first “stimulating” interaction as dark-shaded, while the head for the second
interaction is not shaded.

Thus, operation o1 is a request-response operation, that is, a supporting endpoint will
receive a message and it will respond with a correlated message. Operation 02 is a solicit-
response operation, that is, a supporting endpoint will send a message and it expects a
correlated message afterwards. Operation 03 is a one-way operation, that is, a supporting
endpoint receives a message. Operation 04 is a notification operation, that is, a supporting
endpoint sends a message. Note that shading of the arrow head is actually not needed for
one-way and natification operations. Furthermore, shading is omitted completely in case the
kind of operation is irrelevant.

Web Services Flow Language 32

IBM Software Group

ol
02

03 pt

04

Service provider types are named collections of port types. Any mixture of “opaque” port
types (that is, port types whose operations are not known to be constraint by an associated
flow model) and port types that stem from flow models is allowed. Concrete service
providers are determined through locators that can be associated with service provider
types. The next figure shows the graphical representation of a service provider type; we will
use the same representation for concrete service providers, too.

service provider type

o
]
=
—
—

<

o
@D

3.5.8 Operations As Activity Implementations

One goal of WSFL is to enable Web Services as implementations for activities of business
processes. For this purpose, an activity may refer to an operation of the service provider
type’s port type that defines the external interface of the flow model to specify which kind of
service is needed at run time to actually perform the business task represented by the
activity. The next figure shows a flow in which an activity called A is implemented by a
service that realizes operation o1 of port type pt (we will write pt.o1 to indicate that o1 is an
operation of port type pt).

At run time, when navigation proceeds to A, a concrete port is chosen that provides an
implementation of port type pt and operation o1 and a corresponding binding is used to
actually invoke this implementation. The actual port chosen is basically determined through
the service provider and locator construct of the metamodel.

Web Services Flow Language 33

IBM Software Group

3.5.4 Which Operation Is the Activity Implementation?

In a first attempt, one could directly specify port type pt and operation o1 from the service
provider type to interact with the service needed as implementation of activity A. From a
modeler’s point of view, this would be fine: We envision that a flow modeler will interact
during build time with UDDI (or a similar directory) searching for businesses that are
supporting implementations of services implementing various activities of the flow actually
being modeled. Simply, the modeler wants to “drag” the operation of a port type found to the
activity whose appropriate implementation is looked for, and “drop” it there. This corresponds in a
natural manner to specifying the operation and the port type found directly as the activity’s
implementation.

But doing so would ignore the fact that the other goal of WSFL is to support a composition
model for Web Services: A flow model should be viewable as a new stand-alone, a self-
contained Web Service describing all of its interaction requirements and offers. Thus, an
activity of a flow model should not link directly to the proper port type and operation that
provides its implementation. Instead, a flow model should describe all of its interaction
requirements with port types and operations in such a manner that the entity representing
the flow model (or the new Web Service, respectively) builds a new service provider type.

ol

02
03

o4

To achieve that, the flow model specifies as implementation of an activity an operation that is
dual to the one providing the implementation proper. For example, if the activity
implementation proper is a request-response operation, the dual operation specified as
activity implementation is a corresponding solicit-response operation. Again, not the
implementation proper but a dual operation is specified as the activity’s implementation. This
dual operation may be perceived as a “proxy” for the implementation proper.

Web Services Flow Language 34

IBM Software Group

In the figure above, operation o1’ is the solicit-response operation dual to the request-
response operation o1 of port type pt. While pt.o1 represents the proper implementation of
activity A chosen by the flow modeler, it is operation o1’ that is specified as A’s
implementation, that is, 01’ is the proxy for pt.o1.

3.5.5 Realizing Activity Implementations

Note that a realization compliant with the WSFL metamodel does not necessarily have to
enforce to really provide an implementation of dual operations, that is, proxies (as ports or
somehow else). In fact, if the proper implementation of an activity is a request-response
operation or a one-way operation, the corresponding dual solicit-response or notification
operation, respectively, may not be implemented explicitly by a programmer but implicitly by
the flow engine itself. The flow engine itself might send a message to the chosen port
providing a binding for the request-response operation and expect the corresponding result
back, if applicable.

For example, the activity get St ockQuot e is implemented by the sendQuot e operation of
the st ockFaci | i ti es port type. The sendQuot e operation is a request-response
operation that expects a trade symbol as input and that produces the actual stock price as
output. Service provider MyExchange provides the port MyExchangeSer vi ces that in turn
implements a Simple Object Access Protocol (SOAP) HTTP binding of the

stockFaci |l i ties porttype. The flow engine might be capable of communicating directly
with the port sending a corresponding SOAP request to the port and receiving the SOAP
response. There is no need for a programmer to implement the solicit-response operation
that performs the communication with the MyExchangeSer vi ces port.

Thus, it is absolutely valid that realizations of solicit-response or notification operations
implementing activities within flows are deferred to a generic implementation of the realizing
flow engine or underlying middleware. And it is this generic component that performs the
required interaction with the proper implementations of request-response and one-way
operations.

This supports our vision for easily deploying Web Services when modeling flows. When the
modeler chooses a request-response or one-way operation found in for example Universal
Description, Discovery and Integration (UDDI) as the implementation of an activity, he or she
may request from the modeling tool to generate a dual operation and defer its
implementation to a generic realization (for example, the underlying flow engine). This dual
implementation will then appear as the (“virtual” or “proxy”) implementation of the activity in
WSFL.

3.5.6 Exporting Operations

In order to allow flow models to be defined as service provider types (that is, a set of port
types), the metamodel provides a construct to export operations implementing
encompassed activities. These exported operations are grouped into port types that define
the public interface of the flow model. All those operations will be exported that require
interactions with some external service provider. These operations specify the interaction
offers and demands with respect to the outside world. Stated another way, activity
implementations that do not require communication with the outside do not need to be
exported.

In the figure below, flow model F encompasses the set of activities (A,B,C,D). Each of these
activities is implemented by an operation of some port type (these port types are specified
with the corresponding activities and are not shown in the figure). These operations are
exported and aggregated into a new port type called pt in the figure. This port type pt
represents the external interface of the flow model F, that is, the modeler has chose to define
a single port type to make up the service provider type representing the flow model.

Web Services Flow Language 35

IBM Software Group

3.5.7 Plug Links

What is still missing until now is the specification of which exported operation of a flow model
interacts with which (dual) operation of a port type of an external service provider. Thus, we
have to provide a means to specify pairs of dual operations to indicate the interaction
between service providers actually going on at run time. This construct is called a p/lug link
in the metamodel. A plug link connects two dual operations of different port types indicating
that a corresponding interaction has to take place in order to completely implement an
activity. Note that both plug-linked port types are allowed to be opaque, that means, not
related to a flow model at all; then, of course, the plug link does not make any assumptions
about implementing an activity but just specifies the interaction requirement between both
port types.

In the following figure, the proper implementation of activity A is the request-response
operation o1 of port type pt. But in order to describe the service provider type representing
the flow model that includes activity A, the operation 01’ dual to pt.o1 (that is, 01’ is a solicit-
response operation) is specified as A’s implementation at the language level and is exported
to an appropriate port type of this service provider type. A plug link is specified between o1’
and o1 to indicate the interaction between o1’ and o1. The plug link means that o1’ will
initiate the interaction by sending a message to the port implementing pt.o1 through the
binding chosen. Operation o1 will receive the message as a request and perform whatever
action has to take place to produce the result message. The latter message is sent as a
response message to the implementation of 01’, which in turn consumes this message. If
applicable, this message will typically be returned to the flow engine as the result of the
execution of the implementation of activity A.

Web Services Flow Language 36

IBM Software Group

3.5.8 Flows and Plug Links

As discussed, the WSFL metamodel provides a mechanism to define flow models as new
service provider types. Because operations of any kind of port types can be used as
implementations of activities of a flow, especially each operation exported by a flow model
can be used as such an implementation. In the following figure, flow models F and G are
assumed to define service provider types that consist of a single port type each for
simplicity. Activity C of flow model G is implemented by pt’.05, where pt’ is the port type
describing the public interface of G. But the proper implementation of C is operation 02 of
port type pt. Port type pt, in turn, is the public interface of flow model F. As a net effect, a
plug link is established between operations (namely 05 and 02) of port types associated with
two flow models (namely G and F). The same figure also shows that activity A of flow model
G is implemented by pt’.02, which in turn is plug-linked to operation 03 of the (opaque, that
is, non-flow) port type pt”.

Web Services Flow Language 37

IBM Software Group

3.5.9 Making Things Convenient

The metamodel provides a facility to ease the specification of interactions between
operations of different flow models: Conceptually, a plug link can be specified that simply
connects two activities of two different flow models. In the following figure, activity C of flow
model G is connected through a plug link to activity Z of flow model F. Such a plug link
between activities is just a syntactical convenience: If a tool allows to draw such a link, it is
always assumed that the tool will automatically generate the associated export constructs
and the associated plug links for the exported operations. In other words, at the language
level, no plug link between activities exists.

Assume a tool allows drawing a plug link between activities like A and B in the following
figure. Then, the tool will generate the export of the request-response operation 02 (the
proper implementation), the derivation of the proxy operation o1 (the solicit-response
operation) and its export, as well as the plug link between o1 and 02. This generation action
of the tool might be referred to as “activity plug link explosion.” In this case, “explosion”
means substitution of the fat dashed arrow between A and B by the constructs within the
dashed box.

Web Services Flow Language 38

IBM Software Group

3.5.10 Mapping Data

The WSFL metamodel does not assume that the signature of an activity and its implementing
operation as well as the signature of two plug-linked operations are identical. Because of
this, both the export construct as well as the plug link construct allow to specify a data
mapping between the source and the target of an export and a plug link, respectively. This is
very similar to the data-mapping capability of data links discussed before.

3.5.11 Aggregating Web Services

The composition metamodel of WSFL allows exporting operations from a port type of one
service provider to a port type of another service provider. Effectively, this represents the
delegation of the implementation of the target operation of the export to the source operation
of the export. In particular, this allows a group of collaborating service providers to appear
as a single new service provider to the outside world.

For example, when modeling flows and assigning implementations to activities it might occur
that some exported operations will not be coupled with operations of port types already
chosen in the composition process. These “dangling” operations do need other port types
and operations in order to result into a complete realization of the final flow model or service
provider type, respectively. The export feature above allows catching such dangling
operations and associating them with new port types.

In the following figure, the operation o1 implementing activity Y of flow model F is dangling: It
has no matching operation of a service provider assigned, that is, the overall implementation
of Y is “incomplete” (we do assume that o1 is not fully implemented internally by the provider
of flow model F). Thus, a new port type pt” is defined that has an operation 08, and o1 is
exported to operation 08 of the new port type pt”. The operations of pt”’ can be used as
endpoints of plug links, thus completing the overall end-to-end implementation at a later
time. Note that one might perceive that service providers of G, F, and pt” cooperate to
provide a new service represented by pt”’ and offer it to their joint customers.

”y

Web Services Flow Language 39

IBM Software Group

3.5.12 The Global Model

The interaction patterns between service providers or service provider types are specified in
the WSFL metamodel as global models. A global model consists of a set of service providers
or service provider types, respectively, as well as corresponding plug links and exports
between operations of the encompassed port types.

A global model may specify a new service provider type. This service provider type can be
used in turn in a composition through a flow model or another global model, respectively.
Thus, the composition model of WSFL is recursive in nature.

Note that the service providers or service provider types aggregated within a global model

are not necessarily associated with a flow model. In particular, it is even perfectly valid that

all of the service providers or service provider types within a global model are opaque, that
is, not associated with a flow model at all. As such, a global model specifies all the possible
interactions between the affected service providers during run time.

service provider type

Web Services Flow Language 40

4.1

4.2

IBM Software Group

Language Description

In this section, we are describing the Web Services flow language in its details. In Section 5
“Appendix A: WSFL Schema,” we present the XML schema of the language.

Document Structure and Naming

A WSFL document contains the definition of one or more flow models and global models. In
addition, WSDL por t Types can be optionally defined inside a WSFL document if required.
Finally, a WSFL document can have import clauses referring to other WSDL and WSFL
documents. These elements are described in detail in the following sections. At the root of
the WSFL document there is always a <def i ni ti ons> element.

A WSFL document can be identified by the optional t ar get Nanespace attribute encoded
on the root <def i ni ti ons> element. If included, the value of the t ar get Nanespace
attribute is an absolute Universal Resource Identifier (URI). This URI is used to identify
elements defined in the WSFL document when referenced from other WSFL document (see
Section 4.2 “References to External Definitions”).

The structure of the document is represented in the schema language [2] by the following
complex type definition:

<conpl exType nanme="definiti onsType">
<sequence>
<el enent name="i nport" type="wsfl:inportType"
m nCccur s="0" maxOccur s="unbounded"/ >
<el enent name="servi ceProvi der Type”
type="wsfl: servi ceProvi der TypeType"
m nOccur s="0" maxCccur s="unbounded"/ >
<el ement ref="wsfl:fl owvbdel "
m nCccur s=" 0" maxOccur s="unbounded"/ >
<el enent ref="wsfl: gl obal Mbdel "
m nOccur s="0" maxCccur s="unbounded"/ >
</ sequence>
<attribute nanme="t ar get Nanespace" type="uri Reference"/>
</ conpl exType>

The complete schema for WSFL can be found in Section 5 “Appendix A: WSFL Schema.”

References to External Definitions

WSFL makes the assumption that the services used in a composition have been described
using WSDL (for interface and deployment definition) and WSFL (for service provider types,
flow models, and global models). For this reason, a WSFL document usually includes
references to WSDL and WSFL definitions contained in other documents.

References to external definitions are made using qualified names, which are represented
by the QName schema type; see [3]. A qualified name contains a namespace part and a
local part. The namespace part matches the t ar get Namespace attribute of the document
where the referenced element is defined, while the local part corresponds to the value of the
namne attribute of the element.

As in WSDL, it is possible to associate a namespace with a document location by using the

<i npor t > element. The usage and syntax of this element is completely similar to the known
WSDL element, see [1].

Web Services Flow Language 41

4.3

IBM Software Group

Flow Models

A service composition is represented in WSFL by a <f | owmvbdel > element, which is named
using the name attribute. The definition of a flow model includes two kinds of information: the
specification of how the composition uses the services being composed to create a flow
model, and the definition of the service interface provided by the composition.

The public service interface of the flow model is specified as service provider type in the
servi ceProvi der Type attribute. Implementations of activities from the flow model defined
can be exported by a corresponding <export > element to an operation of one of the port
types of this service provider type. Details on the definition of the service interface of a flow
model are provided in Section 4.6 "Defining the Interface of a Flow Model.”

The flow model proper is defined using six different elements:

* The <fl owSour ce> and <f | owSi nk> elements define the input and output of the
flow model.

« The<serviceProvi der > elements represent the services participating in the
composition.

* The<activity>elements represent the usage of individual operations of a service
provider inside the flow model.

« The<control Li nk>and <dat aLi nk> elements represent control and data
connections between activities in the model.

Service providers are discussed in Section 4.4 “Service Providers and Service Bindings,”
activities and links in Section 4.5 “Defining Business Processes.”

The schema syntax for the <f | owvbdel > element is provided in the following code sample:

<conpl exType nane="fl owivbdel Type" >
<sequence>
<el ement name="f| owSour ce"
type="wsfl: fl owSourceType"
m nQccur s="0"/ >
<el ement nanme="fl owSi nk"
type="wsfl: fl owSi nkType"
m nQccur s="0"/>
<el enent name="servi ceProvi der"
type="wsfl: servi ceProvi der Type"
m nQOccur s="0" maxCccur s="unbounded"/ >
<group ref="wsfl:activityFl owG oup"/>
</ sequence>
<attribute name="name" type="NCNane" use="required"/>
<attribute name="servi ceProvi der Type" type="Qane”/>
</ conpl exType>

<group nane="activityFl owG oup">
<sequence>

<el enent name="export" type="wsfl:export Type"
m nCccur s="0" maxOccur s="unbounded"/ >

<el enent name="activity" type="wsfl:activityType"
m nCccur s=" 0" maxOccur s="unbounded"/ >

<el enent name="control Li nk" type="wsfl:control Li nkType"
m nOccur s="0" maxCccur s="unbounded"/ >

<el enent nanme="dat aLi nk" type="wsfl:dataLi nkType"

Web Services Flow Language 42

4.4

IBM Software Group

m nCccur s="0" maxCccur s="unbounded"/ >
</ sequence>
</ gr oup>

The <f | owSour ce> element allows defining the message that provides the data when
creating an instance of the model (its “initial context”); the flow source passes an “output”
message that is typed by the input message of the flow model. The (output of a) flowSource
can be linked to (input of) activities in the flow through dat aLi nk attributes to indicate that
those activities use flow model input data to perform their tasks. The <f | owSi nk> element
allows specification of the data that is returned once the instance is completed, and fault
messages that are returned in case of an erroneous termination of an instance; the flow sink
has an “input” message that is typed by the output message of the flow model. The (input of
a) f I owSi nk can be linked to (output of) activities in the flow model through dat aLi nks to
indicate that the result of an activity contributes to the result of the overall flow model.

<conpl exType name="fl| owSour ceType" >
<sequence>
<el enent ref="wsdl : out put”/>
</ sequence>
<attribute name="nanme" type="NCNane" use="required"/>
</ conpl exType>
<conpl exType nane="fl owSi nkType" >
<sequence>
<el enent ref="wsdl :input”/>
</ sequence>
<attribute nanme="nane" type="NCNane" use="required"/>
</ conpl exType>

Service Providers and Service Bindings

Service providers represent the endpoints that provide services in flow models and global
models. Actual service providers are determined based on locators as some sort of
“instances” of service provider types.

4.4.1 Service Provider Types

Conceptually, a service provider type defines the external interface of some “type of service”
(for example, bookseller, travel agent). It is different from a WSDL service, which describes a
particular instance of some service (for example, the bookseller muchToRead.com, the travel
agent getYouThere.co.uk). It is different from a WSDL port type, which describes the type of
a WSDL port and which in turn, is bound to a single endpoint address.

The external interface (in the WSDL sense) of a service provider type is given by a sef of
WSDL port types. Port types can be defined “inline” within the service provider type;
alternatively, a service provider type can import port types defined elsewhere. Some of these
port types can be associated with WSFL flow models (which define dependencies between
the operations), but this is not explicitly described in the service provider type. The following
code is an example of a service provider type definition; this definition declares the single
port type supported “inline” in contrast to referencing an “external” port type.

