
1

RMM: A Methodology for Structured Hypermedia Design

Tom�as Isakowitz
1

Edward A. Stohr
1

P. Balasubramanian
2

May 3, 1995

Abstract

Hypermedia application design di�ers from other software design in that it involves navigation

as well as user-interface and information processing issues. We present the Relationship Manage-

ment Data model (RMDM) and the Relationship Management (RMM) methodology for the design

and development of hypermedia applications. The seven steps of the methodology lend themselves

to computer support, paving the way for a computerized environment to support the design and

development of hypermedia applications. This article focuses on design activities, which are ad-

dressed within the �rst three steps of the methodology.

Introduction

Hypermedia development, especially on a commercial scale, often involves teams of developers who

need to be managed and coordinated over an extended period of time. Formal systems development

and project management techniques are needed to ensure that the hypermedia product meets its

objectives and is completed on time and within budget. However, traditional software industry

techniques must be modi�ed to accommodate new requirements. Hypermedia projects di�er from

traditional software development projects in several critical dimensions. First, as Streitz notes in

his sidebar (in this issue), hypermedia projects may involve people with very di�erent skill sets:

authors, librarians, content designers, artists, and musicians, as well as programmers. Second, the

design of hypermedia applications involves capturing and organizing the structure of a complex

domain and making it clear and accessible to users [9]. Third, multimedia aspects of hypermedia

applications raise numerous di�culties [13]. Hypermedia design is therefore a challenging process

that is currently more of an art than a science. Finally, the need for prototyping (see the paper

by Nanard and Nanard in this issue) and intensive testing with users is even more pronounced in

1Information Systems Department, Leonard N. Stern School of Business, New York University, New York,

NY 10012
2Management Information Systems Department, School of Management, Boston University, Boston, MA 02215



2

hypermedia development than it is with traditional software because user tolerance to errors in

hypermedia applications is very low.

In this article we propose the relationship management methodology (RMM) for the design

and construction of hypermedia applications. The name \relationship management" stems from

our view of hypermedia as a vehicle for managing relationships among information objects.

The class of applications for which RMM is most suited exhibits a regular structure for the

domain of interest, i.e., there are classes of objects, de�nable relationships between these classes

and multiple instances of objects within each class. Many hypermedia applications satisfy this

requirement. Examples include product catalogs and hypermedia front-ends to traditional database

or \legacy" applications. Since many hypermedia applications in this class have volatile data that

requires frequent updating, some means to routinize and automate both the initial development

and subsequent update process is needed.

Table 1 illustrates the usefulness of the RMM approach to design and development of hyper-

media applications. The two axes representing the structure and volatility of the information are

really continuums rather than discrete dichotomies. Applications in the two domains we mentioned

above { product catalogs and hypermedia front-ends to databases or legacy applications { have high

structure and high information volatility and the RMM methodology is particularly appropriate.

At the opposite end of the spectrum, an artistic work may not have a readily discernible structure

and usually remains unchanged over time. In this case, RMM is not applicable. Applications that

have high structure and remain unchanged over a long period of time can bene�t from the RMM

methodology during the design and construction phases but do not require much maintenance so

that the updating problem is relatively unimportant and the advantage to be gained by the RMM

approach is not as pronounced. Finally, applications that have irregular (or dynamic) structures

and high volatility may gain little from the use of the RMM approach. In this case, however, we

reserve judgment as it is possible that some parts of the domain may be structured and that the

problem of high information volatility can at least be partially addressed.

A number of commercial products, e.g., Documentum by Documentum Inc., PDM by Xyvision

Inc., RDM by Interleaf, and SGML Server by Information Dimensions, use an approach similar to

RMM, in that they provide 
exible access mechanisms to documents that are stored in a database.

The approaches used in these products are proprietary and have not been reported in the research

literature. Moreover, these systems do not provide support for the design process, which is the



3

Volatility of Information

Low High

High Medium usefulness High usefulness

[e.g., Kiosk Application] [e.g., Product catalog, DBMS interface]

Structure

Low Not useful Low usefulness

[e.g., Literary work] [e.g., Multimedia news service]

Table 1: Usefulness of RMM Approach

focus of RMM.

The paper is organized as follows. In the next section we present the relationship management

data model which provides the foundation of the methodology. Thereafter, we introduce a seven-

step methodology for the design and construction of hypermedia projects. The �nal section of the

paper provides conclusions and a brief overview of future work.

Relationship Management Data Model (RMDM)

A data model is a set of logical objects used to provide an abstraction of a portion of the \real

world." Data models are necessary to express an application's design. A number of researchers

have developed data models for hypertext systems, e.g., [18], [24], Dexter [12], [11], HB1 and

HB3 [16, 20] and Trellis [23]. However, it is important to di�erentiate a hypertext system from

a hypertext application. The former is an environment that facilitates the creation of the latter.

A data model for a hypertext system ([1], [7], [24], [20]) details its internal architecture but is

of little value in modeling hypermedia applications. This is because describing the layout of a

general purpose engine is quite di�erent from modeling an application domain; a di�erent kind of

data model is needed for this purpose. In our case, RMDM provides a language for describing the

information objects and the navigation mechanisms in hypermedia applications.

Database models are useful abstractions in database applications, but the peculiarities of hyper-

media, in particular the navigation aspect, require new models. Garzotto, Paolini and Schwabe's

HDM data model [9] (see also the article by Garzotto, Paolini and Mainetti in this issue) is ap-

propriate for describing the structure of the application domain, and we base our data model on

HDM and its successor HDM2 [8]. HDM and HDM2 describe representation schemes but provide

little information on the procedures for using those representations in the design process, i.e., they

do not describe a hypermedia design and development methodology. Lange [15] and Schwabe and



4

Rossi (see their sidebar in this issue and [22] study object-oriented approaches to hypermedia de-

sign. Recent works by us [2] and by Garzotto, Mainetti and Paolini [10] focus on this problem.

The present paper represents an update and expansion of [2]. Our methodology di�ers from that

presented in [10] in several dimensions including the recommended sequence of steps, additional

access structure formalisms, increased emphasis on graphic representations and a more detailed,

step-by-step, procedure for hypermedia design and development. The proceedings of the two recent

hypermedia design workshops [21, 14] discuss various other issues arising in hypermedia design.

INSERT FIGURE 1 ABOUT HERE

We now describe the Relationship Management Data Model (RMDM) which is the cornerstone

of the RMM methodology. Figure 1 shows RMDM's modeling primitives. In the upper part of the

Figure are the domain primitives, which model information about the application domain. Entity

types and their attributes represent abstract or physical objects, such as person or bank account.

Associative relationships, which can be one-one or one-many, describe associations among di�erent

entity types. As in database modeling, a many-many relationship is factored into two one-many

relationships.

Because entities may consist of a large number of attributes of a di�erent nature (e.g., salary

information, biographical data, photographs), it may be impractical or undesirable to present all

of the attributes of an entity instance at once. Thus, attributes are grouped into slices. For

example, a person entity with attributes name, age, picture and biography, may have a General

slice, containing name, age and photograph and a Biography slice, with name and biography. Hence,

each instance of the entity person will be presented by two slices, and, if the application supports

it, a user may choose which one to view. The graphical notation for slices { meant to resemble a

pizza slice { appears in the middle of Figure 1.

INSERT FIGURE 2 ABOUT HERE



5

Navigation is supported in RMDM by the six access primitives shown at the bottom of Figure

1. The uni-directional and bi-directional links are used to specify access between slices of an entity.

It is important to stress that these links can only be used to navigate within the boundaries of an

entity. RMDM supports navigation across di�erent entities via indices, guided tours and groupings.

An index acts as a table of contents to a list of entity instances, providing direct access to each

listed item. A guided tour implements a linear path through a collection of items allowing the

user to move either forward or backward on the path. There are a number of useful variations

on guided tours. For example, a \circular guided tour" links the last element back to the �rst; a

\guided tour with return to main" has a distinguished node that contains information about the

guided tour itself (e.g., \this is a guided tour of faculty homepages"), and is both the starting and

ending point of the tour; and a \guided tour with entrance and exit" has di�erent entrance and

exit nodes. RMDM is capable of accommodating all of these variations on guided tours. However,

for the purposes of this article, it su�ces to consider a generic guided tour construct, shown in the

middle of Figure 1.

The grouping construct is a menu-like mechanism that enables access to other parts of a hy-

permedia document. A typical example of a grouping is the opening screen of many applications

which serves the purpose of providing access to other indices, guided tours, etc. Indices are special

kinds of groupings. We are currently investigating other useful grouping constructs, such as the

multilevel hierarchical structures so common in knowledge classi�cation schemes.