<servi ceProvi der Type name="booksel | er”>
<port Type nane="processO ders”>
<oper ati on name="“recei veOrder”>
<i nput nessage="bookOrder”/ >
</ oper ati on>
<oper ati on nanme="sendBooks” >
<out put nessage="bookDel i very”/>

Web Services Flow Language 43

IBM Software Group

</ oper ati on>
</ port Type>
</ servi ceProvi der Type>

External portTypes are incorporated into the definition of a service provider type by means of
an <i nport > element. The por t Type attribute is used to provide the qualified name of the
portType being imported. The <i nmport > element is also used to simplify the inline definition
of portTypes. To this end, WSFL extends the syntax of the WSDL <port Type> element to
add the ability to reuse existing operation definitions through nested <i npor t > elements. In
this use of the <i npor t > element, an oper at i on attribute must also be provided to identify
the operation definition being imported. See the following code for an example:

<port Type nanme="newPort Type” >

<i nport port T Type="tns: sonePort Type”/>

<i nport operation="anQperati on” portType="tns: anot her Port Type”/ >
</ port Type>

The <i npor t > element can be used in combination with the standard WSDL <port Type>
and <oper ati on> elements. The schema syntax of the <ser vi cePr ovi der Type> is
provided in the following code:

<conpl exType nanme="servi ceProvi der TypeType” >
<sequence>
<el enent name="port Type” type="wsfl:port TypeType”
m nCccur s=" 0" maxOccur s=" unbounded”/ >
<el enent name="i nport"
m nCccur s="0" maxQccur s=" unbounded” >
<conpl exType>
<attribute name="port Type” type="QNane”/>
</ conpl exType>
</ el ement >
</ sequence>
</ conpl exType>

The following code shows you the schema syntax for the WSFL <port Type>:

<conpl exType nane="port TypeType" >
<compl exCont ent >
<ext ensi on base="wsdl : port TypeType" >
<sequence>
<el enent name="i nport"
m nOccur s="0" maxCccur s="unbounded” >
<conpl exType>
<attribute name="port Type" type="QNane"/>
<attribute name="operation" type="NCNane"/>
</ conpl exType>
</ el enent >
</ sequence>
</ ext ensi on>
</ conpl exCont ent >
</ conpl exType>

4.4.2 Service Providers

Service providers are named and typed. The type is defined by referring to a service
provider type. The service provider type states the functionality and behavior that the service
provider is expected to provide in the flow model being defined. Service providers in a flow
model are thus similar to typed variables, because they can be bound to any Web Service

Web Services Flow Language 44

IBM Software Group

satisfying the typing requirements. It is important to note that once a service provider is
bound to a particular Web Service, all activities supported by operations of that provider get
assigned to the specific service endpoints. A specific activity can sometimes overwrite this
“default” binding by coding an activity locator element, see Section 4.5.1 “Activities.”

<servi ceProvi der name="nmySupplier" type="dtp:supplier"/>

Service provider types are instantiated as service providers in flow models or in global
models. A service provider is determined by a locator based on a service provider type. This
may be obvious, but it should be noted that a service provider type is bound “as a whole” by
a locator. Essentially, the locator identifies a particular WSDL service that implements the
interface defined by the service provider type. See the following example:

<servi ceProvi der name="booksel | er01” type="bookseller”>
<l ocator type=“static” service="nuchToRead. coni/>
</ servi ceProvi der >

The <l ocat or > element is described in Section 4.4.3 “Service Locators.” The schema
syntax for the <ser vi cePr ovi der > element is given in the following example. The
<export > element is described in Section 4.6 “Defining the Interface of a Flow Model,” and
is discussed there in detail. It is also used within the context of global models (see Section
4.8 “Global Model”).

<conpl exType nane="servi ceProvi der Type" >
<sequence>
<el enent name="l ocator" type="wsfl:| ocator Type"
m nOccur s="0"/ >
<el enent name="export" type="wsfl:export Type"
m nQOccur s="0" maxCccur s="unbounded"/ >
</ sequence>
<attribute name="name" type="NCNane" use="required"/>
<attribute name="type" type="QName" use="required”/>
</ conpl exType>

4.4.3 Service Locators

Service providers are the units of the binding operation in flow models. The assignment of
services to service provider variables is controlled with the optional <l ocat or > element,
which has to return exactly one service. If present, the <l ocat or > element is nested inside
the <servi ceProvi der > element. If not present, the <l ocat or > element that is nested
inside the plug link of the activity to be started is taken. In this case, the middleware
evaluating the plug link construct must return the value for the service chosen to allow the
flow engine to set the value for the <ser vi cePr ovi der > element.

Several different types of binding are possible, which are identified using the t ype attribute
in the <l ocat or > element. The syntax of the locator element changes with the locator type:

* In a static binding, the actual bound service is directly specified as the value of the
ser vi ce attribute (of type QName), referring to the WSDL or WSFL definition of the
service:

<l ocator type="static” service="tns:servicel”/>
* Inalocal binding, the provider of the service is specified as a locally accessible

program or software component (Java™ class, database-stored procedure, and so on).
The ser vi ce attribute can be used to specify the local service if a WSDL binding is

Web Services Flow Language 45

IBM Software Group

available for the local component. The | ocal keyword is then used as a hint to the
processor about the local nature of the service. However, to simplify the use of local
bindings and support legacy-type specifications, the <l ocat or > element can instead
contain extensibility elements that specify how to bind to the local provider.

<l ocator type="I|ocal ">
<l-- extensibility el enents -->
</l ocat or >

* In a UDDI type binding, the locator contains a UDDI query that will produce a list of
candidate bindings when executed against a UDDI repository. Because the UDDI query
application programming interface (API) is defined as a SOAP API, an UDDI query is
represented by the corresponding SOAP message. This XML fragment is provided
directly nested under the <l ocat or > element:

<l ocat or type="uddi”
bi ndTi ne="st art up”
sel ectionPolicy="first”>
<uddi - api : fi nd_servi ce
busi nessKey="uui d_key"
generic="1.0"
xm ns: uddi - api =" ur n: uddi - org: api ">

</ udd| -api: find_service>
</l ocat or>

The example above shows the nested UDDI query under the <l ocat or > element. It
also includes two attributes, bi ndTi ne and sel ecti onPol i cy, that help control the
binding process. The bi ndTi e attribute is used to specify at what point in time the
service provider is to be bound:

» The value is setto st art up to indicate that the UDDI query is to be performed at the
time the flow model is instantiated.

= JtissettofirstH t toindicate that the UDDI resolution must occur the first time an
operation (activity) provided by that service provider is activated.

» |tis settodepl oyment toindicate that the service is determined at the time the
flow model is bound to a particular environment.

The sel ecti onPol i cy attributes determine how to choose a provider if the UDDI
query returns more than one matching provider. There are currently three possible
values of this attribute:

= first indicates that the first provider in the returned list should be selected.
» randomindicates a random pick from the list.
» user-defined indicates that the user is providing a selection procedure, whose

name is then encoded as the value of the i nvoke attribute. This case is shown in
the next example:

<l ocat or type="uddi”
bi ndTi me="firstHit”
sel ectionPol i cy="user - def i ned”
i nvoke="pi ckUddi . exe”/ >

<I-- extensibility el enents oS
<l-- e.g. to describe where the “invoke” procedure can -->
<l-- be found -->

Web Services Flow Language 46

IBM Software Group

<uddi -api : find_service...> ... </uddi-api:find_service>
</l ocat or >

* Alocator can specify a value of any for the type attribute, indicating that the flow model
does not place any restriction on what service provides the role of this service provider.
This a convenient way to represent the situation in which the interaction with the
f I owMbdel is initiated by a third party, which at that point binds on to the role
represented in the model by the service provider.

<l ocator type="any”/>

* In the mobility type binding, the information required to bind a service provider is
extracted from the data exchanged in a prior interaction. For instance, a travel agency
may select an airline on behalf of its customer and then send the airline contact
information to the customer to enable her/him to deal with the airline directly. It must be
assumed that the interaction carrying the binding information will be completed before
the first activity supported by the mobility-type service provider is activated. A default
binding may be provided with this locator type to avoid this situation.

The mobility locator must identify the data field containing the binding information. For
this purpose, attributes are provided to specify the name of the activity where the
binding information was obtained, as well as the names of the input, output or fault
message, of the message part, and of the data field where the information is contained:

<l ocator type="nobility”
activity="getFlight”
message="fli ghtl nfo”
nmessagePart="airl i ne”
dat aFi el d="provi der | nf 0" >

To support the aggregation model of Web Services, mobility locators are also supported
as nested elements of plug links (see Section 4.7 “Plug Links”). Thus, at the aggregation
level, the mobility binding information is contained in the input, output, or fault message

of an operation of a port type of a service provider type.

<l ocator type="nobility”
servi ceProvi der Type="travel Agent”
port Type="booki ngs”
oper ati on="sendFl i ght | nf 0”
message="fli ghtl nfo”
nmessagePart="airline”
dat aFi el d="provi der | nf 0" >

The schema syntax for the locator element is given below. The syntax below does not fully
represent the variability of the <l ocat or > element, because the schema definition language
does not provide support for selecting alternate sets of attributes based on the value of one
of them.

<conpl exType nane="| ocat or Type" >
<sequence>
<any nanespace="##ot her"
m nCccur s="0" maxOccur s="unbounded"/ >
</ sequence>
<attribute nane="type" type="wsfl: | ocatorTypeType" />
<attribute name="service" type="QNane"/>
<attribute name="bi ndTi me" type="wsfl:bi ndTi mreType"/>
<attribute nanme="sel ecti onPolicy"
type="wsfl:sel ecti onPolicyType"/>

Web Services Flow Language 47

4.5

IBM Software Group

<attribute nane="activity" type="NCNane"/>
<attribute name="nessage" type="NCNane"/>
<attribute name="nessagePart" type="NCNanme" />
<attri bute nane="dataFi el d' type="string"/>
<attribute nane="servi ceProvi der Type" type="Q\ane"/>
<attribute nanme="port Type" type="QNane"/>
<attribute name="operation" type="NCNane" />
<attribute name="default" type="QNane"/>
<attribute nane="invoke” type="string”/>

</ conpl exType>

Defining Business Processes

The wiring of services into a business process (represented by a flow model) is described in
WSFL using four kinds of elements: activities, control links, data links, and plug links. The
metamodel corresponds to a special kind of a directed acyclic graph as described in
Section 3.1 “Flow Metamodel.”

The nodes of the graph correspond to activities. An “activity” represents the use of an
operation within the context of a flow. Through lifecycle operations, a whole (existing) flow
model of a service can be used. When a whole flow model is used by an activity, the
corresponding flow is often referred to as subflow.

Three types of edges are possible in the graph. “Control links” define the potential invocation
sequence of activities in the model. “Data links” describe the flow of data between activities.
Finally, “plug links” represent the explicit invocation of an operation offered by a different
service provider as implementation of an activity. If the activity uses another flow, the
operations of the corresponding lifecycle interface (see Section 3.2 “Lifecycle Interface”) are
exploited for plugging.

Although arbitrary cycles are not allowed in the metamodel, it is possible to iterate activities,
as explained in the next section. Because activities can use other flows, even flows can be
iterated.

451 Activities

Activities are represented by <act i vi t y> elements. Activities are named, and have a
signature that specifies the required inputs, outputs and the possible faults of the execution.
The signature of an activity is specified in the same manner as the signature of a WSDL
operation, using nested input, output, and fault elements, see [1].

<activity nane="recei veTheMoney" >

<i nput nane="receivel nput” nessage="tns: payForni/>

<out put name="acknowl edgenent” nessage="tns:recei pt Forni/>
</activity>

When the nane attribute is not specified in an <i nput > or an <out put > element, the name
attribute defaults to the activity name with the suffix “Input” or “Output” appended,
respectively. The name attribute is mandatory for <f aul t > elements.

4.5.1.1 Activity Implementation
An activity is executed by interacting with an operation from the interface of a service
provider. This service provider is specified by a nested <per f or nedBy> element. The
implementing operation is specified through a nested <i npl enent > element. If the
implementation of the operation can be provided “internally,” requiring no access to an
“external” service provider, the <i npl enent > element specifies this by using a nested

Web Services Flow Language 48

IBM Software Group

<i nt er nal > element (see Section 6 “Appendix B: Internal Activity Implementations* for
sample extensibility elements of the WSDL definitions of the port types required in this case
to bind to local implementations like EXE, DLL, or other executables).

Otherwise, a nested <export > element is used. Both the <i nt er nal > element as well as
the <expor t > element specify the operation that is “dual” to the one being the final target
implementation; a plug link (see Section 4.7 “Plug Links”) is used to connect the dual
operation with the final target implementation. The <expor t > element specifies the dual
operation by referencing an operation from the flow’s public interface. These two elements
are described in more detail in Section 4.6 “Defining the Interface of a Flow Model.”

<f | owModel nane="bookLover” servi ceProvi der Type="bookLover Public”>

<activity nane="sel ect Book” >
<per f or mredBy servi ceProvi der="1ocal "/ >
<i npl ement >
<i nternal serviceProvider Type="hbookLoverPri vate”
port Type="bookSt uf f” operati on="sel ect Book”/ >
</i mpl enent >
</activity>

<activity nane="orderDi ctionary”>
<i nput nessage="hbookOrder”/ >
<per f or mnedBy servi ceProvi der =“booksel | er01”/ >
<i npl ement >
<export>
<target port T Type="bookRequester”
operati on="orderDi ctionary”/>
</ export >
</i mpl enent >
</activity>

</ f | owivbdel >

Note that the operation implementing an activity can be a lifecycle operation used to control
the instance of another flow. Depending on the lifecycle operation used to plug a subflow,
the execution of the flow model can take place either as part of the execution of the current
flow, or can be spawned as a new independent flow.

V1.0 remark: The signatures of an activity and the signature of its implementing
operation need not match in general. Nested <map> elements (see Section 4.5.3
“Data Links and Data Mapping”) would then be used to relate the inputs, outputs
and faults of the two. WSFL Version 1.0, however, assumes that the two signatures
match, thus making the mapping unnecessary.

In order to determine the actual endpoint that provides the implementation proper (that is,
not a “proxy”) of the activity, a locator is used. If the service provider associated with the
activity has no locator assigned, the locator of the plug link associated with the activity is
evaluated considering the assigned service provider. Especially in this case, it is convenient
to specify the corresponding plug link directly with the activity.

<activity nane="orderDi ctionary”>
<i npl ement >
<export >
<target port T Type="bookRequester”
operati on="orderDictionary”/>
<pl ugLi nk>
<target portType="sel |l Books”
operati on="recei veOrder”/>

Web Services Flow Language 49

IBM Software Group

<l ocator type="nobility”
activity="sel ect Book”
message="t ns: conmal23”
messagePart =" sel | er Chosen”
default="tns: nySel | er” >
</ pl ugLi nk>
</ export >
</i mpl enent >
</activity>

4.5.1.2 Exit Condition

The successful completion of an activity leads to the possible activation of new activities,
that is, activities that succeed the successfully completed activity through control links. It
also leads to the propagation of data according to the data links starting at the activity. An
“exit condition” can be imposed on the activity to control whether it completed successfully.
This is represented by the exi t Condi ti on attribute, whose value is a Boolean expression
relating values of inputs and outputs of the activity itself or of other preceding activities. The
activity is considered to have completed successfully only if the exit condition evaluates to
true. The exi t Condi ti on attribute is optional.

The exit condition serves a second purpose: Some activities may require that their execution
be repeated until a certain condition is met. The exit condition is used to provide a Boolean
condition for the termination of the iterative execution. The operation or flow model
associated with the activity will be executed at least once, and as many times as needed
until the Boolean expression evaluates to true. By this mechanism, a controlled kind of
cycles (that is, do-until loops) is represented in a flow.

<activity nane="recei veTheMoney"
exi t Condi ti on="recei pt Form status=" K "/ >

V1.0 remark: A future version of WSFL might support a doUnt i | attribute of the
<activity> element. This will allow a clean separation of the specification of the
looping condition and the condition that measures the successful completion of
each iterated execution of an activity.

4.5.1.3 Join Condiition
The execution of parallel branches in a flow can be synchronized at “join activities,” that is,
activities that are the target of more than one control link (see Section 3.1.1 “Syntax”). Join
activities control the synchronization of parallel branches through “join conditions” that are
associated with join activities. A join condition is a Boolean expression in the names of the
control links (see Section 4.5.2 “Control Links”). The nested <j oi n> element is used to
specify the value of this Boolean expression as its condi t i on attribute.

A join condition is evaluated by substituting the names of the control links of the expression
by the truth-values of the transition conditions of the referenced control links. The when
attribute of the join condition allows to specify the point in time at which the join condition is
evaluated: A value of def er r ed requires to wait until the transition conditions of all
referenced control links have been evaluated; this is the default value. A value of

i medi at e requires evaluating the join condition whenever a transition condition of a
reference control link has been evaluated. The truth-value of an immediately evaluated join
condition is considered to be final as soon as it is known that the truth-value of the condition
can no longer change.

<activity nane="recei veTheMoney" >
<join condition="P0Oaccepted AND SRrecei ved” when="deferred”>
</activity>

Web Services Flow Language 50

IBM Software Group

V1.0 remark: def er r ed is the only valid value for the when attribute in Version 1.0.

4.5.1.4 Container Materialization

The construction of the input message of an activity can be defined through data links (see
Section 4.5.3 “Data Links and Data Mapping”). Because an activity can be the target of
multiple data links, a mechanism for resolving conflicting data mapping specifications is
needed. The nested <mat eri al i ze> element is used for this purpose: It either contains a
<mapPol i cy> element or a <const r uct i on> element.

A map policy specifies through its or der attribute the order in which the data maps have to
be applied. Possible values include:

= LWN- the maps have to be applied in their “last writer wins” order (this value is the
default)

* FWR-the maps have to be applied in their “first writer wins” order
= RANDOM- the maps are applied in a random order

If none of the predefined values is specified, the value of the order attribute is a list of blank-
separated names of data links; the map elements of the data links will be applied in exactly
the specified order.

<activity nane="recei veTheMoney" >
<materialize>
<mapPol i cy order="LWN />
</materialize>
</activity>

A construction specifies a particular manner how the container must be materialized: The
t ype attribute defines the technology used to construct the message; a value of XSLT is its
default. The | ocat i on attribute specifies where the construction prescription can be found.

<activity nane="accept Shi pnent Request " >
<materialize>
<construction type="XSLT"
| ocati on="nmapRepository.conf x213. xsd”/ >
</materialize>
</activity>

V1.0 remark: Materialization of containers through explicit construction elements is
not subject of WSFL Version 1.