The conditions or logic predicates qualifying indices and guided tours determine which instances

of an entity are accessible from the construct. For example, Figure 2-a shows a conditional guided

tour of all associate professors. The predicate Faculty(rank=`associate') indicates that only those

entity instances of faculty whose rank attribute is associate participate in the guided tour. The

right part of the �gure shows an instance of such a guided tour. Figure 2-b is an example of a

conditional index web. Here, access is granted via an index-like construct. There are also return

links from each participating node to the index, as shown on the right of the �gure. Lastly,

conditional indexed guided tour webs combine indices and guided tours to provide a richer access

structure.

We will use the Stern School's Information Systems Department's Handbook application (ISweb)

as a basis for discussion (URL: http://is-2.stern.nyu.edu/isweb). V. Balasubramanian et al. present

a di�erent application, also developed with RMM, in their sidebar in this issue. The ISweb hand-



6

book contains descriptions of the graduate programs and courses o�ered by the IS Department

and a list of faculty members in the department together with their research interests. We have

chosen this application for various reasons: (1) the acquaintance of many readers with this domain;

(2) its moderate complexity enables an illustration that is rich in details, and (3) it illustrates the

problems that arise when updates are relatively frequent (semi-annual in this case).

Figure 3 shows the complete RMDM diagram for the handbook application. Note that, in

contrast to an entity-relationship diagram that represents the design of a database, an RMDM

diagram describes how users will navigate a hypermedia application. To avoid cluttering, slices are

not included in Figure 3, and only the key attributes of entities are shown. At the top of Figure 3 the

grouping mechanism implements a \main menu". Access into the faculty and course information

is provided via guided tours; access into programs by means of an index. On choosing the guided

tour to the faculty entity, the user can move back and forth among all faculty members (ordered

alphabetically). From the faculty entity, there is a conditional index into courses with predicate

teaches(F,C). The reciprocal index taught by(C,F) can be accessed from courses. Together, these

two indices represent a many-many relationship between faculty and courses.

INSERT FIGURE 3 ABOUT HERE

The \teaches" conditional index allows the user to move from the faculty entity to the courses

taught by that faculty member. Had we provided an indexed guided tour for the courses taught by

a faculty member, the user would be able to choose which course to visit �rst and from there, she

could use the next and previous links to visit other courses taught by the same faculty member.

The Relationship Management Design Methodology (RMM)

INSERT FIGURE 4 ABOUT HERE

The RMM methodology is shown graphically in Figure 4 within the context of the complete



7

software development cycle. RMM focuses on the design, development and construction phases.

In this article we concentrate on the design of access mechanisms, which is achieved through the

�rst three steps of the methodology (shown in the shaded area of Figure 4). Although feasibility,

requirements analysis, and testing are undeniably important phases in software development, they

are beyond the scope of this article. To evaluate the application, one can use techniques like those

proposed by Garzotto, Paolini and Mainetti (in this issue) and by Schneiderman [3].

The labels on the arrows in Figure 4 represent the various intermediate artifacts generated

through the use of the methodology. Although present in the methodology, we do not show the

feedback loops among the remaining stages to avoid cluttering the �gure. Feedback loops in between

the RMM design stages are shown by dashed lines.

The RMDM data model provides a strong prescription for choosing the nodes and links in

the hypermedia application. However, many design issues must be decided independently by the

designer (see the article by Th�uring, Hannenmann and Haake in this issue). While our main

purpose here is to outline the design methodology, we also discuss some design guidelines for each

step.

Step S1: E-R Design.

The �rst design step is to represent the information domain of the application via an Entity-

Relationship diagram (E-R). The E-R representation has been chosen because it is familiar to

system analysts, is well-documented [6], and can model information dependencies in numerous

application domains. This stage of the design process represents a study of the relevant entities

and relationships of the application domain. These entities and relationships form the basis of the

hypermedia application and many of them will show up in the �nal application as nodes and links

in a hypermedia web. In many situations the E-R diagram might already be available, for example,

if the target application is a hypermedia interface to an existing database. In this case it can be

reused directly in this step.

INSERT FIGURE 5 ABOUT HERE



8

Figure 5 shows the E-R diagram for the handbook application. The entities Faculty, Courses,

Programs, etc., are shown in rectangles. The relationships Teaches, Taught by, Pre-Requisite,

etc. are shown by dashed lines. In RMDM, the relationships that appear in E-R diagrams are

called associative relationships, because they represent associations between entity instances. The

graphical notation also shows the arity of each relationship. Namely, when an arc opens up into

three lines, the arity is many on that side of the relationship. The possible arities of relationships,

in accordance with the entity-relationship framework are one-one, one-many and many-many.

To facilitate design of navigation in stage S3, we use standard database design techniques to

split many-many relationships into one-many ones. In Figure 5, for example, the two one-many

relationships Teaches and Taught by originate in a many-many relationship between Faculty and

Courses. During the navigational design step S3, relevant relationships are identi�ed and are made

available for navigation via indices or guided tours.

E-R Design Guidelines:

Since E-R design has been extensively discussed elsewhere (see for example [4]), we will con�ne

ourselves to but a few remarks here. The objective in the design of hypermedia applications is to

make the links between objects explicit as these are the main paths via which the user browses the

individual items of information. An analysis of the domain using the E-R approach helps identify

important relationships across which navigation can be supported. Conversely, if a navigational

path across entities is a requirement for the application, a corresponding associative relationship

has to be included in the E-R design.

Step S2: Slice Design.

This step, which is unique to hypermedia applications, determines how the information in the

chosen entities will be presented to users, and how they may access it. It involves splitting an

entity into meaningful slices and organizing these into a hypertext network. In its simplest form,

all the information in an entity can be displayed within one window with scroll bars. Although

such an approach is simple for the developer, it may be undesirable for a user, who may become

disoriented when scrolling within large windows. Alternatively, the information can be divided into

meaningful units that can be presented as separate but interrelated wholes. For example, Figure 6,

shows the Faculty entity subdivided into four slices containing (1) general information, (2) a short

biography, (3) research interests, and (4) a video-clip.



9

The organization of entities into slices is called the slice design phase, and it results in a

slice diagram, as depicted in Figure 6. Each slice groups one or more attributes of the entity.

For example, the General slice in Figure 6 groups the attributes: �rst name, last name, general

description and rank, while the Biography slice contains �rst name, last name and biography. Each

entity has a distinguished slice, its head, which is used as a default to anchor links coming into the

entity. In the diagram, entity heads are marked with an asterisk.

The entity diagram also models navigation between slices via uni- and bi-directional links. The

labels on bi-directional links name both directions. The up/left direction appears in parenthesis.

For example, the link joining General and Research Area is labeled expertise in one direction

(from General to Research Area), and Faculty in the other direction. These links, which represent

connections between slices, are called structural links3 to di�erentiate them from the associative

relationships appearing in the E-R diagram. Structural links di�er from associative relationships

in that the former connect information pieces within the same entity instance, while associative

relationships interconnect di�erent entity instances belonging, in most cases, to di�erent entity

classes.

From a navigational point of view, there is an important reason for di�erentiating among these

two kinds of connections. When a user traverses an associative link, the information context

changes, for example, from a faculty to a course. However, when a structural link is traversed,

the information context remains within the same entity. To support the implementation of dif-

ferent user-interface cues for navigation, structural and associative connections are di�erentiated

graphically in RMM artifacts: structural connections are drawn with solid lines, whereas dashed

lines are used for associative relationships (as in Figures 3 and 5). The concepts of structural and

associative relationships also surface under di�erent perspectives in other articles in this special

issue. For example, they relate to local and global coherence in Th�uring, Hannenmann and Haake's

article and to local and global navigation in Kahn's sidebar (in this issue). Together, the entities

and relationships obtained in the E-R design step and the slice links comprise the structural com-

ponents de�ning the application schema described in Bieber and Kacmar's paper (this issue). The

output of the entity design phase is an enriched E-R diagram, denoted E-R+, which is obtained

from the E-R diagram by �lling each entity with its slice design diagram.

3This is consistent with HDM notation[9].



10

INSERT FIGURE 6 ABOUT HERE

Slice Design Guidelines

There are four main considerations: (1) dividing an entity into slices, (2) choosing one slice to be

the head of the entity, (3) interconnecting the various slices, and (4) labeling the links. Regarding

the �rst issue, it is important to remember that each slice will represent a whole for the system

user. Thus, slices should group only related information items but should not contain too much

information. Ideally, scroll bars should not be necessary, because users tend to lose focus when

using them.