4.5.1.5 Summary: Activity Schema
The schema syntax for the activity element is provided in the following example:

<conpl exType nane="activityType">
<comnpl exCont ent >
<ext ensi on base="wsdl : operati onType" >
<sequence>
<el enent name="perf or medBy” >
<conpl exType>
<attribute name="servi ceProvider”
t ype=" NCNane”/ >
</ conpl exType>
</ el ement >
<el ement nanme="i npl emrent " >
<conpl exType>
<choi ce>
<el ement name="internal "

Web Services Flow Language 51

IBM Software Group

type="wsfl:internal Type”/>
<el enent name="export"
type="wsfl: export Type"/ >
</ choi ce>
</ conpl exType>
</ el emrent >
<el enent name="j oi n" type="wsfl:joi nType"
m nQccur s="0"/ >
<el enent name="materialize" type="wsfl:nmaterializeType"
m nCccur s="0"/>
<any nanespace="##ot her" m nCccurs="0"
maxQccur s=" unbounded"/ >
</ sequence>
<attribute nanme="nane" type="NCNane"/>
<attribute nane="exitCondition" type="string"/>
</ ext ensi on>
</ conpl exCont ent >
</ conpl exType>

<conpl exType name="j oi nType" >
<attribute nane="condition" type="wsfl:NCNaneLi st"
use="required"/>
<attribute name="when" type="wsfl:whenType" use="default"
val ue="deferred"/>
</ conpl exType>

<conpl exType nanme="materi ali zeType" >
<choi ce>
<el enent nanme="nmapPol i cy">
<conpl exType>
<attribute nanme="order" type="wsfl: orderType"
use="default" val ue="LWN />
</ conpl exType>
</ el ement >
<el ement nane="construction">
<conpl exType>
<attribute name="type" type="string"
use="defaul t" val ue="XSLT"/ >
<attri bute nane="location" type="string"/>
</ conpl exType>
</ el ement >
</ choi ce>
</ conpl exType>

4.5.2 Control Links

Control links are used to define the control flow among the activities of the model. A control
link describes an activity (the “source”) and its possible successor activities (the “targets”).
The <cont r ol Li nk> element is used to represent control links, and the mandatory sour ce
andt ar get attributes are used to name the linked activities. The two linked activities must
have been defined within the flow model that contains the definition of the control link.
Observe that we do not connect the operations that are used by the activities as their
implementations, but the activities themselves. This is because an operation may appear as
implementation of more than one activity

Control links can carry conditions that are used as “guards” for following the potential path
from the source to the target (“transition conditions”). The actual truth-value of the transition
condition determines at execution time whether or not the corresponding link is followed and
the target activity is considered for activation. The Boolean expression of the transition

Web Services Flow Language 52

IBM Software Group

condition is provided as the value of the t ransi ti onCondi ti on attribute. Refer to Section
3.1.2 “Operational Semantics” for what happens when the transition condition evaluates to
false (“dead path elimination”).

The Boolean expression representing a transition condition is an expression in a subset of
the data fields of any part of the input, output, or fault messages of activities preceding the
source activity (including the latter activity itself) of the control link. See Section 4.5.3 “Data
Links and Data Mapping” for an explanation of how to identify and use data field values. The
encoding of this Boolean expression depends on the type system that was used to define
the data types of the messages and their parts. In the case where XML Schema is used, the
Boolean expression will be an XPath expression.

For example:
<control Li nk source="processPO'
t ar get =" accept SR"
transiti onCondition=
" processPOQut put/ x > accept SRl nput.y”/>

Recall that activities have WSDL signatures, so different kinds of “results” are possible: either
a regular output message or one of its fault messages will be returned. A control link may
refer to the particular kind of the output using the r esul t attribute, which identifies the
corresponding output by name (for example, to identify a particular fault message). The
control link will be followed if, and only if, the message of the specified name is returned.

In particular, this mechanism provides a straightforward way for exception handling: Besides
specifying the regular flow between activities flow modelers can specify control links from an
activity to “error handling” activities. Which of the error handling activities are to be run is
controlled by an appropriate value of the r esul t attribute, specifying the name of the fault
message returned by the source activity of the control link.

For example:

<cont r ol Li nk name="sup- shi p- 1"
sour ce="processPO'
t ar get =" accept SR"
resul t="inval i dl nput Message”/ >

Control links do have an optional name. This name must be provided in order to refer to a
control link in a join condition.

The schema syntax for the <cont r ol Li nk> element is as follows:

<conpl exType name="1|i nkType" >
<attribute nanme="nane" type="NCNane"/>
<attribute nanme="source" type="NCNane"/>
<attribute name="target" type="NCNane"/>
</ conpl exType>

<conpl exType name="contr ol Li nkType" >
<conpl exCont ent >
<ext ensi on base="|inkType">
<attribute name="transitionCondition" type="string"/>
<attribute nanme="result" type="NCNane"/>
</ ext ensi on>
</ conpl exCont ent >
</ conpl exType>

Web Services Flow Language 53

IBM Software Group

4.5.3 Data Links and Data Mapping

Data links define the exchange of information between activities, and it is represented by the
<dat aLi nk> element. The attributes sour ce and t ar get specify the linked activities (or
the flow source or flow sink of the overall flow, respectively. See Section 4.3 “Flow Models”).
The information exchanged can originate in any part of the input, output or failure messages
of the source activity, and is mapped to any part of the input messages of the target activity.
It is a requirement that a control path (a continuous path made up of control links) exist from
the source activity to the target activity (see Section 3.1.1 “Syntax”). The specific mapping
between source and target data elements is defined using a nested <map> element:

<dat aLi nk nane="sup-shpl"
sour ce="processPO'
t ar get =" accept Request ">
<map sour ceMessage="anl NVandSR' t ar get Message="anSR"
sourcePart="SR’ targetPart="SR'/>
</ dat aLi nk>

The <map> element provides a general mechanism for specifying data mapping and data
conversion in WSFL (see also Sections 3.1.1.12 “Data Links,” 4.5.3 “Data Links and Data
Mapping,” 4.6.3 “Exporting Activities,” 4.6.4 “Exporting Operations” and 4.7 “Plug Links”).
The <map> element can appear nested inside a <dat aLi nk>, <export >, or <pl ugLi nk>
element; the enclosing element identifies a source and a target activity or operation whose
signatures define the data elements being mapped.

The messages that contain the source and target data are specified using the

sour ceMessage andt arget Message attributes, whose value must be the name of an
<i nput >, <out put > or <f aul t > element. Recall that WSDL provides a default name for
the <i nput > and <out put > elements of an operation definition, and requires that a name
be provided for all <f aul t > elements. A similar convention is used in the definition of the
signature of an activity (see Section 4.5.1 “Activities”).

Four additional attributes are available to determine the specific data elements that are
being mapped. The sour cePart andtarget Part attri but es determine the WSDL part
of the messages that contain the mapped data, while the sour ceFi el d andt arget Fi el d
attri but es are used to point a specific field in the message part. The value encoded in
the last attributes depends on the type system that was used to define the datatype of the
part. If the XML Schema is used, the value is an XPath expression. Finally, a convert er
attribute can be used to specify a user-provided function that performs the data mapping
and conversion, for example for XSLT processing.

V1.0 remark: The convert er attribute is not supported in WSFL Version 1.

In order to map the flow model input to the input of an activity or to map output of an activity
to the flow model output, the <f I owSour ce> and <f | owSi nk> elements of a flow model
are used as sources and targets of data links. As explained above, flow source and flow sink
are named elements in a flow model, which have an output and respectively, an input
message defining the external interface of a flow model. Just as data links connect outputs
of activities with inputs of other activities, they can be used to connect the output of the

<f I owSour ce> element to the input of activities, and the output of activities to the input of
the <flowSink> element.

Mapping data from the flow model input to an activity can then be done as follows (assuming
that the flow source in the flow model has the name f | owSour ce):

<dat aLi nk nane="fl| owivbdel - shi p"
sour ce="f | owSour ce"

Web Services Flow Language b4

4.6

IBM Software Group

t ar get =" accept Request " >
<map sour ceMessage="anl NVandSR' t ar get Message="anSR"
sourcePart="SR’ targetPart="SR'/>
</ dat aLi nk>

Mapping data from an activity to the flow model output can be done as follows (assuming
that the flow sink in the flow model has the name f | owSi nk):

<dat aLi nk nane="shi p-fl ownodel "
sour ce="processPO'
target ="fl owSi nk" >
<map sour ceMessage="anl NVandSR"' t ar get Message="anSR"
sourcePart="SR’ targetPart="SR'/>
</ dat aLi nk>

The schema syntax for the <map> and <dat aLi nk> elements is given in the following code:

<el enent nanme="nap" >
<conpl exType>
<attribute name="sourceMessage" type="NCNane"/>
<attribute name="t arget Message" type="NCNane"/>
<attri bute nanme="sourcePart" type="NCNane"/>
<attribute nane="targetPart" type="NCNane"/>
<attribute name="sourceFi el d* type="NCNane"/>
<attribute name="targetField" type="NCNanme"/>
<attribute name="converter" type="string"/>
</ conpl exType>
</ el enent >

<conpl exType nane="dat aLi nkType" >
<conpl exCont ent >
<ext ensi on base="|inkType">
<sequence>
<el enent ref="map" m nCccurs="0"/>
</ sequence>
</ ext ensi on>
</ conpl exCont ent >
</ conpl exType>

When a data link does not contain a <map> element, it is assumed that the output message
of the source activity is identically passed as input message to the target activity.

The name of a data link is optional. When an activity is the target of more than one data link,
these data links are named to allow an easy specification of the order in which possibly
conflicting data links are to be applied.

Defining the Interface of a Flow Model

The interface of a flow model includes two groups of operations: the set of operations and
port types that the model makes available for third-party interaction constitute the external or
public interface of the model. The external interface of a flow model always includes the
lifecycle interface of the flow model, described in Sections 3.2 “Lifecycle Interface” and 4.6.5
“Support for Lifecycle Operations,” in addition to any other supported port types. The set of
operations and port types that the flow model requires to interact with internal services (for
example, application components, TP monitors, and so on) constitute its internal or private
interface; all the operations of the internal interface are, by definition, plug-linked to internal
providers, and are not available for interaction with other services.

Web Services Flow Language 55

IBM Software Group

The following sections describe the differences between the public and private interfaces,
and the mechanisms available in WSFL for defining the interface of a flow model: exporting
activities, exporting operations from internal service providers, and exporting lifecycle
operations.

4.6.1 External and Internal Interfaces

The operations of the external or public interface of a flow model define how the model
interacts with external partners; both the functional capabilities as well as the requirements
against partners are specified by the public interface. All the public operations must be
included in one of the supported port types declared using the servi ce provi der type
attribute on the <f | owivbdel > element. (see Section 4.3 “Flow Models”). This attribute
provides the name of a service provider type that in turn denotes a set of qualified names
that refer to port types defined in WSDL or WSFL documents.

The operations in the internal or private interface of a flow model are those required to
support the interaction between the flow and the internal service providers used in its
definition. Because these providers are in many cases remote, they are accessed through
plug links (remote invocations) and thus require supporting endpoints in the interface of the
flow. Because these endpoints are already bound and are not available to external partners,
they are not declared in the service provider type attribute of the flow model. They relate to
the definition and implementation of the flow model, not its ability to interact with external
partners.

In both cases, however, the specific effect of an interaction must be defined by mapping
each operation to the internal behavior of the model. The mapping refers capabilities and
requirements back into the flow and reveals the behavior (for example, constraints) of the
whole set of operations. The <export > element is used in WSFL to describe the mapping
between activities, lifecycle operations, or service provider operations, and operations of the
public interface of a flow model. The <i nt er nal > element is used to map between activities
and operations of the private interface. The precise semantics of the export operation are
described in Section 3.5.1 “Composition Metamodel Overview” and 3.5.6 “Exporting
Operations.”

The schema type representing all the uses of the <expor t > element is given in the following
example, and is followed by the type for the <i nt er nal > element:

<conpl exType nanme="export Type" >
<sequence>
<el enent name="source” type="endPoi nt Type”
m nOccur s="0"/ >
<el enent name="target” type="endPoi nt Type”/>
<el enent ref="wsfl: map"
m nQOccur s="0" maxCccur s="unbounded"/ >
<el enent name="pl ugLi nk” type="wsfl: pl ugLi nkType”
m nOccur s="0"/ >
</ sequence>
<attribute nanme="Ilifecycl eAction" type="NCNane"/>
</ conpl exType>

<conpl exType nane="i nt er nal Type” >
<conpl exCont ent >
<ext ensi on base="wsfl: endPoi nt Type"/ >
<sequence>
<el enent name="pl ugLi nk” type="wsfl: pl ugLi nkType”/ >
</ sequence>
</ ext ensi on>

Web Services Flow Language 56

IBM Software Group

</ conpl exCont ent >
</ conpl exType>

<conpl exType nane="endPoi nt Type" >
<attribute nane="servi ceProvider" type="NCNane"/>
<attribute nane="servi ceProvi der Type" type="NCNane"/>
<attribute name="port Type" type="QNane" use="required”/>
<attribute name="operation" type="NCNane" use="required”/>
</ conpl exType>

4.6.2 Internal Implementations

The <i nt er nal > element is used to map activities to implementing operations that are
accessed through the internal interface of a flow model. The <i nt er nal > element appears
always nested inside an <i npl enent > element in the activity definition (see Section 4.5.1.1
“Activity Implementation”). The operation on the internal interface is identified by the service
provider type of the internal interface, the port type and the operation. Note that the type of
the internal interface is not part of the type of the flow model, because only public interface
operations are included there, and declared by the ser vi cePr ovi der Type attribute of the
<f | owvbdel > element.

The <i nt er nal > element can contain a nested plug link that connects the internal
operation to the actual provider. An example was provided in Section 4.5.1.1 “Activity
Implementation.”

4.6.3 Exporting Activities

The mapping of an activity to an operation of the public interface of a flow model is
represented in WSFL by an <export > element. The corresponding export element is
included in the definition of the implementation of the activity, that is, its associated

<i mpl enent > element (see Section 4.5.1.1 “Activity Implementation”). The <export >
element only needs to specify a <t ar get > nested element that identifies the target
operation on the public interface.

If the signature of the target operation does not match the signature of the source activity or
lifecycle operation, one or more <map> elements (described in Section 4.5.3 “Data Links and
Data Mapping”) can be provided to define the mapping between input and output messages
of the external operation and the activity or lifecycle operation.

<activity nane ="processPO >
<i npl enent >
<export >
<target portType="tts:total Suppl yPT"
oper ati on="sendOr der"/ >
<map sour ceMessage="aPCandSR’
t ar get Message="aPCO’
sour cePart =" PO'
target Part =" PO'/ >
</ export >
</i npl enent at i on>
</activity>

When the activity is implemented by an operation of the internal interface of the model, the
<i nt er nal > element has to be used.

Web Services Flow Language 57

IBM Software Group

V1.0 remark: Multiple activities of a particular flow model may be exported to the
same operation of the public interface. WSFL Version 1.0, however, does not make
use of this capability.

4.6.4 Exporting Operations

Within global models, it is possible to export an operation of an encompassed service
provider, defining the implementation of an operation in the public interface of the global
model as simple delegation to the encompassed service provider.

The <export > element is in this case nested inside the <ser vi cePr ovi der > element to
which the implementation is delegated. The <sour ce> element specifies the port type and
operation providing the implementation, and the <t ar get > element specifies the operation
of the public interface whose implementation is delegated to the source. As before, <map>
elements can be used to specify the required adaptation of non-matching signatures. In the
example, the buy operation of the gl obal Port Type port type is delegated to the spawn
operation of the I i f eCycl e port type of the bookLover service provider.

<servi ceProvi der nanme="bookLover” type="bookLoverPublic”>

<export >
<source portType="1ifeCycle” operati on="spawn”/>
<target portType="gl obal Port Type” operation="buy”/>
</ export >

</ servi ceProvi der >

4.6.5 Support for Lifecycle Operations

Managing the lifecycle of a flow is done by lifecycle operations. WSFL defines a set of
lifecycle operations that can be supported by a flow model. The external interface of a
lifecycle operation is defined by an <export > as well. It appears in this case as a direct
child of the <f | owvbdel > element, and uses the | i f ecycl eAct i on attribute to name the
operation to be exported. A nested <t ar get > element identifies the operation on the public
interface that is mapped to the lifecycle action.

In the following example, the lifecycle operation cal | is exported as operation

Credi t Request of port type Cr edi t Request Ser vi ce. The message of the exported
operation (aCr edi t Request) is mapped to the input message of the lifecycle operation
(aCR) by specifying that the corresponding Per son part be copied.

<export lifecycleAction="call">
<target portType="tts: creditRequestService"
operati on="Credi t Request "/ >
<map sourceMessage="aCredit Request” target Message="aCR’
sour cePart =" Person" targetPart="Person"/>
</ export >

The port types that can be used to export a lifecycle operation to can be any one in the
service provider type of the flow model being defined. Data mapping between the signature
of the port type operation and the signature of the lifecycle operation can be described
using <map> elements as before. For one lifecycle operation, several port type operations
can be defined, for example, to support the same lifecycle operation but with different
signatures.

WSFL defines a set of lifecycle operations. All operations are request-response operations,
that is, they receive a message and send a correlated message. In order to support a lifecycle
operation in a flow model, the operation has to be defined by the <export > element

Web Services Flow Language 58

IBM Software Group

explicitly. The signature of the lifecycle operation is implicit defined (see the following
paragraph). Each service provider that supports a flow model provides a port definition for
every lifecycle operation by which the operation is bound to a binding and an address.

In the following sections, the WSFL lifecycle operations are described in detail. We use
WSDL to describe their signature. The placeholder name of the flow model input data
message that is used in the flow model's signature is nsgl n, and the name representing the
flow model output data is nsgQut . Note that the signature of the lifecycle operations is
implicitly defined, that is, derived from the <f | owSour ce> and <f | owSi nk> elements (see
Section 4.3 “Flow Models”), and does not need to be defined explicitly; it is presented in the
following sections only to explain the signature of the lifecycle operations.

4.6.5.1 Lifecycle Operation spawn

The lifecycle operation spawn creates an instance of the flow model and starts it. As an
immediate result of the start operation, a unique instance identifier called Fl ow nst ancel D
is returned in the SpawnResul t message; optionally, an implementation might also return
the time at which the instance has been created.

<oper ati on nane="spawn">
<i nput nessage="nsgln">
<out put message="wsfl: SpawnResul t ">
<fault nessage="wsfl:Fault">

</ oper ati on>

<conpl exType nane="SpawnResul t">
<sequence>
<el enent ref="wsfl:Fl ow nstancel D'/ >
<el enent ref="wsfl:Fl om nst anceCreati onTi ne"
m nCccur s="0" maxCccurs="1"/>
</ sequence>
</ conpl exType>

<el enent name="Fl oM nst ancel D' type="string"/>
<el enent name="Fl oM nst anceCreati onTi me" type="dateTi me"/>

The <f aul t > element provides more details about the reason why the operation did not
succeed.

<conpl exType nane="Faul t">
<sequence>
<el enent name="Mi nCode" type="integer"/>
<el enent name="SubCode" type="integer"
m nCccur s="0" maxOccurs="1"/>
<el enent nanme="MessageText" type="string"
m nQccur s="0" maxCccurs="1"/>
</ sequence>
</ conpl exType>

The Mai nCode attribute is an operation-specific error code that indicates what went wrong.
The SubCode details the main fault code; for example, when the main code specifies

I nval i d Key, the sub-code could tell that the format passed is wrong. The MessageText
is a description about the error that occurred. Some spawn specific Mai nCode values are
listed below.

Web Services Flow Language 59

IBM Software Group

Faults:

e WSFL_ERROR FLOW MODEL_DOES NOT_EXI ST - The specified flow model does not
exist. The flow model is not known by the flow model engine and therefore cannot be
instantiated.

e WSFL_ERROR | NVALI D_I NPUT_MESSAGE - The input message does not conform to
the input message of the flow model

« WSFL_ERROR _OPERATI ON_FAI LED - The operation cannot be accomplished
because of some temporary internal error in the flow model engine

4.6.5.2 Lifecycle Operation cal |

The lifecycle operation cal | executes an instance of the flow model. The flow model output
message is returned when the flow model instance completes.

<oper ation name="cal | ">
<i nput nessage="nsgln">
<out put nessage="nsgQut ">
<fault nessage="wsfl: Fault">
</ oper ati on>

Faults:

e WSFL_ERROR FLOW MODEL_DOES NOT_EXI ST - The specified flow model does
not exist. The flow model is not known by the flow model engine and therefore
cannot be instantiated.

e WSFL_ERROR | NVALI D_I NPUT_MESSAGE - The input message does not conform to
the input message of the flow model.

e WEFL_ERROR_OPERATI ON_FAI LED - The operation cannot be accomplished
because of some temporary internal error in the flow model engine.

4.6.5.3 Lifecycle Operation enqui r e

The lifecycle operation enqui r e queries the status of the flow model instance; the instance
identifier FI ow nst ancel D of the flow is the input of this lifecycle operation. As a result, the
status of the flow model instance is returned. The Enqui r yResul t message consists of the
instance identifier of the flow, its current state, the time the instance has been created, and
the time the state of the instance has changed most recently. According to Section 3.3
“Business Process Lifecycle,” a flow instance can be in two different states, namely

Runni ng or Suspended.

<operation nane="enquire">
<i nput nessage="wsfl: Enqui ryl nput">
<out put message="wsfl: Enqui ryResult">
<fault nessage="wsfl:Fault">

</ oper ati on>

<conpl exType nane="Enqui ryl nput ">
<sequence>
<el ement ref="wsfl:Fl owl nstancel D"/ >
</ sequence>
</ conpl exType>

<conpl exType nane="Enqui ryResul t">
<sequence>
<el enent ref="wsfl:Fl ow nstancel D'/ >
<el enent ref="wsfl:Fl oW nstanceSt ate"/ >
<el enent ref="wsfl:Fl om nst anceCreati onTi ne"
m nCccur s="0" maxQCccurs="1"/>

Web Services Flow Language 60

IBM Software Group

<el enent ref="wsfl:Fl om nst ancelLast Modi fi cati onTi ne"
m nCccur s="0" maxCccurs="1"/>
</ sequence>
</ conpl exType>

<el enent name="Fl oM nst anceSt ate" type="wsfl:state"/>
<el enent name="Fl oM nst ancelast Modi fi cati onTi me" type="dateTi me"/>

<si npl eType nane="state" base="string">
<enuner ati on val ue="Runni ng"/ >
<enuner ati on val ue="Suspended"/ >

</ si npl eType>

Faults:

* WSFL_ERROR | NSTANCE_DCOES NOT_EXI ST - The instance ID provided in the input
message refers to a flow model instance that does not exist

« WSFL_ERROR _OPERATI ON_FAI LED - The operation cannot be accomplished
because of some temporary internal error in the flow model engine

V1.0 remark: In WSFL 1.0 the only valid input is a FI ow nst ancel D, and the status
of the overall flow is reported back in wsf | : Enqui r yResul t . In the future, more
detailed information, for example, the current activities running might be requested
and reported back to facilitate flow model monitoring.

4.6.5.4 Lifecycle Operationt er m nat e
The lifecycle operation t er i nat e terminates the flow model instance.

<operation nanme="term nate">
<i nput nessage="wsfl:Fl ow nst ancel D'>
<out put nessage="wsfl: Success">
<fault nessage="wsfl: Fault">

</ oper ati on>

<si nmpl eType nanme="Success" base="string">
<enuneration val ue="oK"/ >
</ si npl eType>

Faults:

* WSFL_ERROR | NSTANCE_DCOES NOT_EXI ST - The instance ID provided in the input
message refers to a flow model instance that does not exist.

e WSFL_ERROR | NVALI D_STATE_TRANSI TI ON - The state of the flow model instance
does not allow this operation, for example, the flow model is in a suspended state.

« WSFL_ERROR OPERATI ON_FAI LED - The operation cannot be accomplished
because of some temporary internal error in the flow model engine.

4.6.5.5 Lifecycle Operation suspend
The lifecycle operation suspend suspends the flow model instance.

<oper ati on name="suspend">
<i nput nessage="wsfl:Fl ow nst ancel D'>
<out put nessage="wsfl: Success" >
<fault nessage="wsfl: Fault">

</ oper ati on>

Web Services Flow Language 61

IBM Software Group

Faults:

e WEBFL_ERROR | NSTANCE_DOES NOT_EXI ST - The instance ID provided in the input
message refers to a flow model instance that does not exist.

e WSFL_ERROR | NVALI D_STATE_TRANSI TI ON - The state of the flow model instance
does not allow this operation, for example, the flow model is in a suspended state.

« WSFL_ERROR _OPERATI ON_FAI LED - The operation cannot be accomplished
because of some temporary internal error in the flow model engine.

4.6.5.6 Lifecycle Operation resume
Lifecycle operation suspend suspends the flow model instance.

<oper ati on name="resune" >
<i nput nessage="wsfl:Fl ow nst ancel D'>
<out put nessage="wsfl: Success">
<fault nessage="wsfl: Fault">

</ oper ati on>

Faults:

e WBFL_ERROR | NSTANCE_DOES NOT_EXI ST - The instance ID provided in the input
message refers to a flow model instance that does not exist.

e WSFL_ERROR | NVALI D_STATE_TRANSI TI ON - The state of the flow model instance
does not allow this operation, for example, the flow model is in state running.

« WEFL_ERROR_OPERATI ON_FAI LED - The operation cannot be accomplished
because of some temporary internal error in the flow model engine.

4.6.6 Putting Things Together: The External Interface of a Flow

For each activity in a flow model, a WSDL operation is defined that provides the
implementation of the activity. This operation defines the interface of a proxy that is used by
the activity to interact with the actual realization of the business function represented by the
activity. The actual realization is defined by another WSDL operation that is dual to the proxy
(for example, notify is dual to one-way, and so on). The association of a proxy and the
realization proper is defined using p/ug links (see Section 4.7 “Plug Links”).

The interface of a flow model is defined by a set of port types, that is, a service provider
type. Each operation in this interface represents the view on an activity “from the outside.”
This view is defined by a WSDL operation; in effect, the activity uses this proxy to interact
with some external Web Service. Not all activities within a flow model use external Web
Services and therefore, not all activities are represented in the interface of a flow model. For
activities that use external services an export clause defines the association between the
activity and an entry in the definition of the external interface of the flow model.

The following example describes the external, that is, public interface of the “book lover” flow
model, defining the structure of those activities that interact with other Web Services. First,
the lifecycle interface of the flow model is defined; for simplicity, only a single operation is
included in this interface. Next, the port type bookRequest er subsumes all interactions of
the flow model with external Web Services. For simplicity, in this example, we will assume
that all the messages and service provider types have been defined in the same document,
and that the namespace prefix t ns corresponds to all local definitions.

<servi ceProvi der Type nanme="bookLover Public”>
<port Type nane="1ifeCycle”>

<oper ati on name="spawn” >
<i nput nessage="“tns: budget”/>

Web Services Flow Language 62

IBM Software Group

<out put nessage=“t ns: SpawnResult”/ >
</ oper ati on>
</ port Type>

<port Type nane="bookRequest er” >
<oper ati on nane="orderDi cti onary”>
<out put message="tns: bookOrder”/ >
</ oper ati on>
<oper ati on nane="recei veDi cti onary”>
<i nput nessage="“tns: bookDel i very”/ >
</ oper ati on>
<oper ati on name="or der Poetry” >
<out put message="tns: bookOrder”/ >
</ oper ati on>
<oper ati on nane="“recei vePoetry” >
<i nput nessage="“tns: bookDel i very”/ >
</ oper ati on>
</ port Type>

</ servi ceProvi der Type>

The following service provider type defines the operation of the internal activity (that is, those
that do not use an external service) in the “book lover” flow model:

<servi ceProvi der Type nanme="bookLoverPrivate”>
<port Type nane="hbookSt uff”>
<oper ati on nane="sel ect Book” >
<out put nessage="“tns: comml23”/>
<i nput nessage=“tns: comml23"/>
</ oper ati on>
</ port Type>
</ servi ceProvi der Type>

The operation representing the actual implementation (in our case, a CICSO transaction) of
the internal activity is defined by a separate service provider type that is used by the flow
model (and potentially others). Note that this implementation proper, that is, operation T123,
is a request-response operation receiving an input and returning a response. The dual-proxy
operation sel ect Book from the book St uf f port type is defined as a solicit-response
operation, sending out a message and expecting a response.

<servi ceProvi der Type name="someCl CSTr ansacti ons” >
<port Type nane="ci csy”>
<operation nanme="T123" >
<i nput nessage=“tns:commal23"/>
<out put nessage="“tns: comml23”/>
</ oper ati on>
</ port Type>
</ servi ceProvi der Type>

Now we are ready to define the “book lover” flow model. Note the ser vi cePr ovi der Type
attribute of the f | owivbdel element that references the service provider type

bookLover Publ i ¢ that defines the public interface. The service provider booksel | er 01
is used to order a dictionary and the service provider booksel | er 02 is used to order some
poetry. We use static locators for these service providers to keep things simply, but any
other locator type is valid. The | ocal service provider provides the implementations of the
“internal” operations.

The activity sel ect Book requires interaction with the | ocal service provider for its
realization; this is specified through a <per f or mredBy> element referring to this service

Web Services Flow Language 63

IBM Software Group

provider. The actual (proxy) implementation is defined by an <i npl enent > element.
Because the interaction between the proxy and the implementation proper is completely
hidden from the outside, an <i nt er nal > element is used to indicate this. Finally, the
internal proxy operation is plug-linked to the corresponding operation of the | ocal service
provider; the associated p/ug /ink is defined “inline” here, but it could be done in a separate
“global model.”

The other activities use “external” services for their implementations. Thus, the associated
<per f or mnedBy> element references an external service provider. The corresponding

<i npl ement > element contains an <expor t > element associating the implementing proxy
with an operation within the flow’s public interface. Plug linking is done in a separate global
model, that is, not “inline” as done before for the internal implementation.

<f | owMbdel nane="bookLover” servi ceProvi der Type="bookLover Public”>

<servi ceProvi der nanme="booksel |l er01” type="tns: bookseller”>
<l ocator type=“static” service="nmuchToRead. coni/>
</ servi ceProvi der >

<servi ceProvi der nanme="booksel | er02” type="tns: bookseller”>
<l ocator type=“static” service="all YouCanRead. coni/>
</ servi ceProvi der >

<servi ceProvi der nanme="|ocal” type="tns: someCl CSTransacti ons”/>

<activity nane="sel ect Book” >
<i nput nessage=" tns:comml23"/>
<out put message=" tns:comul23”/>
<per f or mredBy servi ceProvi der="I|ocal "/ >
<i npl enent >
<i nternal serviceProviderType="tns: bookLoverPri vat e”
port Type="“t ns: bookSt uf f” operati on="sel ect Book” >
<pl ugLi nk>
<source serviceProvi der Type="t ns: bookLover Pri vat e”
port Type=“t ns: bookSt uf f”
oper ati on="sel ect Book”/ >
<target serviceProvi der Type="tns: soneCi csTransacti ons
port Type=“tns: ci csy” operation="T123"/>
</ pl ugLi nk>
</internal >
</i mpl enent >
</activity>

”

<activity nane="orderDi ctionary”>
<i nput nessage="“tns: bookOrder”/>
<per f or mredBy servi ceProvi der =“booksel | er01”/ >
<i npl ement >
<export>
<target portType="tns: bookRequester”
operati on="orderDi ctionary”/>
</ export >
</i mpl enent >
</activity>

<activity nane="orderPoetry”>
<i nput nessage="hbookOrder”/ >
<per f or mredBy servi ceProvi der =“booksel | er 02"/ >
<i npl ement >
<export >
<target portType="tns: bookRequester”

Web Services Flow Language 64

4.7

IBM Software Group

oper ati on="order Poetry”/ >
</ export >
</i mpl enent >
</activity>

<activity nane=“recei veD ctionary”>
<out put message="t ns: bookDel i very” />
<per f or mredBy servi ceProvi der =“booksel | er 01"/ >
<i npl enent >
<export >
<target portType="tns: bookRequester”
operati on="recei veDi cti onary”/>
</ export >
</i mpl enent >
</activity>

<activity name="recei vePoetry”>
<out put message="t ns: bookDel i very” />
<per f or mredBy servi ceProvi der =“booksel | er 02"/ >
<i npl enent >
<export >
<target portType="tns: bookRequester”
operati on="recei vePoetry”/>
</ export >
</i mpl enent >
</activity>

<cont rol Li nk source="sel ect Book” target="orderDictionary”/>
<control Li nk source="orderDi ctionary” target="receivebDictionary”/>
<control Li nk source="sel ect Book” target="orderPoetry”/>

<control Li nk source="order Poetry” target="recei vePoetry”/>

<dat aLi nk sour ce="sel ect Book” target="orderDictionary”/>
<dat aLi nk sour ce="sel ect Book” target="orderPoetry”/>

</ f | owivbdel >

Plug Links

Plug links are used in WSFL to model the interaction between remote service providers. A
plug link represents in WSFL the invocation by one service provider of an operation of the
public interface of another service provider. Unlike control and data links, plug links do not
connect activities; rather, they connect two operations with “dual” signatures.

The source operation of a plug link (on the “calling” service provider) must have a signature
corresponding to a “notification” or a “solicit-response” operation (as defined in the WSDL
specification, [1]). This represents the ability of the caller to initiate the invocation request.
Correspondingly, the target operation (on the “called” service provider) must have a dual
‘one-way” or “request-response” type signature to support the incoming invocation.
However, it is not necessary that the types of the two signatures be the exact dual of each
other, because the language allows for the mapping of input and output parameters. The
only requirement is that the source is able to initiate the request, and the target is able to
receive it. A more detailed discussion of plug links can be found in Section 3.5 “Recursive
Composition Metamodel.”

WSFL describes plug links using the <pl ugLi nk> element. The source and target of the link

are specified via a nested <sour ce> element and <t ar get > element; each one of these
identifies an operation in the interface of a service provider type using three attributes:

Web Services Flow Language 65

4.8

IBM Software Group

oper ati on, port Type, and either ser vi ceProvi der or servi ceProvi der Type. A
service provider type is specified when the endpoint operation belongs to an interface of the
flow or global model that is being defined. Otherwise, the name of a service provider is
specified.

Nested <map> elements can be used to adapt the input and output parameters of the source
and target operations in case they don't match, see Section 4.5.3 “Data Links and Data
Mapping.” Finally, a locator can be provided to specify the actual endpoint address. For
example, the following plug link uses a locator of type nobi | i ty that, based on the value of
the bankAccount field of the source operation’s output message of the plug link,
determines the actual endpoint to interact with:

<pl ugLi nk>
<source serviceProvi der Type="cust onmer”
port Type="cust Srv" operati on="sendPAY"/>
<target serviceProvider="supplier”
port Type="suppSrv" operation="rcvPAY"/>
<map sour ceMessage="paynent For nf
t ar get Message="paynent For ni'/ >
<l ocator type="nobility”
nmessage="paynent For ni
messagePart ="r eci pi ent”
dat aFi el d="bankAccount”/ >
</ pl ugLi nk>

The schema syntax for the <pl ugLi nk> element is given in the following code:

<conpl exType nane="pl ugLi nkType" >
<sequence>
<el enent name="sour ce" type="wsfl:endpoi nt Type"
m nCccurs="0"/>
<el enent nanme="target" type="wsfl:endpoi nt Type"/>
<el enent ref="mp"
m nQccur s="0"/ >
<el enent name="Il ocator" type="wsfl:| ocator Type"
m nCccurs="0"/>
</ sequence>
</ conpl exType>

Global Model

A global model defines the interactions between partners in terms of client/server
relationships between operations of their public interfaces; that is, the global model is a
collection the service providers that interact and plug links that correlate (some of) the
operations of their port types, indicating which operation is the originator of the interaction
and which is the respondent. In other words, plug links are used to describe the association
between “proxy” operations and the operations that are used to actually realize these
proxies.

A plug link can carry a locator that is set by the source of the plug link and identifies the
target of the plug link. Alternatively, a locator can be associated with the service provider;
any type of locator can be used. A global model defines another service port type. In the
following example, we define the service provider type conpoundBookOr der that will
provide the interface to buy books from two different booksellers. The public interface of this
service provider type consists of the single operation buy of the only port type I i f eCycl e.

Web Services Flow Language 66

IBM Software Group

<servi ceProvi der Type name="conpoundBookOr der” >
<port Type nane="1ifeCycle”">
<oper ati on nanme="buy” >
<i nput nessage="budget”/ >
<out put nessage="books”/ >
</ oper ati on>
</ port Type>
</ servi ceProvi der Type>

The next example describes the interactions between partners that have to happen to order
books. The global model or der i ngSonmeBooks complies with the new service provider type
conpoundBookOr der defined above. The policy materialized by or der i ngSonmeBooks is
that dictionaries and poetry are always bought from different booksellers that have to provide
the corresponding operations, thus we define two service providers called booksel | er 01
and booksel | er 02. The two booksellers are statically bound, that is, the global model uses
always the same booksellers (of course, any other locator could be used, making the
example much more dynamic).

The service provider bookLover of service provider type bookLover Publ i ¢ exports the
spawn operation of its lifecycle interface as buy operation of the public interface of the
global model. Because no locator is defined for the book lover, a concrete instance will be
determined at a later time. Finally, operations of the participating service providers are wired
together by plug links. For plug links that target to bookLover, we use a locator of type
nobi | i ty to enable a specification of the concrete recipient based on message content.