Choosing the head slice and deciding on the interconnections between slices requires an analysis

of the domain. In our case, the General slice has been chosen to be head of the faculty entity because

it is the most representative of the slices. The links re
ect the need to connect more general units,

e.g., general, to more speci�c ones, e.g., biography, research area and video-clip, and to provide

back links to navigate back from these. Finally, choosing appropriate link labels and anchors is

a delicate issue as Th�uring, Hannemann and Haake (in this issue) note. In our applications, we

picked labels that explicitly highlight the nature of the target slices.

Step S3: Navigational Design.

In this step, we design the paths that will enable hypertext navigation. Each associative relation-

ship appearing in the E-R+ diagram is analyzed. If, according to the requirements analysis, an

associative relationship should be made accessible for navigation, it is replaced by one or more

RMDM access structures. Since the RMM methodology is meant for domains that are updated on

a relatively frequent basis, all navigational paths are speci�ed in generic terms. This means that

there are no hard coded links between instances of entities; instead, links are speci�ed by referring

to properties of entities and of relationships. The three RMDM navigational elements that make

this possible are conditional indices, conditional guided tours and conditional indexed guided tours.

INSERT FIGURE 7 ABOUT HERE



11

One starts step S3 by designing the navigation between entities, which is based on associative

relationships. For example, the Teaches relationship between faculty and courses is used to access all

courses taught by a faculty member, and the Taught by relationship is used to access the information

about all faculty members teaching a course. As shown in Figure 7-a we used conditional indexed

guided tours in this case. The name of the relationship is used as a condition in these access

structures to indicate which instances of the entities are to be interconnected. This ensures for

example, that only the courses taught by faculty member F will appear when traversing the Teaches

link from faculty F 's node.

Next, we design high level access structures by grouping items of interest. Figure 7-b illustrates

how to use groupings to provide hierarchical menu-like access to courses and faculty in the IS

handbook. These menus are an alternative to the design presented in Figure 3. The grouping

shown at the top of Figure 7-b represents a menu with two choices: faculty and courses. Below this

�rst menu and to its left is another grouping construct, that provides access to an alphabetical list

of faculty (in the form of a guided tour) and to an index of faculty by rank.

By default, access structures enter an entity via its head slice. However, designers can specify

a di�erent entry point. This can be indicated, for example, by tagging the access structure with

the name of the target slice. At the end of the navigational design stage, the ER+ diagram has

been transformed into an RMDM (Relationship Management Data model) diagram, like the one

shown in Figure 3, which describes all access structures to be implemented in the system.

Navigational Design Guidelines

The design can proceed bottom-up, by focusing �rst on each entity and then on the more general

access structures, or the inverse process can be adopted, resulting in a top down approach. The

approach discussed here has been bottom-up, mainly, because we followed a very structured de-

sign process. However, we anticipate that software developers will want to approach the design

process in a bottom-up, or middle-out fashion. As Nanard and Nanard point out in their paper,

these requirements are an important consideration in the design of an RMM-based computerized

environment for hypermedia design and development [5].

During stage S3, designers have to identify (a) the information components and relationships

that will be accessed, (b) what groupings are to be present and (c) what access structures to use in



12

each case. Decisions regarding (a) and (b) must be based on system requirements obtained during

the requirements analysis phase, re
ecting the characteristics and logical structure of the applica-

tion domain. Further re�nements through user participation should be encouraged during the S3

design step. Regarding (c), we use a few simple guidelines. Groupings provide hierarchical points

of entry; whenever possible, we try to reduce the depth of hierarchies to avoid user disorientation

[17]. Alternatively, graphical cues can be used to provide an overview of where a reader is in the

hypertext network. One-one relationships are implemented with bidirectional links. For one-many

relationships the choice is more complex: between a guided tour, an index and an indexed guided

tour.

We prefer a guided tour to an index when the number of participating entity instances is

relatively small (say less than ten) and when there are no index keys that can be of help to users.

For example, the research areas of a faculty member are organized as a guided tour because, for

most students using the system, the names of the research areas are not very informative. On the

other hand, when there is a large number of instances in the presence of a meaningful key, an index

is better suited. Indexed guided tours are a hybrid; often used when there is a suitable index key

and some local navigation is desired, as is the case with the courses taught by a professor, where

the course number serves as a key.

User-Interface Design and Construction

We now describe the remaining four steps of the RMM methodology. Because they do not deal

directly with the design of access mechanisms, we only provide a brief discussion in this article.