<gl obal Mbdel nane="or deri ngSomeBooks”
servi ceProvi der Type=" conpoundBookOr der " >

<servi ceProvi der name="booksel | er01” type="bookseller”>
<l ocator type=“static” service="nmuchToRead. coni/>
</ servi ceProvi der >

<servi ceProvi der name="booksel | er 02" type="bookseller”>
<l ocator type=“static” service="all YouCanRead. coni/>
</ servi ceProvi der >

<servi ceProvi der nanme="bookLover” type="“bookLoverPublic”>
<export >
<source portType="1ifeCycle”
oper ati on="spawn”/ >
<target portType="1ifeCycle”
oper ati on="buy”/ >
</ export >
</ servi ceProvi der >

<pl ugLi nk>
<sour ce servi ceProvi der =“bookLover”
port Type="bookRequest er”
operati on="orderDi ctionary”/>
<target serviceProvi der="bookseller01”
port Type="processOrder”
operati on="recei veOrder”/ >
</ pl ugLi nk>

<pl ugLi nk>
<source servi ceProvi der =*bookLover”
port Type="bookRequest er”
oper ati on="order Poetry”/ >

Web Services Flow Language 67

IBM Software Group

<target serviceProvi der="booksel |l er 02"
port Type="processOr der”
operati on="recei veOrder”/>

</ pl ugLi nk>

<pl ugLi nk>
<source serviceProvi der="booksel | er01”
port Type="processOr der”
oper ati on="sendBooks”/ >
<target serviceProvi der="bookLover”
port Type="bookRequest er”
operati on="recei veDi cti onary”/>
<l ocator type="nobility"
operati on="recei veOr der"
message="bookOr der "
nmessagePart =" what ever "
dat aFi el d="cust omer "/ >
</ pl ugLi nk>

<pl ugLi nk>
<sour ce servi ceProvi der="booksel | er 02"
port Type="processOr der”
oper ati on="sendBooks”/ >
<target serviceProvi der="bookLover”
port Type="bookRequest er”
operati on="recei vePoetry”/>
<l ocator type="nobility"
operati on="recei veOr der"
message="bookOr der "
nmessagePart =" what ever "
dat aFi el d="cust oner"/ >
</ pl ugLi nk>

</ gl obal Model >

The above variant of the global model could be “bound” to a particular book lover as follows:

<gl obal Model name="j oeCder sSonmeBooks” ref="orderi ngSoneBooks” >
<bi ndi ng>
<servi ceProvi der name="bookLover” >
<l ocator type=“static” service="joe.coni/>
</ servi ceProvi der >
</ bi ndi ng>
</ gl obal Model >

The schema for the <gl obal Mbdel > element is given in the next code example:

<conpl exType nanme="gl obal Model Type" >
<choi ce>
<sequence>
<el ement nane="servi ceProvi der"
type="wsfl: servi ceProvi der Type"
maxQccur s="unbounded" / >
<el enent name="pl ugLi nk"
type="wsfl : pl ugLi nkType"
m nCccur s=" 0" maxCOccur s="unbounded"/ >
</ sequence>
<el enent nanme=" bi ndi ng”
maxQccur s=" unbounded” >
<conpl exType>
<el ement nane="servi ceProvi der”

Web Services Flow Language 68

IBM Software Group

t ype="servi ceProvi der Ref Type”
maxQcur s=" unbounded” / >
</ conpl exType>
</ el ement >

</ choi ce>

<attribute nanme="nane" type="NCNane" use="required"/>

<attribute name="servi ceProvi der Type" type="Qnane”/>

<attribute name="ref" type="Q\anme"/>

</ conpl exType>

<conpl exType name="ser Vi ceProvi der Ref Type” >
<comnpl exCont ent >
<restriction base="serviceProvider Type”/ >
<attribute nanme="type” use="prohibited’/>
</restriction>
</ conpl exCont ent >
</ conpl exType>

Web Services Flow Language

69

IBM Software Group

Appendix A: WSFL Schema

<?xm version="1. 0" encodi ng="UTF-8"?>

<schema xm ns="htt p://ww. w3. or g/ 2000/ 10/ XM_Schema"
xm ns: wsdl ="htt p://schemas. xm soap. or g/ wsdl /"
xm ns: wsfl ="http://schemas. xm soap. or g/ wsfl /"
t ar get Nanespace="htt p: // schenmas. xm soap. or g/ wsfl /"
el ement For mDef aul t ="qual i fi ed" >

<si nmpl eType nane="QNaneLi st">
<list itenlype="QNane"/>
</ si npl eType>

<si npl eType nane="NCNaneLi st " >
<list itenlype="NCNane"/>
</ si npl eType>

<si npl eType nane="I| ocat or TypeType" >
<restriction base="string">
<enuneration val ue="static"/>
<enuneration val ue="1I ocal "/ >
<enuner ati on val ue="any"/>
<enuner ati on val ue="UDDI "/ >
<enuneration val ue="nobility"/>
</restriction>
</ si npl eType>

<si npl eType nane="sel ecti onPol i cyType" >
<restriction base="string">
<enunerati on value="first"/>
<enuner ati on val ue="r andont'/ >
<enuner ati on val ue="user-defi ned"/>
</restriction>
</ si npl eType>

<si npl eType nane="bi ndTi meType" >
<restriction base="string">
<enuner ation val ue="startup"/>
<enuneration value="firstHit"/>
</restriction>
</ si npl eType>

<si npl eType nanme="whenType" >
<restriction base="string">
<enuner ati on val ue="deferred"/>
<enuner ati on val ue="i nmedi ate"/ >
</restriction>
</ si npl eType>

<si npl eType nane="order Type" >
<restriction base="string">
<enuner ati on val ue="LWN />
<enuner ati on val ue="RFW />
<enuner ati on val ue="randont'/ >
</restriction>
</ si npl eType>

<el enent nanme="definitions" type="wsfl:definitionsType">

Web Services Flow Language

70

IBM Software Group

<uni que nane="f| owModel Nane" >
<sel ector xpath="fl owvbdel "/ >
<field xpath="@ane"/>
</ uni que>
</ el ement >

<conpl exType nanme="definiti onsType">
<sequence>
<el enent name="i nport" type="wsfl:inportType"
m nCccur s="0" maxOccur s="unbounded"/ >
<el enent nanme="servi ceProvi der Type”
type="wsfl: servi ceProvi der TypeType"
m nCccur s=" 0" maxCccur s="unbounded"/ >
<el ement ref="wsfl:fl owvbdel "
m nCccur s=" 0" maxOccur s="unbounded"/ >
<el enent ref="wsfl: gl obal Mbdel "
m nCccur s=" 0" maxCccur s="unbounded"/ >
</ sequence>
<attribute nanme="t ar get Nanespace" type="uri Reference"/>
</ conpl exType>

<conpl exType nanme="i nport Type">
<attribute name="namespace" type="uri Reference" use="required"/>
<attribute nane="l|ocation" type="uri Reference" use="required"/>
</ conpl exType>

<conpl exType nane="servi ceProvi der TypeType” >
<sequence>
<el enent nanme="port Type” type="wsfl:port TypeType”
m nCccur s="0" maxOccur s=" unbounded”/ >
<el enent name="i nport"
m nOccur s="0" maxQccur s="unbounded” >
<conpl exType>
<attribute nanme="port Type” type="QNane”/>
</ conpl exType>
</ el ement >
</ sequence>
</ conpl exType>

<conpl exType nane="port TypeType" >
<conpl exCont ent >
<ext ensi on base="wsdl : port TypeType" >
<sequence>
<el enent name="i nport"
m nCccur s="0" maxQccur s="unbounded” >
<conpl exType>
<attribute name="port Type" type="QNane"/>
<attribute name="operation" type="NCNane"/>
</ conpl exType>
</ el enent >
</ sequence>
</ ext ensi on>
</ conpl exCont ent >
</ conpl exType>

<el enent nanme="fl owmvbdel " type="wsfl:fl owivbdel Type" >
<key nane="provi der Nanme" >
<sel ect or xpat h="servi ceProvi der"/>
<field xpath="@ane"/>
</ key>
<key nane="acti vityNane" >

Web Services Flow Language

IBM Software Group

<sel ector xpath="activity"/>
<field xpath="@ane"/>

</ key>

<uni que name="contr ol Li nkNang" >
<sel ect or xpat h="control Li nk"/>
<field xpath="@ane"/>

</ uni que>

<uni que nane="dat aLi nkNanme" >
<sel ect or xpat h="dat aLi nk"/ >
<field xpath="@ane"/>

</ uni que>

<keyref name="activityProvi derRef" refer="provi der Nane" >
<sel ector xpath="activity"/>
<field xpat h="@ervi ceProvider"/>

</ keyref >

<keyref name="linkActivityRef" refer="activityNane">
<sel ect or xpat h="cont rol Li nk| dat aLi nk"/>
<field xpat h="@ource| @arget"/>

</ keyr ef >

<keyref name="inpl ActivityRef" refer="provider Nang">
<sel ect or xpat h="i npl enent | i nport"/>
<field xpat h="@ervi ceProvi der"/>

</ keyref >

</ el enent >

<conpl exType nane="fl owivbdel Type" >
<sequence>
<el ement nanme="fl owSour ce"
type="wsfl: fl owSourceType"
m nCccur s="0"/>
<el ement name="fl owSi nk"
type="wsfl: fl owSi nkType"
m nCccur s="0"/ >
<el ement nanme="servi ceProvi der"
type="wsfl: servi ceProvi der Type"
m nCccur s="1" maxOccur s="unbounded"/ >
<group ref="wsfl:activityFl ow&G oup"/>
</ sequence>
<attribute nanme="nane" type="NCNane" use="required"/>
<attribute nane="servi ceProvi der Type" type="Q\ane”/>
</ conpl exType>

<group nane="activityFl owG oup" >
<sequence>
<el enent name="export" type="wsfl:export Type"
m nCccur s="0" maxOccur s="unbounded"/ >
<el enent name="activity" type="wsfl:activityType"
m nOccur s="0" maxCQccur s="unbounded"/ >
<el enent nanme="control Li nk" type="wsfl:control Li nkType
m nCccur s="0" maxOccur s="unbounded"/ >
<el enent nanme="dat aLi nk" type="wsfl:dataLi nkType"
m nOccur s="0" maxCccur s="unbounded"/ >
</ sequence>
</ gr oup>

<conpl exType nane="servi ceProvi der Type" >
<sequence>
<el enent name="l ocator" type="wsfl:| ocator Type"
m nCccur s="0"/>
<el enent name="export" type="wsfl:export Type"
m nCccur s="0" maxOccur s="unbounded"/ >

Web Services Flow Language

72

IBM Software Group

</ sequence>

<attribute name="nanme" type="NCNane" use="required"/>

<attribute name="type" type="QName" use="required”/>
</ conpl exType>

<conpl exType nane="| ocat or Type" >
<sequence>
<any nanespace="##ot her"
m nCccur s="0" maxOccur s="unbounded"/ >
</ sequence>
<attribute nanme="type" type="wsfl:|ocatorTypeType" />
<attribute name="service" type="QNane"/>
<attribute name="bi ndTi me" type="wsfl: bi ndTi mreType"/>
<attribute nanme="sel ecti onPolicy"
type="wsfl:sel ecti onPolicyType"/>
<attribute nane="activity" type="NCNane"/>
<attribute name="nessage" type="NCNane"/>
<attribute name="nessagePart" type="NCNanme" />
<attri bute nane="dataFi el d' type="string"/>
<attribute nanme="default" type="QNane"/>
<attribute nane="invoke" type="string"/>
</ conpl exType>

<conpl exType name="fl| owSour ceType" >
<sequence>
<el enent ref="wsdl : out put”/>
</ sequence>
<attribute name="nanme" type="NCNane" use="required"/>
</ conpl exType>

<conpl exType nane="fl owSi nkType" >
<sequence>
<el enent ref="wsdl :input”/>
</ sequence>
<attribute nanme="nane" type="NCNane" use="required"/>
</ conpl exType>

<conpl exType nane="endPoi nt Type" >
<attribute nane="servi ceProvi der" type="NCNane"/>
<attribute nanme="servi ceProvi der Type" type="NCNane"/>
<attri bute nane="port Type" type="QNane" use="required”/>
<attribute name="operation" type="NCNane" use="required”/>
</ conpl exType>

<conpl exType nane="i nt er nal Type” >
<conpl exCont ent >
<ext ensi on base="wsfl: endPoi nt Type"/ >
<sequence>
<el enent nanme="pl ugLi nk” type="wsfl: pl ugLi nkType”/ >
</ sequence>
</ ext ensi on>
</ conpl exCont ent >
</ conmpl exType>>

<conpl exType name="j oi nType" >
<attribute nanme="condition" type="wsfl:NCNaneLi st"
use="required"/>
<attribute name="when" type="wsfl:whenType"
use="defaul t" val ue="deferred"/>
</ conpl exType>

Web Services Flow Language

73

IBM Software Group

<conpl exType name="nateri ali zeType" >
<choi ce>
<el ement nanme="mapPol i cy">
<conpl exType>
<attribute nanme="order" type="wsfl: orderType"
use="defaul t" val ue="LWN />
</ conpl exType>
</ el enent >
<el ement nane="construction">
<conpl exType>
<attribute nane="type" type="string"
use="defaul t" val ue="XSLT"/ >
<attribute name="l|ocation" type="string"/>
</ conpl exType>
</ el emrent >
</ choi ce>
</ conpl exType>

<conpl exType nane="activityType">
<conpl exCont ent >
<ext ensi on base="wsdl : operati onType" >
<sequence>
<el enent name="perf or mredBy” >
<conpl exType>
<attribute name="serviceProvider”
t ype="NCNane”/ >
</ conpl exType>
</ el ement >
<el enent name="i npl enent " >
<conpl exType>
<choi ce>
<el ement nanme="internal"
type="wsfl:internal Type”>
<el enent name="export"
type="wsfl: export Type"/ >
</ choi ce>
</ conpl exType>
</ el ement >
<el enent nanme="j oi n" type="wsfl:joi nType"
m nCccur s="0"/>
<el ement nanme="materialize"
type="wsfl:mterializeType"
m nQccur s="0"/ >
<any nanespace="##ot her"
m nCccur s="0" maxOccur s="unbounded"/ >
</ sequence>
<attribute name="name" type="NCNane"/>
<attribute name="exitCondition" type="string"/>
</ ext ensi on>
</ conpl exCont ent >
</ conpl exType>

<conpl exType nanme="I|inkType">
<attribute nanme="nane" type="NCNane"/>
<attribute nane="source" type="NCNane"/>
<attribute nane="target" type="NCNane"/>
</ conpl exType>

<conpl exType nanme="control Li nkType" >

<conpl exCont ent >
<ext ensi on base="|i nkType" >

Web Services Flow Language 74

IBM Software Group

<attribute nanme="transitionCondition" type="string"/>
<attribute name="result" type="NCNane"/>
</ ext ensi on>
</ conpl exCont ent >
</ conpl exType>

<conpl exType nane="dat aLi nkType" >
<comnpl exCont ent >
<ext ensi on base="|i nkType">
<sequence>
<el enent ref="map" m nCccurs="0"/>
</ sequence>
</ ext ensi on>
</ conpl exCont ent >
</ conpl exType>

<conpl exType nane="pl ugLi nkType" >
<sequence>
<el enent name="sour ce" type="wsfl:endpoi nt Type"
m nCccurs="0"/>
<el enent nanme="target" type="wsfl:endpoi nt Type"/>
<el enent ref="map" m nCccurs="0"/>
<el enent name="l ocator" type="wsfl:| ocator Type"
m nCccurs="0"/>
</ sequence>
</ conpl exType>

<el ement nane="nmap">
<conpl exType>
<attri bute nane="sourceMessage" type="NCNane"/>
<attribute nane="t ar get Message" type="NCNane"/>
<attribute name="sourcePart" type="NCNanme"/>
<attribute name="targetPart" type="NCNane"/>
<attribute nane="sourceFi el d* type="NCNane"/>
<attribute nane="targetField" type="NCNane"/>
<attri bute nane="converter" type="string"/>
</ conpl exType>
</ el ement >

<conpl exType nanme="export Type" >
<sequence>
<el enent name="sour ce” type="endPoi nt Type”
m nQOccurs="0"/ >
<el enent nanme="target” type="endPoi nt Type”/>
<el enent ref="wsfl: map"
m nCccur s="0" maxOccur s="unbounded"/ >
<el enent name="pl ugLi nk” type="wsfl: pl ugLi nkType”
m nQccur s="0"/ >
</ sequence>
<attribute nanme="Ilifecycl eAction" type="NCNane"/>
</ conpl exType>

<el enent name="gl obal Mbdel " type="wsfl: gl obal Mbdel Type" >
<uni que name="gl obal Provi der Nange" >
<sel ect or xpat h="servi ceProvi der"/ >
<field xpath="@ane"/>
</ uni que>
</ el ement >

<conpl exType name="gl obal Model Type" >
<choi ce>

Web Services Flow Language

IBM Software Group

<sequence>
<el enent name="servi ceProvi der"
type="wsfl: servi ceProvi der Type"
maxQccur s="unbounded" / >
<el enent nanme="pl ugLi nk" type="wsfl: pl ugLi nkType"
m nCccur s=" 0" maxOccur s="unbounded"/ >
</ sequence>
<el enent name="bi ndi ng” maxCccur s="unbounded” >
<conpl exType>
<el ement nanme="servi ceProvi der”
t ype="servi ceProvi der Ref Type”
maxQcur s=" unbounded” / >
</ conpl exType>
</ el enent >
</ choi ce>
<attribute nanme="nane" type="NCNane" use="required"/>
<attribute name="servi ceProvi der Type" type="Qane”/>
<attribute name="ref" type="Q\anme"/>
</ conpl exType>

<conpl exType name="ser Vi ceProvi der Ref Type” >
<comnpl exCont ent >
<restriction base="serviceProvi der Type”/ >
<attribute nanme="type” use="prohibited’/>
</restriction>
</ conpl exCont ent >
</ conpl exType>

<si npl eType nane="state" base="string">
<enuner ati on val ue="Runni ng"/ >
<enuner ati on val ue="Suspended"/ >

</ si npl eType>

<si npl eType nane="Success" base="string">
<enuneration val ue="OK"/ >
</ si npl eType>

<el enent name="Fl oM nst ancel D' type="string"/>

<el enent name="Fl oM nst anceSt ate" type="wsfl:state"/>

<el enent name="Fl oM nst ancelLast Modi fi cati onTi me" type="dateTi ne"/>
<el enent nanme="Fl oM nst anceCreati onTi me" type="dateTi ne"/>

<conpl exType nane="SpawnResul t">
<sequence>
<el enent ref="wsfl:Fl ow nstancel D'/ >
<el enent ref="wsfl:Fl om nst anceCreati onTi ne"
m nCccur s="0" maxCccurs="1"/>
</ sequence>
</ conpl exType>

<conpl exType nane="Enqui ryl nput ">
<sequence>
<el ement ref="wsfl:Fl owl nst ancel D"/ >
</ sequence>
</ conpl exType>

<conpl exType nane="Enqui ryResul t ">
<sequence>
<el enent ref="wsfl:Fl ow nstancel D'/ >
<el enent ref="wsfl:Fl oW nstanceSt ate"/ >
<el enent ref="wsfl:Fl om nst anceCreati onTi ne"

Web Services Flow Language

IBM Software Group

m nCccur s="0" maxQCccurs="1"/>
<el enent ref="wsfl:Fl ow nst anceLast Modi fi cati onTi ne"
m nCccur s="0" maxCccurs="1"/>
</ sequence>
</ conpl exType>

<conpl exType nane="Faul t">
<sequence>
<el enent name="Mi nCode" type="integer"/>
<el enent nanme="SubCode" type="integer"
m nCccur s="0" maxOccurs="1"/>
<el enent name="MessageText" type="string”
m nQccur s="0" maxCQccurs="1"/>
</ sequence>
</ conpl exType>

</ schema>

Web Services Flow Language

77

6.1

IBM Software Group

Appendix B: Internal Activity Implementations

Activity implementations are specified as operations of port types. When an activity
implementation is an internal application, the referenced operation and port type does not
belong to the public interface of the flow model. This is specified by the <i nt er nal >
element, that is, the corresponding operation is not exported. The service provider type that
is referenced by the corresponding attribute of the <i nt er nal > element typically collects
port types that define the proxies needed for accessing the internal applications. These
proxies are typically plug-linked in an “inline” manner to operations of port types that belong
to “internal” service providers defining the interfaces of the stubs of the internal applications.