Most current hypermedia building kits such as Toolbook, Hypercard, Macromind Director, as

well as tools used to create HTML documents, o�er some degree of support for software develop-

ment. For example, Toolbook and HyperCard provide graphical widgets for building code, and

libraries containing hypermedia programming constructs. However, these tools only provide build-

ing blocks that facilitate the programming stage of software development, without addressing the

broader design and development issues that have been outlined above. Step S4, conversion protocol

design, uses a set of conversion rules to transform each element of the RMDM diagram into an

object in the target platform. For example, a Toolbook list-box or an HTML form can be used to

implement an index. Step S4 is currently performed manually by programmers. However, a group

at New York University is developing an RMDM to HTML compiler.



13

Step S5, user-interface design involves the design of screen layouts for every object appearing

in the RMDM diagram obtained in step S3. This includes button layouts, appearance of nodes and

indices and location of navigational aids. Decisions about how link traversal, history, backtracking

and navigational mechanisms are to be implemented, are taken during step S6, run-time behavior

design. Also during this stage, developers consider the volatility and the size of the domain to

decide whether node contents and link endpoints are to be built during application development or

dynamically computed on demand at runtime (see V. Balasubramanian et al's sidebar in this issue).

The RMM methodology, although geared towards the latter, also supports the former. Finally,

step S7 consists of construction and testing, as in traditional software engineering projects. In

hypermedia applications, special care needs to be taken to thoroughly test all navigational paths.

INSERT FIGURE 8 ABOUT HERE

A sample application developed using RMM is shown in Figure 8, which depicts a screen from the

WWW implementation of the IS Handbook. The �gure shows the head slice of an instance of the

Courses entity, containing information about the course C20.0001, the undergraduate introduc-

tory course in information systems. The map appearing at the top right hand side of the page is

obtained from the RMDM diagram. This drawing is a click-able map that can be used as an alter-

native means of navigation, in the spirit of Intermedia's Web views [25], and other graphic-based

navigational approaches [19]. Such graphs can be constructed following spatial design principles as

discussed by Marshall and Shipman (in this issue), and are available as a by-product of the RMM

methodological process. We are currently designing a suite of software tools to support the design

and development of RMM-based applications [5], which we expect to utilize to further evaluate the

RMM methodology.

Conclusion and Future Work

As demand for hypermedia products increases, there is a need to replace the current ad-hoc design

and construction approaches, which are highly labor intensive and costly, with more e�cient ap-

proaches that provide guidelines for project managers, produce standardized documentation and



14

give automated support for developers. Our objective in this paper was to present a hypermedia

design and construction methodology that addresses these issues. The proposed RMM methodol-

ogy is most suited to applications that have a regular structure, especially where there is a frequent

need to update the information to keep the system current. Many commercial applications, includ-

ing product catalogs, electronic commerce gateways, design manuals and interfaces to database

management systems �t this description. We believe that the RMM methodology can serve as the

basis for the design and development of robust hypermedia applications.

Acknowledgments

This research was partially supported by a hardware grant from Apple Inc. We wish to thank the

reviewers for their insightful comments; the following people for their help in implementing the

department handbook: Terrance Chen, Hon-Fun Kun, Alex Bronstein and Rama Krishnan, and

Ravi N. Arunkundram for his assistance in preparing this manuscript.

References

[1] Robert M. Akscyn, Donald L. McCracken, and Elise A. Yoder. KMS: A Distributed Hy-

permedia System For Managing Knowledge In Organizations. Communications of the ACM,

31(7):820{835, July 1988.

[2] P. Balasubramanian, Tomas Isakowitz, and Edward. A. Stohr. Designing hypermedia ap-

plications. In Ralph H. Sprague and Bruce Shriver, editors, Proceedings of the 27th Hawaii

International Conference on Information Systems (HICSS), pages 354{365, Maui, HI, January

1994. IEEE Computer Society Press.

[3] Rodrigo Botafogo, Ehud Rivlin, and Ben Schneiderman. Structural Analysis of Hypertexts:

Identifying Hierarchies and Useful Metrics. ACM Transactions on O�ce Information Systems,

2(10):142{180, April 1992.

[4] Peter P. S. Chen. Database Design Based on Entity and Relationship. In S. Bing Yao, editor,

Principles of Database Design, Volume 1: Logical Organizations, chapter 5, pages 174{210.

Prentice-Hall, Inc., Englewood Cli�s, New Jersey 07632, USA, 1985.



15

[5] Alicia D��az and Tom�as Isakowitz. RMCase: Computer-Aided Support for Hypermedia Design

and Development. Working paper IS-95-3, Center for Research in Information Systems, New

York University, Information Systems Department, New York, NY 10012, 1995.

[6] Ramez Elmasri and Shamkant Navate. Fundamental of Database Systems. The Ben-

jamin/Cummings Publishing Company, second edition, 1990.

[7] Richard Furuta and P. David Stotts. The Trellis Hypertext Reference Model. In Judi Moline,

Dan Beningni, and Jean Baronas, editors, Proceedings of the Hypertext Standardization Work-

shop, pages 83{93, Gaithersburg, MD 20899, March 1990. National Institute of Standards and

Technology, NIST special publication 500-178.

[8] Franca Garzotto, Paolo Paolini, and Luca Mainetti. Navigation Patterns in Hypermedia Data

Bases. In Proceedings of the 26th Hawaii International Conference on System Sciences, Vol.

III, pages 370{379. IEEE Computer Society Press, January 1993.

[9] Franca Garzotto, Paolo Paolini, and Daniel Schwabe. HDM - A Model-Based Approach to

Hypertext Application Design. ACM Transactions on O�ce Information Systems, 11(1):1{26,

January 1993.

[10] J. Gaulding and B. Katz. Hypermedia Application Design: A Structured Approach. In

Wolfgang Schuler, Joerg Hannemann, and Norbert Streitz, editors, Designing User Interfaces

for Hypermedia, pages 43{52. Springer-Verlag, ESPRIT series, Heidelberg, December 1994.

[11] Kaj Gronbaek and Randal H. Trigg. Design Issues for a Dexter-Based Hypermedia System.

Communications of the ACM, 37(2):40{49, February 1994.

[12] Frank G. Halasz and Meyer Schwartz. The Dexter Hypertext Reference Model. Communica-

tions of the ACM, 37(2):30{39, February 1994.

[13] Lynda Hardman, Dick C. C. Bulterman, and Guido van Rossum. The Amsterdam Hypermedia

Model. Communications of the ACM, 37(2):50{63, February 1994.

[14] Tom�as Isakowitz and Manfred Th�uring. (Eds.) Methodologies for Designing and Developing

Hypermedia Applications. Working paper IS-94-8, Center for Research in Information Systems,

Information Systems Department, Stern School of Business, New York University, New York,

NY 10012, December 1994.



16

[15] Danny B Lange. Object-Oriented Hypermodeling of Hypermedia Supported Information Sys-

tems. Proceedings of the 26th Hawaii International Conference on System Sciences, III:380{

389, January 5-8 1993.

[16] John J. Leggett and John L. Schnase. Viewing Dexter with Open Eyes. Communications of

the ACM, 37(2):76{86, February 1994.

[17] Jakob Nielsen. Through Hypertext. Communications of the ACM, 33(3):297{310, March 1990.

[18] Amy Pearl. Sun's Link Service, A Protocol for Linking. In Hypertext'89 Proceedings, pages

137{146. ACM Press, November 1989.

[19] Ehud Rivlin, Rodrigo Botafogo, and Ben Schneiderman. Navigating Hyperspace: Designing a

Structure-Based Toolbox. Communications of the ACM, 37(2):87{96, February 1994.

[20] John L. Schnase, John J. Leggett, David L. Hicks, and Ron L. Szabo. Semantic Data Mod-

eling of Hypermedia Associations. ACM Transactions on Information Systems, 11(1):27{50,

January 1993.

[21] Wolfgang Schuler, Joerg Hannemann, and Norbert Streitz, editors. Designing User Interfaces

for Hypermedia. ESPRIT series. Springer-Verlag, Heidelberg, December 1994.

[22] Daniel Schwabe and Gustavo Rossi. Building Hypermedia Applications as Navigational Views

of Information Models. Proceedings of the 28th Hawaii International Conference on System

Sciences, III:231{240, January 1995.

[23] P. David Stotts and Richard Furuta. Programmable Browsing Semantics in Trellis. In

HyperText-89 Proceedings, pages 27{42, 1989.

[24] Frank W. Tompa. A Data Model for Flexible Hypertext Database Systems. ACM Transactions

on Information Systems, 7(1), January 1989.

[25] Kenneth Utting and Nicole Yankelovich. Context and Orientation in Hypermedia Networks.

ACM Transactions on Information Systems, 7(1):58{84, January 1989.