<f | owbdel nanme="bookLover” servi ceProvi der Type="bookLover Public”>

<activity nane="sel ect Book” >
<i nput nessage="comml23”/>
<out put nessage="“comual23”/ >
<i npl ement >
<i nternal serviceProvider Type="bookLover Pri vate”
port Type="bookSt uf f” operati on="sel ect Book” >
<pl ugLi nk>
<source serviceProvi der Type="bookLover Pri vate”
port Type="“bookSt uf f” operati on="sel ect Book”/ >
<target serviceProvi der Type =“someC csTransacti ons”
port Type=“ci csy” operation="T123"/>
</ pl ugLi nk>
<i nt er nal >
</i mpl enent >
</activity>

</ f | owivbdel >

The corresponding WSDL definitions include extensibility elements that provide all the
required information to properly access the internal applications. For example, information
about what the command line looks like in order to invoke an EXE file, which CICS
subsystem hosts the transaction to be invoked, how the corresponding COMMAREA must
be laid out, and so on. The following sections introduce the required extensibility elements
for some executables that are frequently found for internal applications.

EXE Files

The following XML document illustrates the definition of EXE/CMD files as operations in
WSDL. It defines a service that provides for the creation, editing, and deletion of documents;
defined as operations through the appropriate operation specification within the Por t Type
section. An appropriate program is called for document creation and modification. Deletion
is handled through an appropriate command file (that for example, may invoke the
appropriate Del et e function of the operating system).

The appropriate binding extensions for editing a document specifies the EXE file to be
invoked, identified through pat hAndFi | eNane, which specifies the location where the
executable resides as well as the name of the executable (in our example, wor d). The
appropriate input specification extensions indicate through the encoding specification that
the input message should be passed as a command string.

<definiti ons nanme="Docunent Processi ng”
t ar get Nanmespace="htt p: // exanpl e. com docunent Pr ocessi ng. wsdl ”
xm ns: exe="htt p//schemas. xm soap. or g/ wsdl / exe”/ >

Web Services Flow Language 78

http://example.com/documentProcessing.wsdl

IBM Software Group

<t ypes>
<el ement nane=" Docunent ” >
<conpl exType>
<al | >
<el enent nanme=" Docunent Nane” type="string”/>
</all>
</ conpl exType>
</ el ement >
</types>

<nmessage name="Docunentldentification”>
<part name="body” el ement="Docunent”/>
</ message>

<port Type nane="Docunent Processi ngPort Type”
<oper ati on name="Cr eat eDocunent”/ >
<oper ati on name="Edi t Docunment ” >
<i nput nessage="tns: Docunent I dentification”/>
</ oper ati on>
<oper ati on nane="Del et eDocunent ” >
<i nput nessage="tns: Docurment | denti fication”/>
</ oper ati on>
</ port Type>

<bi ndi ng nanme=" Docunent Processi ngBi ndi ng”
t ype="Docunent Pr ocessi ngPort Type” >
<oper ati on name=" Cr eat eDocunent ” >
<exe: operati on pat hAndFi | eName="wor d. exe”
start | nFor eground="yes”
styl e="vi si bl e”
execut i onvMbde="nor mal "/ >
</ oper ati on>
<oper ati on nane=" Edi t Docunent ” >
<exe: operati on pat hAndFi | eName="wor d. exe”
start | nFor eground="yes”
i nherit Envi ronment ="yes”
styl e="vi si bl e”
execut i onMode="nor mal ”/ >

<i nput >
<exe: i nput encodi ng="conmandPar anet ers”/ >
</i nput >

</ oper ati on>
<oper ati on nane="Del et eDocunent ” >
<cnd: oper ati on pat hAndFi | eNane="del doc. cnd”/ >
</ oper ati on>
</ bi ndi ng>

<servi ce name="Docunent Processi ngServi ce” >
<docunent ati on>Docunent Processi ng Servi ce</docunent ati on>
<port nane="Docunent Processi ngPort”
bi ndi ng="t ns: Document Pr ocessi ngBi ndi ng/ >
</ servi ce>

</ definitions>

Web Services Flow Language

79

6.2

IBM Software Group

Customer Information Control System (CICS) Programs

The following example illustrates the usage of two CICS transactions to manage bank
accounts. Two operations are defined, a W t hdr awivbney operation to withdraw money from
a specified account and Deposi t Money to deposit money into a specified account. As
specified in the bindings, the W t hdr awivbney operation is implemented through a CICS
transaction called WMON and the Deposi t Money operation through a CICS transaction
called DMON.

The encoding specification for the input messages indicates that the input message should
be passed in the layout of a CICS COMMAREA; certain default assumptions are used, for
example, that the sequence of the fields in the COMMAREA is the one specified for the
message. The CICS system that hosts those transactions is identified as in the port definition
of the service through an appropriate CICS extension that identifies the appropriate APPLI D.
This specification allows clients to locate the appropriate CICS subsystem and invoke the
transactions.

<definiti ons nanme=" Account Processi ng”
t ar get Namespace="htt p: // exanpl e. com account Pr ocessi ng. wsdl ”
xm ns: exe="http://schemas. xnl soap. or g/ wsdl / Cl CS"/ >

<t ypes>
<el enent name=" Account” >
<conpl exType>
<al | >
<el enent name="Account|d” type="string”/>
</all>
</ conpl exType>
</ el ement >
<el ement name=" Anount” >
<conpl ext Type>
<al | >
<el enent name="Val ue” type="positivelnteger”/>
<el enent name="Currency” type="string”/>
</all>
</ conpl exType>
</ el ement >
</types>

<nessage nhame="Account Operati on”>
<part nanme="part1” el enent="Account”>
<part nanme="part2” el enent="Amount”

</ message>

<port Type nanme="Account Port Type”
<oper ati on nane="Deposi t Money” >
<i nput nessage="tns: Account Operation”/>
</ oper ati on>
<oper ati on name="W t hdr awivbney”
<i nput nessage="tns: Account Operation”/>
</ oper ati on>
</ port Type>

<bi ndi ng name=" Account Bi ndi ng” type="Account Port Type” >
<oper ati on nane="Deposi t Money” >
<Cl CS: operation transactionl D=" DMON'/ >
<i nput >
<CI CS: i nput encodi ng=" COMVAREA" | >

Web Services Flow Language 80

http://example.com/accountProcessing.wsdl

IBM Software Group

</i nput >

</ oper ati on>

<oper ati on name="Wt hdr awmbney” >
<Cl CS: operation transactionl D="WON'/ >
<i nput >

<Cl CS: i nput encodi ng=" COWRREA"/ >

</i nput >

</ oper ati on>

</ bi ndi ng>

<servi ce nanme=" Account Servi ce” >
<docunent at i on>Account Servi ce via Cl CS</ docunent ati on>
<port nanme="Account Port Type”
bi ndi ng="t ns: Account Bi ndi ng>
<Cl CS: port APPLI D="1 PWAYCI A"/ >
</ port >
</ service>

</definitions>

6.3 Java Classes

This example illustrates a Java binding for a credit card verification service. It offers just one
operation, which takes credit card information as input and produces a status message as
output. This service is bound to a concrete implementation provided by a local Java class.
WSDL types (except for built-in schema types) that are part of the service are mapped to
local Java classes. Operations within the port types are mapped to methods in the Java
class that provides the service. Messages intended for this service are de-serialized into
Java types and the appropriate method of the provider class is invoked with the parameters.
Conversely, the output resulting from the invocation of the Java method is serialized to an
XML message of the appropriate type.

<definitions name="Credit CardVerifier"
t ar get Nanespace="htt p: // exanpl e. conl credi t CardVeri fi cati on. wsdl "
xm ns: java="http://schemas. xm soap. or g/ wsdl /j ava"/ >

<t ypes>
<schema>
<conpl exType nanme="credit Card">
<el enent name="nunber" type="integer"/>
<el enent nanme="nane" type="string"/>
<el enent name="expirati onDate" type="gYearMonth"/>
</ conpl exType>
</ schema>
<schenma>
<si npl eType nane="car dSt at us" >
<restriction base="string">
<enuner ati on val ue="STATUS K"/ >
<enuner ati on val ue="STATUS | NVALI D_NUVBER"/ >
<enuner ati on val ue="STATUS | NVALI D_NAME"/ >
<enuner ati on val ue="STATUS EXPI RED'/ >
</restriction>
</ si npl eType>
</ schema>
</types>

<nessage name="Cardl nformation">

<part nanme="cardi nfo" type="tns:creditCard"/>
</ message>

Web Services Flow Language 81

IBM Software Group

<nessage name="CardSt at us" >
<part name="status" type="tns:cardStatus"/>
</ message>

<port type nanme="CreditCardVerificationPort T Type">
<operation name="verifyCard">
<i nput nessage="Cardl nf or mati on"/>
<out put nessage="CardSt at us"/ >
</ oper ati on>
</port type>

<bi ndi ng name="Local CardVerifier"
type="tns: CreditCardVerificati onPort Type">
<operation nane="verifyCard">
<j ava: operation javanethod="verifyCreditCard"/>
<i nput >
<j ava: t ypemappi ng nane="tns: credit Card"
cl ass="com exanpl e. verifier.CreditCard"
serializer="com exanple.verifier.CardSerializer"

deseri alizer="com exanpl e.verifier.CardSerializer"/>
</i nput >
<out put >
<j ava: t ypemappi ng nane="t ns: car dSt at us"
cl ass="com exanpl e. verifier. Status"
serializer="com exanpl e.verifier.StatusSerializer"

deseri ali zer="com exanpl e. verifier.StatusSerializer"/>
</ out put >
</ oper ati on>
</ bi ndi ng>

<servi ce nane="CreditCardVerificationService">
<port nanme="CreditCardVerificationPort"
bi ndi ng="Local CardVerifier">
<j ava: provi der cl ass="com exanpl e.verifier.CardVerifier"/>
</ port>
</ service>

</ definitions>

Web Services Flow Language

82

7.1

7.2

7.3

7.4

IBM Software Group

Appendix C: Endpoint Property Extensibility Elements

Activities typically represent business tasks or business interactions. As such, activities are
associated with information that represents their business context. As discussed in Section
3.1.1.16 “Endpoint Properties,” the business context has many aspects. In this section, we
very briefly sketch only a few sample endpoint properties that are aspects of such a
business context. We do not even try to be exhaustive here because we assume that an
appropriate “Web Services Endpoint Language” (WSEL) will define in future such a business
context. Thus, we introduce the endpoint properties as extensibility elements in WSFL.

Execution Limits

An activity can be associated with a duration controlling the maximum time after which a
result is expected. This duration is specified by the <dur at i on> element. Or the activity is
associated with a <r et r y> element that specifies the maximum number of attempts that are
made to invoke the endpoint of the plug link of the activity’s implementation.

Escalation

When this threshold is exceeded, a person from the organization running the invoking flow
should be notified. This person is specified through the <escal at e> element. The person
determined would typically contact a member from the service provider organization to
check what is going on. This contact can be derived from properties of the port type that is
plug-linked with the operation that is implementing the activity.

Observation

A person from the organization running the invoking flow may track the execution of an
activity (for example, to detect out-of-line situations in advance). This person is specified
through the <obser ved> element. The observing person will act as the contact point for a
representative of the service provider organization, or will monitor the state of the activity, for
example.

Contacts

Contacts are relevant information defined for a service provider as well as for service
requestors. This information is typically specified through a nested <st af f > element that
refers to a person or declarative description of a person.

Many more service-level parameters can be specified, for example, for contractual
agreements, costs, and so on. All of this information is not specified in WSFL, but using
extension elements provided by the envisioned WSEL.

The following sample encoding uses the extensibility elements introduced above:
<activity nane="processPO >

<-- extensibility elenments — Details defined in WSEL -->

<wsel :duration |imt="30" netric="m nutes”/>

Web Services Flow Language 83

IBM Software Group

<wsel : retry nmaxNunber="10"/>

<wsel : escal at e>
<wsel : st af f
who="sel ect PID from Person where skill > 15~
| nvoke="c: \ prograns\ org_query. exe"/>
</ wsel : escal at e>

<wsel : obser ved>
<wsel : st af f
who=" sel ect PID
from Fl ows
wher e Fl owmNane= “ Tot al Suppl yFl ow’ '’
i nvoke="c: \ prograns\ org_query. exe"/ >
</ wsel : observed>

</activity>

Web Services Flow Language

84

8.1

IBM Software Group

Appendix D: The Ticket-Order Example

We are now providing major aspects of a more complex example of a business process
between multiple service providers in WSFL. The example is for ordering tickets over the
Internet. First, we will sketch the overall process briefly. Next, we explain more details by
describing the messages and port types used, the flow models describing what takes place
at two of the participating service provider, and a global model showing the binding between
two of the three partners.

Overview

The overall flow of this example is as follows: A traveler will plan her trip by specifying the
various stages of his overall journey and all of its participants. For each of the stages, the
traveler specifies the location that she wants to visit as well as the date when she wants to
begin and the date when she wants to end the particular stay. When the travler is finished
with this, she sends this information together with the list of all participants of the trip as well
as the information about the credit card to be charged for the ordered tickets to the travel
agent. The credit card information has been passed when the business process was
instantiated. Next, the traveler will await the submission of the electronic tickets as well as
the final itinerary for the trip.

When the agent receives the traveler’s trip order, he will determine the legs for each of the
stages, which includes an initial seat reservation for each of the participants as well as the
rate chosen. To actually make the corresponding ticket orders the agent submits these legs
together with the information about the credit card to be charged to the airline company.
Then, the agent will wait for the confirmation of the flights, which especially includes the
actual seats reserved for each of the participants. This information is completed into an
itinerary, which is then sent to the traveler.

Traveler Agent Airline

Get Trip Get Ticket
Order Order

Plan
Trip

) Select e <
Submit to . Trip Legs s Reserve
Travel Agent Order P Seats

e Ticket

e Order

Order

Tickets

Charge

Get Credit Card

Confirmation

Receive S~

eTicket

Recave - Confirmation Confirm
Itinerary - S~a Generate e Flights
~o =~ Itinerary
~ ~ -~
~ ~ .
-~ ~ -
: = . I ssue
Itinerary ™ o Issue eTickets eTickets
Itinerary ~

Web Services Flow Language 85

8.2

IBM Software Group

When the airline receives the ticket order submitted by the agent, the requested seats will be
checked and if available assigned to the corresponding participants. After that, the credit
card will be charged, and the updated leg information is sent back to the agent as
confirmation of the flights. After that, the airline sends the electronic tickets by e-mail to the
traveler. Information about the recipient of the tickets has been specified by the traveler
when instantiating the trip order process and this information is passed to the agent as well
as to the airline.

We approach this example in several stages:
1. Define the messages used
2. Define the port types in WSDL
3. Define the “local” airline and agent business processes as WSFL flow models
4. Define the composition of the airline and agent flow as a WSFL global model

In this section, we assume that all information provided in the graphical picture of the flow
above is public information to be expressed in WSFL and supporting WSDL and WSEL, and
shared between participants in the flow. There may be additional implementation information
inside the flow models, which is private to the owner of the flow, but it is beyond this example
as described in this appendix. In order to improve the readability the of the WSFL example,
we will make the assumption that all the messages, port types, service provider types, and
flow models are defined within the same target namespace, which will be assigned the
namespace prefix ti 0. Also for simplicity, we will assume that no default namespace is
defined.

Messages for the Ticket-Order Example

This section lists the messages for the ticket-order example.

8.2.1 Short Description and Graphical Definition

We introduce each of the basic message elements used to interact between the flows with a
text description and a diagram. Formal definitions are provided as WSDL text in the following
subsection.

8.2.1.1 The Credit Card Message

When the traveler instantiates a trip-order flow, she will be immediately asked to provide the
information about the credit card to be charged. In fact, this data is part of the signature of
the corresponding lifecycle operation for kicking off the flow.

Web Services Flow Language 86

IBM Software Group

CIeditCard<§§>

Car dNunber

i nt eger >0

Expi ryDat e

8.2.1.2 The Farticipants Message

The people who will go on the trip are referred to as the participants. We are now going to
define the details of the information about participants.

We first define the structure of a base address, which simply aggregates street, city, state,
and ZIP information. Obviously, our example is geared towards the U.S.; in order to be also
applicable in other countries, different kinds of addresses have to be defined (for example,
through appropriate CHO CE or EXTENSI ON mechanisms).

BaseAddr ess

X

St reet

The base address is extended into an address, which includes an optional e-mail address
as well as a mandatory phone number.

Web Services Flow Language 87

IBM Software Group

Addr ess

This address is then used to define a person: A person has a first name and a last name, an

address as well as a birth date.

Last Name

Addr ess

Bi rt hdat e

Fi r st Nane

Per son

X

Then we are ready to define the Par ti ci pant s of the trip as a set of one Per son or more.

Per son

Partici pants

&

Web Services Flow Language

88

IBM Software Group

Finally, when the traveler instantiates a trip-order flow, she will be immediately asked to
provide the information about the person to whom the final itinerary as well as the tickets

have to be sent, i.e. the Reci pi ent . This data is part of the signature of the corresponding
lifecycle operation for kicking off the flow.

Reci pi ent

Per son

8.2.1.3 The Journey Message

A Jour ney consists of a set of one or more stages and the participants (see Section 8.2.1.2

“The Participants Message”) of the journey. A St age is a tuple consisting of a location and
the begin date and end date of the stay at that particular location.

Jour ney

Locati on

Begi n fty

End
Parti ci pants

8.2.1.4 The Trip Order Message

ATri pOrder message is sent from the ordering traveler to the agent. It takes the
information about a journey and adds the information about the credit card that is to be used
to pay for the costs of the corresponding flight tickets of all participants. The purpose of the

Reci pi ent element is mobility: The included e- nai | element will be used as the address
to which the electronic tickets have to be delivered.

Web Services Flow Language 89

IBM Software Group

CreditCard

Reci pi ent

Tri pOrder

82.1.5 The Legs Message

A leg describes the details of a particular flight connection like airport information as well as

seat assignment for each of the participants. These details follow next.

We will define Pri ce as a decimal of scale two.

The airport location provides the name of an airport, its internationally unique airport code,
and the terminal and gate information a flight departs or arrives on.

Ai port Code

i nt eger >0

Ter m nal

Al rportlLocation

)

Aleg, that is, a particular flight connection of the trip, shows the departure date and time as
well as arrival date and time for this flight connection. Furthermore, the corresponding airport

location information is given for where the flight arrives and where it departs. A string
consisting of two characters and at least one to four digits represents the flight number of
this flight. The Seat Assi gnrent element collects for each participant the first and last

name, the seat number assigned and the rate to be paid for the flight. The seat number is a

string consisting of two or three digits (prepared already for the new generation of large

airplanes) followed by one character.

Web Services Flow Language

90

IBM Software Group

Depart ur eDat e @
@‘ part ureTi me

Arrival Date

Arrival Ti me

Depart ur eAt

Arrival At

Ai rport
Location

FI i ght Nunber

@véAssi gnment

Seat Nunber

Fi r st Nare

Last Nane

The Legs message finally collects all the legs of the trip.

Legs

8.2.1.6 The Ticket Order Message

A Ti cket Or der message is sent from the agent to the airline company. It contains
information about the credit card to be charged by the airline as well as the legs that the
agent already determined to be appropriate to cover the trip. The Reci pi ent element is for
mobility: The included e- mai | element will be used by the airline as the address to which
the electronic tickets have to be delivered.

Ti cket O der

CreditCard

Reci pi ent

Web Services Flow Language 91

IBM Software Group

8.2.1.7 The ltinerary Message

A segment collects all the flight information that corresponds to a particular location that the
traveler specified when making a trip request: The date on which to start at the current
location, the date on which to finally arrive at the target location, and the legs required to get
there.

Segnent

®

StartDate

EndDat e

An itinerary aggregates all of the flight information of a trip: It specifies when the overall trip
will begin and when it will end, and it provides all segments of the trip and its total price.

Itinerary

LeaveAt

Total Price

8.2.2 Additional Messages

Additional messages need to be defined for the input and output data signatures of each of
the activities defined in the airline and ticket agent flows.

8.2.3 Message Definition File

The messages used in our example are defined in a file named TicketOrder.xml. For these
messages, a separate namespace has been created.

<?xm version="1.0"7?>

<definitions nane="total Travel “
t ar get Nanespace=
"http://ww. Travel Luck. coml WebSer vi ces/ Messages/ Tot al Tr avel "
xm ns:tio=
“http://ww. Travel Luck. coml WebSer vi ces/ Messages/ Tot al Tr avel ”
xm ns="">

Web Services Flow Language 92

http://www.travelluck.com/WebServices/Messages/TotalTravel

IBM Software Group

<t ypes>
<schemn
xm ns= “http://ww. w3. org/ 2000/ 10/ XM_Schena”
t ar get Nanespace =
“http://ww. Travel Luck. coml WebSer vi ces/ Messages/ Tot al Tr avel ”
xm ns:tio=
“http://ww. Travel Luck. coml WebSer vi ces/ Messages/ Tot al travel ">

<el ement name="Credit Card">
<conpl exType>
<sequence>
<el enent name="Car dNunber" type="nonNegati vel nteger"/>
<el ement nane="ExpiryDate" type="nonth"/>
<el enent nanme="Conpany" type="string"/>
</ sequence>
</ conpl exType>
</ el ement >

<conpl exType nane="BaseAddr ess" >
<sequence>
<el enent name="Street" type="string"/>
<el ement nane="City" type="string"/>
<el ement nane="State" type="string"/>
<el enent name="ZI P" type="nonNegati vel nteger"/>
</ sequence>
</ conpl exType>

<conpl exType nane="Address" >
<conpl exCont ent >
<ext ensi on base="ti o: BaseAddr ess" >
<sequence>
<el enent name="e-mail" type="string" m nCccurs="0"/>
<el ement nane="Phone" type="string"/>
</ sequence>
</ ext ensi on>
</ conpl exCont ent >
</ conpl exType>

<conpl exType nane="Per son” >
<sequence>
<el enent name="First Nane" type="string"/>
<el enent name="Last Name" type="string"/>
<el enent name="Address" type="ti o: Address"/>
<el enent name="BirthDate" type="date"/>
</ sequence>
</ conpl exType>

<el enent name="Partici pants" type="ti o: Person"
m nQccur s="1" maxCccur s="unbounded"/ >

<el enent nanme="Reci pi ent" type="ti o: Person"/>

<el ement nane="Jour ney">
<conpl exType>
<al | >
<el enent nane=" St age"
m nOccur s="1" maxQccur s="unbounded" >
<conpl exType>
<sequence>
<el enent nanme="Location" type="string"/>
<el enent nanme="Begi n" type="date"/>

Web Services Flow Language 93

http://www.w3.org/2000/10/XMLSchema
http://www.travelluck.com/WebServices/Messages/Totaltravel

IBM Software Group

<el enent nanme="End" type="date"/>
</ sequence>
</ conpl exType>
</ el ement >
<el enent ref="tio:participants"/>
</all>
</ conpl exType>
</ el ement >

<! R N
<I-- tripOrder is the basic “where to” informati on supplied by -->
<I-- the traveller to the travel agent -->
<| L s s s s g g g g

<el enent name="tri pOrder">
<conpl exType>
<al | >
<el enent ref="tio:Journey"/>
<el ement ref="tio:CreditCard"/>
<el enent ref="ti o: Reci pient”/>
</all>
</ conpl exType>
</ el ement >

<conpl exType name="Ai rport Locati on">
<sequence>
<el ement nane="Nanme" type="string"/>
<el enent name="Ai port Code" type="string"/>
<el enent nanme="Termni nal " type="positivelnteger"/>
<el enent nanme="Gate" type="positivelnteger"/>
</ sequence>
</ conpl exType>

<conpl exType nanme="Leg">
<sequence>
<el enent nanme="Depart urebDate" type="date"/>
<el enent name="DepartureTi me" type="tine"/>
<el enent name="Arrival Date" type="date"/>
<el enent name="Arrival Ti re" type="tine"/>
<el enent nanme="DepartureAt" type="tio: AirportLocation"/>
<el enent name="Arrival At" type="tio:AirportLocation"/>
<el enent name="Fl i ght Nunber" >
<si nmpl eType>
<restriction base="string">
<pattern val ue="\S{2}\d{1,4}"/>
</restriction>
</ si npl eType>
</ el ement >
</ sequence>
</ conpl exType>

<el enent name="Legs" type="ti o:Leg"
m nOccur s="1" maxCccur s="unbounded"/ >

<el enent name= “seat Assi gnnent” >
<conpl exType>
<sequence>
<el enent name="First Nane" type="string"/>
<el enent nanme="Last Nane" type="string"/>
<el ement nanme=" Seat Nunmber " >
<si nmpl eType>

Web Services Flow Language

IBM Software Group

<restriction base="string">
<pattern val ue="\d{2, 3}\ S{1}"/>
</restriction>
</ si npl eType>
</ el ement >
<el enent nanme="Rate" type="string"/>
</ sequence>
</ conpl exType>
</ el ement >

<el enent name= “seat Assi gnnents” type="ti o: seat Assi gnnent”
m nCccurs="1" maxCQccur s="unbounded”/ >

<!--:: -—
<I-- ticketOrder (including legs) flows fromagent to airline -->
<!--:: -—

<el enent name="ti cket Order" >
<conpl exType>
<al | >
<el ement ref="tio:CreditCard"/>
<el enent ref="tio:Legs"/>
<el enent ref="tio: Recipient”/>
</all>
</ conpl exType>
</ el ement >

<si npl eType nane="Price">
<restriction base="deci mal ">
<scal e val ue="2"/>
</restriction>
</ si npl eType>

<si npl eType nane= “eTicket” type="string”/>
<si npl eType nane="chargeTxl d” type="integer”/>

<el enent name="ti cket Order Record” >
<conpl exType>
<al | >
<el enent name= “request” type= “tio:tripOrder”/>
<el enent name= “agent Wr kl d” type= “wsfl:Fl oM nstancel d”/>
<el enent name= “ourTi cket Order” type= “tio:ticketOder”/>
<el enent name= “airlineWrkld” type="“wsfl:Fl ow nstanceld”/>
</all>
</ conpl exType>
</ el ement >

<!--::: -—
<I--Confirmation (wWith seat assignnents, prices and record of -->
<l--charge to custoner) flows fromairline to agent -->
<!--::: -->

<el ement nanme= “confirnmati on” >
<conpl exType>

<al | >
<el enent name= “Request” type= “tio:ticketCOrder”/>
<el enent name= “airlineWrkld” type= “wsfl:Fl ow nstancel d”/>
<el enent name= “seating” type= “tio: seat Assi gnnents”/>
<el enent nanme= “chargeTxl d” type="integer”/>

</all>

Web Services Flow Language 95

IBM Software Group

</ conpl exType>
</ el enent >

<!--::: -—
<I--Itinerary (with original order, ticket information, confirmed -->
<l--seat assignnments, total price and record of charge to -->
<l--custoner) flows fromairline to agent -->
<!--::: -->
<el enent nanme= “itinerary”>

<conpl exType>

<al | >

<el enent name= “trip” type= “tio:tripOrder”/>
<el enent name= “agent Wrkl d” type= “wsfl:Fl ow nstancel d”/>
<el enent name= “ticket” type= “tio:ticketOder” />
<el enent name= “seating” type= “tio: seat Assi gnnents”/ >
<el enent name= “txld” type= “tio:chargeTxld” />
<el enent name= “total Price" type= “tio:price"/>
</all>
</ conpl exType>
</ el enent >

</ schema>

</types>
<!--::: -2
<I-- messages externalized by airline and agent processes -->
<!--::: -

<nessage name=“tri pOrder Msg” >
<part nane=“order” elenent="tio:tripOder”/>
</ message>

<nessage name="tri pOrder Ack”>
<part nane="agent Wrkl d” el ement ="wsfl : Fl owm nst ancel d”/ >
</ message>

<message nane="itineraryMsg” >
<part nanme="itinerarylnfo” elenent="tio:itinerary”/>
</ message>

<message nane="ti cket Order Msg” >
<part nanme= “order” elenment="tio:ticketOder”/>
</ message>

<nessage nhame="ticket Order Ack” >
<part name="airlineWrkld” el enent="wsfl:Fl ow nstanceld”/>
</ message>

<nessage nhanme="“confirnmati onMsg” >
<part nanme=“confirmationlnfo” el enent="tio:confirmation”/>
</ message>

<nessage nanme="eTi cket Msg” >
<part nane="aut hori zation” el enent="tio: eTicket”/>
</ message>

<!--::: -->
<I-- nessages used internally to define the signatures of -->
<l-- activities in the airline business process -->
<!--::: -—

Web Services Flow Language 96

IBM Software Group

<nessage name="recei vedTi cket Order” >
<part name="“request” elenment="tio:ticketOder”/>
<part nane="airlineWrkld” el enent="wsfl:Flow nstanceld”/>
</ message>

<nessage hame="reservation” >
<part nanme="“request” element="tio:ticketOrder” />
<part nanme="airlineWrkld” el enent="wsfl:Flow nstanceld”/>
<part nane=“seating” el ement="ti o: seat Assi gnnents”/>
<part nanme="aut hori zation” el enent="tio: eTicket” />
</ message>

<nessage nanme="char gedReservation”>
<part nanme="“confirmationlnfo” el enent= “tio:confirmation”/>
<part nanme="aut hori zation” el enent= “tio: ETi cket” />

</ message>

<! e e e e e e e e e e e e ol S >
<l-- nessages used internally to define the signatures of -->
<I-- activities in the travel agent busi ness process -->
<| - - - >

<nessage nanme="recei vedTri pOrder”>

<part nanme=“request” elenment="tio:tripOder”/>

<part nane="agent Wrkl d” el ement =“wsfl : Fl owm nst ancel d”/ >
</ message>

<nessage nhame=“tri pRecord”>
<part nanme=“request” elenment="tio:tripOder” />
<part nane="agent Wrkl d” el ement =“wsfl : Fl ow nst ancel d”/ >
<part name="ourTi cketOrder” elenment="tio:ticketOder”/>
</ message>

<nessage hanme="sent Ti cket Or der” >
<part nane="order Record” elenment="tio:ticketO derRecord”/>
</ message>

<nessage nanme="confirnmedTi cket O der” >
<part nanme="order Record” el enent="tio:ticketO derRecord”/>
<part nanme="“confirmationl nfo” el enent="tio:confirmation” />
</ message>

</ definitions>

Port Types Externalized by the Flow Models of the Travel Example

This section provides the definition of all the port types that are referenced in the travel agent
and airline flow models. Each operation in these port types is defined in terms of its input
and output messages; each of the messages used is a WSDL message as defined in the
preceding subsection. If needed, import statements could be included to provide the actual
locations where the schema or WSDL definitions can be found. As we mentioned before, the
port type definitions presented in the following example will be assigned to the same target
namespace as the message definitions of the previous section.

The standalone travel agent uses one port type for the operations he exposes to the traveler

and a separate port type for interactions with the airline. Similarly, the standalone airline
interfaces are split into separate port types for the interactions with agent and traveler. We

Web Services Flow Language 97

IBM Software Group

also provide the port type corresponding to the interface that a ticket buyer would need to
implement in order to participate in the ticket-ordering process.

<definitions name="total Travel Port Types"“
t ar get Nanespace=
"http://ww. Travel Luck. conl WebSer vi ces/ Messages/ Tot al Tr avel "
xm ns:tio=
“http://ww. Travel Luck. coml WebSer vi ces/ Messages/ Tot al Tr avel ”
xm ns="">

<!--::: -->
<I-- These are the standal one Travel Agent interfaces -->
<!--::: -—>

<port Type nane="tri pHandl er” >
<operati on name="“receiveTri pO der”>
<i nput nane="recei veTri pOrderl nput”
message="“tio:tri pOrder Msg”/ >
<out put name=“recei veTri pOr der Qut put”
nmessage=“tio:tri pOrderAck”/ >
</ oper ati on>
<operation name="“sendltinerary”>
<out put name="sendl ti neraryQut put”
message=“tio:itineraryMg” />
</ oper ati on>
</ port Type>

<port Type nane="ti cket Requester”>
<operati on nanme="request Ti cket Or der” >
<out put name="request Ti cket Or der Cut put”
message=“tio:ticket Order Msg” />
<i nput nane="request Ti cket Order | nput”
nmessage="tio:ticket Order Ack” />
</ oper ati on>
<oper ati on name="“wait For Confi r mati on” >
<i nput nane="wai t For Confirmati onl nput”
message=“ti o: confirmati onMsg” />
</ oper ati on>
</ port Type>

<!--:: -->
<I--This is the standal one Airline interface >
<!--:: -->

<port Type nane="ti cket Handl er” >
<operati on name="recei veTi cket Or der” >
<i nput nane="recei veTi cket Order| nput”
message="tio:ticket Order Msg”/ >
<out put name=“recei veTi cket Or der Qut put”
message=“tio:ticket Order Ack”/>
</ oper ati on>
<oper ati on name="sendConfirmation”>
<ouput nane="sendConfirmati onCut put”
nmessage="ti o: confirnmati onMsg”/ >
</ oper ati on>
</ port Type>

<port Type nane="ti cketDelivery”>
<oper ati on nane="sendETi cket” >
<out put name="sendETi cket Qut put”
nmessage="“ti o: eTi cket Msg”/ >

Web Services Flow Language 98

http://www.travelluck.com/WebServices/Messages/TotalTravel

8.4

IBM Software Group

</ oper ati on>
</ port Type>

<! R - >
<I--This is the interface required froma ticketBuyer -->
<! R - >

<port Type nane="ti cket Buyer” >
<oper ati on nane="sendTri pOrder” >
<out put nessage="tio:tripO derMsg”/>
<i nput nessage="tio:tripO derAck”/>
</ oper ati on>
<operation name="recei veETi cket” >
<i nput nessage="ti o: eTi cket Mes”/ >
</ oper ati on>
<operation nane="receiveltinerary”>
<i nput nessage="tio:itineraryMsg”/>
</ oper ati on>
</ port Type>

</definitions>

The Flow Models for Airline and Agent

In this section, we define the flow models that specify the standalone business processes for
the airline issuing a ticket, as requested by a travel agent, and the travel agent contacting an
airline in response to a traveler request to book a trip. For simplicity, all the definitions
provided in this section will be presented as belonging to a WSFL document, although for
reusability reasons, it might be convenient to separate them into several documents.

8.4.1 Service Provider Type Definitions

The definitions of the three service provider types used in the airline and agent flow models
are provided in the following code, including, in particular, the service provider type that a
ticket buyer would need to support to participate in the ticket-purchasing process. Each of
the flow models would also need a “local” service provider type to provide the
implementations for internal activities; we omit their definitions for brevity.

<definitions nanme="total Travel Port Types*”
t ar get Nanespace=
"http://ww. Travel Luck. conf WebSer vi ces/ Messages/ Tot al Tr avel
xm ns:tio=
“http://ww. Travel Luck. coni WebSer vi ces/ Messages/ Tot al Tr avel
xm ns="">

”

<servi ceProvi der Type nane="ai rl i neFl ow’ >
<port Type nane="tio:ticket Handl er”/ >
<port Type nane="tio:ticketDelivery”/>
</ servi ceProvi der Type>

<servi ceProvi der Type nanme="agent Fl ow’ >
<port Type nane="tio:tri pHandl er”/>
<port Type nane="tio:ticket Requester”/>
</ servi ceProvi der Type>

<servi ceProvi der name="travel er Type” >

<port Type nane="ti o:ti cket Buyer”/>
</ servi ceProvi der >

Web Services Flow Language 99

http://www.travelluck.com/WebServices/Messages/TotalTravel

IBM Software Group

8.4.2 The Airline Flow Model

We are following the general naming convention of using “tickets” for objects relating to the
airline, “trip” for objects relating to the travel agent and travel for objects relating to the
traveler. Hence, this airline process becomes the bookTi cket s process supporting the

ti cket Handl er andti cket Deli very port types.

We now introduce the service provider type ai r | i neFl owto represent the airline business
process. The definition of the | ocal service provider referenced in the per f or medBy
elements of some of the activities has been omitted as we did already before with the
definitions of the corresponding service provider types.