17

Figures

R

R

Associative Relationship

Associative Relationship

AAttributes

Conditional Indexed
P

One-Many

One-One

Entities E

Bi-Directional Link

Grouping

Conditional Indexed

Conditional Index

P

P

P

Uni-Directional LinkAccess Primitives

Primitives

RMD Domain

Primitives

E-R Domain

Slices

Conditional Guided Tour

Guided tour

Figure 1: The Relationship Management Data Model (RMDM) primitives. E-R primitives model

how information is structured in the application domain. The slice domain primitive models how

information is to be presented. The access primitives model navigation.



18

Indexed Guided Tour

Guided Tour of Associate Professors

Index of Associate Professors

Faculty(rank=’associate’)

Faculty(rank=’associate’)

Faculty(rank=’associate’)

(c)

(b)

(a)

Index Guided Tour Node

Index Node

Guided Tour Node

Clifford

Dhar

Jones

Nord

Faculty

Guided Tour of
Associate Profs.

Faculty

Nord

Jones

Dhar

Clifford

Clifford

Dhar

Jones

Nord

Faculty

Nord
Jones

Dhar

Clifford

Clifford

Dhar

Jones
Nord

start

of Associate Professors

Figure 2: Examples of the conditional RMDM access constructs.



19

Concentrations

Publications

Groups

Groups

Course

Courses

Typical

Published_by(Pub,F)

Faculty Index Publish(F,Pub)

Publ. Index

Course Index

Course Index

Has(Conc,CG)

Conc

CG

Has(Prog,Conc)

Conc. Index

Group Index

Has(Prog,G)

Pre-Req. Index

Course Index

Has _Pre-req.

Consists_of(G,C)

Course Index

Consists_of(CG,C)

Course groups
Index

Are_part_of(C,CG)

Faculty Index

Co-requisite
Index

Has_Co-req.
C

G

Teach(F,C)

Pub

Publications

Faculty

F

Taught_by(C,F)

Prog

Program Index

Programs

Figure 3: RMDM Diagram for the Information Systems Department Handbook application repre-

sents the ultimate outcome of the three steps of the design process.



20

E-R Design

Feasibility

requirements analysis
Information/Navigation

Testing and evaluation

Conversion protocol design screen design
User-Interface

Run-time behavior design

Entity Design

Navigation design

Construction

S1

S2

S3

S4 S5 S6

S7

Feasibility document

ER Diagram

ER+ Diagram

RM Diagram

Hypermedia Application

Requirements document

Needs
Objectives
Market/user anlysis
Information sources/permissions

Cost-benefit analysis

Media used
Distribution channels

Hardware selection

Hardware Choice

Screen designs

Focus of RM

Methodology

Conversion rules RM+ Diagram

Figure 4: The RMM Design Methodology. The arrows connecting the various stages are tagged

with the objects to be used as input for the next step. Our focus in this article is on the design

steps, shown in the shaded area. To avoid cluttering, we only show feedback loops within the

design phase (the dashed lines). The remaining feedback loops, although present in RMM, are not

shown.



21

Concentrations

Publications

Publ_by

Faculty

Publish

Taught_by

Teach

Groups

Has_Conc

Groups

Course

Consists_of

Consists_of

Has_type_group

Are_part_of

Courses

Has_Group

Typical

Has_Pre-Requisite

Has_Co-Requisite

Programs

Figure 5: E-R Diagram for the handbook application. Entities appear within rectangles and

relationships as dashed lines. Relationship names appear within diamonds.



22

Biography
Video Clip

General

Research

Area

Expertise (Faculty)

Video (Faculty)Bio (Faculty)

Expertise (Faculty)

Figure 6: Slice diagram for faculty



23

(b)

(a)

Courses

Faculty

By Rank

By name

Faculty Courses

Faculty Courses

Taught_by(C,F)

Faculty Submenu

Main Menu

Teach(F,C)

Figure 7: Examples of a Relationship Management Design Diagram. In (a), Conditional indexed

guided tours implement the associative one-many relationships Teach and Taught by. The use of

conditional access structures to provide access beyond that derived from associative relationships

is illustrated in (b). Also note the two groupings, which implement a hierarchical menu-like access

mechanism.



24

Figure 8: A course page from the WWW implementation of the IS handbook. The click-able map

on the upper right corner is a by by-product of the RMM methodology. It serves to orient users,

and is also an alternative means of navigation.