<| - - - >
<l-- definition of bookTickets flow nodel -->

<I-- using airlineFl ow serviceProvi der Type -->
<! e e e e e e e e e e e e ol S >

<f | owivbdel nanme="bookTi ckets"
servi ceProvi der Type="ai rl i neFl ow’ >

<f| owSour ce nane="ti cket Fl owSour ce” >
<out put nanme="processl| nst anceDat a”
nmessage="ti o: recei vedTi cket Order”/ >
</ f| owSour ce>

<servi ceProvi der name="agent” type="agentFl ow’/>
<servi ceProvi der name="travel er” type="travel er Type”/>

<export |ifecycleAction="spawn”>
<target portType="tio:ticketHandl er”
operati on="recei veTi cket Order” >
<map sourceMessage="recei veTi cket O der | nput”
t ar get Message=" processl| nst anceDat a”
target Part =“request”/ >
<map sourceMessage="processl| nstanceDat a”
sourcePart ="airlineWrkld”
t ar get Message="r ecei veTi cket Or der Qut put ”
targetPart="airlineWwrkld"/>
</target>
</ export >

<activity nane="reserveSeats" >
<i nput nane="reserveSeat sl nput”
nmessage="ti o: recei vedTi cket Order”/ >
<out put name="reserveSeat sQut put” nessage="ti o:reservation”/>
<per f or mredBy servi ceProvi der="1ocal "/ >
<i npl ement >
<i nt er nal >
<l-- .., call to reservation system.. -->
<internal />
</i mpl enent >
</activity>

<activity nane="chargeCreditCard" >
<i nput nane="dat al n” nessage="ti o:reservation” />
<out put name="dat aQut” nessage="ti o: chargedReservation”/>
<per f or mredBy servi ceProvi der="1|ocal "/ >

Web Services Flow Language 100

IBM Software Group

<i npl enent >
<i nt er nal >
<l-- .. call to credit card service .. -->
</i nt ernal >
</i mpl enent >
</activity>

<activity nane="confirn¥lights" >
<i nput name="confirn¥lightslnput”
nmessage="ti o: char gedReser vati on”/ >
<out put name="confirnFl i ghtsQut put” nessage="ti o: eTi cket Msg”/ >
<per f or mredBy servi ceProvi der="agent”/ >
<i npl ement >
<export portType="tio:ticketHandl er”
oper ati on="sendConfirmation”>
<map sour ceMessage="confirnFlightsl nput”
sour cePart =“confirmationl nf 0"
t ar get Message="sendConfirmati onCut put”
target Part =“confirmationlnfo”/>
</ export >
</i mpl enent >
</activity>

<activity nane="issueETi cket ">
<i nput nane="i ssueETi cket| nput” nmessage="ti o: eTi cket Msg”/ >
<per f or nedBy servi ceProvi der="travel er”/>
<i npl ement >
<export portType="tio:deliverTickets” operation="sendETi cket”>
<map sourceMessage="i ssueETi cket | nput”
sour cePart ="aut hori zati on”
t ar get Message="sendETi cket CQut put”
t arget Part =" aut hori zati on”/ >
</ export >
</i mpl enent >
</activity>

<dat al i nk name="gT-r S-dat a”

source= “ticket Fl owSour ce”

target="reserveSeats”/ >
<cont r ol Li nk

name="rS- cC’

source="reserveSeat s”

target ="chargeCredi t Card”/ >
<dat aLi nk

nane="r S- cCdat a”

sour ce="reserveSeat s”

target =" chargeCredi t Card”/ >
<control Li nk

name="cC- cF’

sour ce="char geCr edi t Card”

target="confirnFlights”/>
<dat aLi nk

nane="cC- cFdat a”

sour ce="char geCr edi t Card”

target="confirnFlights”/>
<cont r ol Li nk

nanme="cF-sT”

sour ce="confirnFlights”

target="i ssueETi cket "/ >
<dat aLi nk

nane="cF- sTdat a”

Web Services Flow Language 101

IBM Software Group

source="confirnFlights”
target="i ssueETi cket”/ >

</ f | owivbdel >

In this example, we have exported the spawn lifecycle activity to the r ecei veTi cket Or der
operation. Thus, when this operation is called from some partner flow or service in a global
model, a new instance of the airline business process represented by this f | owvbdel is
created. The spawn lifecycle operation creates a new process instance, assigns it a unique
instance identifier of type wsf | : Fl ow nst ancel d and returns to the caller immediately
(without waiting for the created process instance to complete). Exporting the spawn process
toarecei veTi cket O der operation allows application-specific initialization data to be
passed in on the call namely the information specifying what ticket is requested-which is
then made available through f | owSour ce to activities of the process through data links.

The unique FI owl nst ancel d generated by spawn is passed back as reply data to the
calling operation. In principle, this enables the agent requesting a ticket order to call in
subsequently with other lifecycle operations to this process instance. The unique

FI owl nst ancel DID can also be used by the agent as a record locator for future messages
associated with this ticket order. This includes correlation with confirmations from the airline
and airline reference information to be printed on the itinerary for the traveler.

It is implicit in this example that the wsf | : FI owl nst ancel d value returned from the spawn
operation is used to set the ai r I i neWbr kI d part of the f | owSour ce
processl nst anceDat a based on type matching.

8.4.3 The Travel Agent Flow Model

This section shows the standalone travel agent business process specifying just the travel
agent processing independently of airline and traveler. Following our naming convention,
this is the bookTr i p flow model supporting the t ri pHandl er and ti cket Request er port
types. The servi ceProvi der Type defined for the agent business process is called

agent Fl ow.

<| [s s s s sy p—p— - - >
<I-- definition of bookTrip flow nodel >
<I-- usi ng agent Fl ow servi ceProvi der Type -->
<! e -—>>

<f | owbdel name="bookTri p"
servi ceProvi der Type="agent Fl ow’ >

<f | owSour ce nane="tri pFl owSour ce” >
<out put nanme="processl| nst anceDat a”
nmessage="ti o: recei vedTri pOrder”/ >
</ f| owSour ce>

<servi ceProvi der name="airline” type="airlineFl ow />
<servi ceProvi der name="travel er” type="travel er Type”/ >

<export |ifecycl eAction="spawn”>
<target portType=“tio:tripHandl er”
operati on="recei veTri pOrder”>
<map sourceMessage="recei veTri pOrderl nput”
t ar get Message=" processl| nst anceDat a”
target Part =“request”/ >

Web Services Flow Language 102

IBM Software Group

<map sourceMessage="processl| nstanceDat a”
sour cePart =" agent Wor kil d”
t ar get Message="r ecei veTri pOr der Qut put”
t ar get Part =" agent Wor kIl d”/ >
</target>
</ export >

<activity name="sel ect Legs">
<i nput nane="dat al n” nessage="ti o: recei vedTri pOrder”/>
<out put name="dataQut” nessage="tio:tri pRecord”/>
<provi dedBy serviceProvi der="1ocal "/ >
<i npl ement >
<i nt er nal >
<l-- .. start agent forns/dialog for select legs.. -->
</internal >
</i npl enent >
</activity>

<activity nane="orderTi ckets">
<i nput nane="order Ti cket sl nput” nmessage="tio:tri pRecord”/>
<out put name="or der Ti cket sQut put” nessage="ti o: sent Ti cket Order”/ >
<provi dedBy serviceProvider="airline”/>
<i npl ement >
<export portType="tio:ticket Requester”
oper ati on="request Ti cket Or der” >
<map sour ceMessage="Or der Ti cket sl nput”
sour cePart = our Ti cket or der”
t ar get Message="r equest Ti cket Or der Qut put "/ >
<map sour ceMessage="request Ti cket O der | nput”
sour cePart ="t heAi rl i neWrkl d”
t ar get Message="orderti cket sQut put”
target Part ="t heAirlineWrkld" />
</ export >
</i mpl enent >
</activity>

<activity nane="get Confirmation">
<i nput nane="get Confi rmati onl nput”
message="ti o: confirnedTi cket Or der”/ >
<out put name="get Confirmati onCut put”
message="ti o: confirnedTi cket Or der”/ >
<provi dedBy serviceProvider="airline”/>
<i npl ement >
<export portType="tio:ticket Requester”
oper ati on="wai t For Confirmati on”>
<map sour ceMessage="wai t For Confi r mati onl nput
sour cePart =“confirmationl nf 0"
t ar get Message="get Confi r mati onl nput”
target Part=“confirmationlnfo”/>
</ export >
</i mpl enent >
</activity>

”

<activity nane="generateltinerary">

<i nput nane="dat al n” nessage="ti o: confirnedTi cket Order”/>

<out put name="dataQut” message="tio:itineraryMsg”/>

<provi dedBy serviceProvi der="1ocal "/ >

<i npl ement >
<i nt er nal >
<l-- .. start agent forns/dialog to conpile itinerary.. -->
</internal >

Web Services Flow Language 103

IBM Software Group

</i mpl enent >
</activity>

<activity nane="issueltinerary">
<i nput nane="issueltinerarylnput” nessage=“tio:itineraryMsg”/>
<provi dedBy serviceProvi der="travel er”/>
<i npl ement >
<export portType="tri pHandl er” operation="tio:sendltinerary”>
<map sourceMessage="issueltineraryl nput”
sourcePart="iti neraryl nfo”
t ar get Message="sendl ti neraryQut put”
targetPart="itinerarylnfo”/>
</ export >
</i mpl enent >
</activity>

<dat aLi nk
nane="gF- sLdat a”
source="tri pFl owSour ce”
target ="sel ect Legs”/ >
<control Li nk
name="sL- oT”
source="sel ect Legs”
target =" order Ti ckets”/ >
<dat aLi nk
name="sL- oTdat a”
source="sel ect Legs”
t arget =" or der Ti ckets”/ >
<control Li nk
nane="oT-rC
sour ce="or der Ti cket s”
target="getltinerary”/>
<dat aLi nk
name="oT- r Cdat a”
sour ce="or der Ti cket s”
target="getltinerary”
<map sour ceMessage="order Ti cket sQut put
sour cePart =" or der Recor d”
t ar get Message="get | ti neraryl nput”
t ar get Part = or der Record”/ >

”

</ dat al i nk>
<control Li nk
name="gC-gl”
sour ce="get Confi rmati on”
target="generateltinerary”/>
<dat aLi nk
nane="gC- gl dat a”
sour ce="get Confirmati on”
target="generateltinerary”/>
<cont rol Li nk
name="gl -sl”
source="generateltinerary”
target="issueltinerary”/>
<dat aLi nk
nane="gl - sl dat a”
source="generatel tinerary”
target="issueltinerary”/>

</ f | owivbdel >

</ definitions>

Web Services Flow Language 104

8.5

IBM Software Group

The Global Model t ri pNTi cket

Having defined flow models for the agent and the airline, we now illustrate a composition
referring to and using these flow models. It is the composition that, as a single service to the
traveler, provides the combined services of travel agent and the selected airline.

A new port types will be externalized by this combined service. We show those as a WSDL
file to be imported by the WSFL. Because there is now a single connection point between
user and the combined t ri pNTr avel service, a single port type is used for the service
interface.

<definitions nanme="total Travel Port Types*”
t ar get Nanespace=
"http://ww. Travel Luck. coml WebSer vi ces/ Messages/ Tot al Tr avel "
xm ns:tio=
“http://ww. Travel Luck. coml WebSer vi ces/ Messages/ Tot al Tr avel ”

<!--::: - >
<I-- This is the working AgentNAirline porttype in WSDL -->
<!--::: - >

<port Type nane="tri pNTi cket Handl er” >
<operation nane="“recei veTri pOrder”>
<i nput nane="recei veRequest” nessage="“tio:tri pO derMsg”/>
<out put name="r et urnResponse” nessage="tio:tri pOderAck”/>
</ oper ati on>
<oper ation name="“sendltinerary”>
<out put name="“sendMessage” nessage=“tio:ltinerary”/>
</ oper ati on>
<oper ati on nane="sendETi cket s” >
<i nput nane="sendMessage” nessage="ti o: ETi ckets” />
</ oper ati on>
</ port Type>

Next, we show the WSFL file for the composition that will begin with the definition of the new
service provider type that uses and externalizes the port types defined above. This is
immediately followed by the WSFL defining the composition that realizes this new service
provider type.

<!--::: -—>>
<I-- definition of agentNAirlineFlow serviceProviderType -->
<!--::: -—>>

<servi ceProvi der Type nane="agent NAi rl i neFl ow’ >
<port Type nane="ti o:tri pNTi cket Handl er” >
</ servi ceProvi der Type>

<!--::: -—>>
<l-- definition of bookTri pNTickets conposition -->
<I-- usi ng agent Fl ow servi ceProvi der Type -->
<|--::: -—>>

<gl obal Model name="bookTri pNTi cket s"
servi ceprovi der Type="agent NAi r | i neFl ow’ >

<servi ceProvi der nane="travel Agent"

servi ceProvi der Type="ti o: agent Fl ow’ >
<export >

Web Services Flow Language 105

http://www.travelluck.com/WebServices/Messages/TotalTravel

IBM Software Group

<source portType="tio:tripHandl er”
operation="sendltinerary”/>
<target portType="tio:tripNTicketHandl er”
operation="sendltinerary”/>
</ export >
<export >
<source portType="tio:tripHandl er”
operati on="recei veTri pOrder”/>
<target portType="tio:tripNTi cketHandl er”
operati on="recei veTri pOrder”/>
</ export >
<l ocator type="static”
servi ce="Travel uck. coni />
</ servi ceProvi der >

<servi ceProvi der nane="airline”
servi ceProvi der Type="ti o: ai rli neFl ow’ >
<export >
<source portType="tio:ticketDelivery”
oper ati on="sendETi cket”/ >
<target portType="tio:tripNTi cketHandl er”
oper ati on="sendETi ckets”/ >
</ export >
</ servi ceProvi der >

<pl ugLi nk>
<source serviceProvider="airline”
port Type="ti o:ticket Handl er”
oper ati on="sendConfirmation”/>
<target serviceProvider="travel Agent”
port Type="tio:tri pHandl er”
oper ati on="wai t For Confirmation”/>
</ pl ugLi nk>

<pl ugLi nk>
<source serviceProvi der="travel Agent”
port Type="tio:tri pHandl er”
oper ati on="request Ti cket Order”/ >
<target serviceProvider="airline”
port Type="ti o:ti cket Handl er”
operati on="recei veTi cket Order”/ >
</ pl ugLi nk>

</ gl obal Model >

</ definitions>

Web Services Flow Language 106

IBM Software Group

9 References

1. E. Christensen, F. Curbera, G. Meredith, S. Weerawarana, “Web Services Description
Language (WSDL) version 1.0, http://www.uddi.org/submissions.html, September 2000.

2. World Wide Web Consortium, “XML Schema Part 1: Structures”, W3C Candidate
Recommendation, http://www.w3.org/TR/xmlschema-1/, October 2000.

3. World Wide Web Consortium, “XML Schema Part 2: Datatypes”, W3C Candidate
Recommendation, http://www.w3.org/TR/xmlschema-2/, October 2000.

Web Services Flow Language 107

http://www.uddi.org/submissions.html
http://www.w3.org/TR/xmlschema-1/
http://www.w3.org/TR/xmlschema-1/

.||I

"II
@

© Copyright IBM Corporation 2001

International Business Machines Corporation
Software Communications Department
Route 100, Building 1

Somers, NY 10589

U.S.A.

05-01
All Rights Reserved

IBM, the IBM logo and CICS are trademarks
or registered trademarks of International
Business Machines Corporation in the United
States, other countries, or both.

Java and all Java-based trademarks and
logos are trademarks of Sun Microsystems,
Inc in the United States, other countries, or
both.

Microsoft, Windows, Windows NT and the
Windows logo are trademarks or Microsoft
Corporation in the United States, other
countries, or both.

Other company, product and service names
may be trademarks or service marks of
others.

References in this publication to IBM products
or services do not imply that IBM intends to
make them available in all countries in which
IBM operates.

	Introduction
	Flow Models
	Global Models
	Recursive Composition
	Hierarchical and Peer-to-Peer Interaction
	Relation to Web Services Stack
	Document Organization

	Language Overview
	Use Cases
	A Quick Tour of WSFL

	Service Composition Metamodel
	Flow Metamodel
	Syntax
	Activities
	Control Links
	Transition Conditions
	The Origin of Flow Dynamics
	Control Links As Edges
	Forks And Parallelism
	Joins and Synchronization
	Join Conditions
	Start and End Activities
	Exit Conditions
	Loops
	Data Links
	Input and Output of Flows
	Instances and Models
	Service Providers
	Endpoint Properties

	Operational Semantics
	Dead-Path Elimination
	Summary: Operational Semantics

	Lifecycle Interface
	Business Process Lifecycle
	Activity Lifecycle
	Recursive Composition Metamodel
	Composition Metamodel Overview
	Global Models
	Service Providers as Components
	Connections between Service Providers
	Flow Models as Service Providers

	Graphical Representation of Port Types and Service Provider Types
	Operations As Activity Implementations
	Which Operation Is the Activity Implementation?
	Realizing Activity Implementations
	Exporting Operations
	Plug Links
	Flows and Plug Links
	Making Things Convenient
	Mapping Data
	Aggregating Web Services
	The Global Model

	Language Description
	Document Structure and Naming
	References to External Definitions
	Flow Models
	Service Providers and Service Bindings
	Service Provider Types
	Service Providers
	Service Locators

	Defining Business Processes
	Activities
	Activity Implementation
	Exit Condition
	Join Condition
	Container Materialization
	Summary: Activity Schema

	Control Links
	Data Links and Data Mapping

	Defining the Interface of a Flow Model
	External and Internal Interfaces
	Internal Implementations
	Exporting Activities
	Exporting Operations
	Support for Lifecycle Operations
	Lifecycle Operation spawn
	Lifecycle Operation call
	Lifecycle Operation enquire
	Lifecycle Operation terminate
	Lifecycle Operation suspend
	Lifecycle Operation resume

	Putting Things Together: The External Interface of a Flow

	Plug Links
	Global Model

	Appendix A: WSFL Schema
	Appendix B: Internal Activity Implementations
	EXE Files
	Customer Information Control System (CICS) Programs
	Java Classes

	Appendix C: Endpoint Property Extensibility Elements
	Execution Limits
	Escalation
	Observation
	Contacts

	Appendix D: The Ticket-Order Example
	Overview
	Messages for the Ticket-Order Example
	Short Description and Graphical Definition
	The Credit Card Message
	The Participants Message
	The Journey Message
	The Trip Order Message
	The Legs Message
	The Ticket Order Message
	The Itinerary Message

	Additional Messages
	Message Definition File

	Port Types Externalized by the Flow Models of the Travel Example
	The Flow Models for Airline and Agent
	Service Provider Type Definitions
	The Airline Flow Model
	The Travel Agent Flow Model

	The Global Model tripNTicket

	References

