
Extending the capabilities of RMM:

Russian Dolls and Hypert

Tomás Isakowitz, Arnold Kamis and Marios Koufaris
Stern School of Business

New York University
44 W. 4th St.

New York, NY 10012

tomas@stern.nyu.edu

Extending the capabilities of RMM:

Russian Dolls and Hypertext

ABSTRACT

Hypermedia design is usually ad hoc. Whereas the original Relationship
Management Methodology (RMM) provides a structured approach to design and
implementation of hypermedia applications, it has limitations that constrain the
usability of the kinds of applications it can construct. This paper provides
extensions to RMM that enable it to model a much richer class of applications.
Thereby making the methodology more attractive for software developers to use.
The paper also presents a graphical and programming language notation for
RMM’s new m-slice construct, which is at the core of the extensions presented
here.

Extending RMM

1

1. Introduction
The problem with much hypermedia design is that it is ad hoc. RMM (Isakowitz et

al., 1995) provides an effective, structured design methodology for the development of

applications that are easier to maintain and extend (see Appendix C for a brief description

of RMM). Currently, RMM is in use at Merryl Lynch, at publishing houses (M.E. Sharpe,

Inc.), research institutions (personal contacts at Bellcore), and by educational institutions

to deliver on-line teaching materials (Pace University in NY; SYRECOS consortium in

Luxembourg, Staffordshire University in the UK).

After some initial experimentation with RMM, it became clear to us that its data

model is limited. RMM does not account for issues beyond the basic navigational structure

of a hypermedia application. Most important, it does not allow for rich information to be

displayed on each presentation unit, e.g. Web pages. When designing a web site with

RMM, one can design pages using pure RMM concepts, but non-trivial pages quickly

become awkward. This happens, for example, when information from different entities

needs to be displayed within a single screen. Although RMM can currently model the basic

navigational structure of the web site it cannot combine various components in meaningful

ways.

This paper extends RMM by introducing new constructs that overcome these

limitations and increases its capabilities for the design of complex hypermedia applications.

The graphical notation and program specification language that we present here for the

first time, can be used in an on-line case tool, such as RM-CASE (Diaz et al., 1995).

While the original RMM methodology was limited to very simple applications, the

Extending RMM

2

extensions we provide here support the structured design of hypermedia applications of

arbitrary levels of complexity.

In the paper, we first describe the web site for the Journal of Management

Information Systems (JMIS) that we developed using the current RMM methodology. We

describe the limitations we discovered in RMM and then propose the m-slice construct as

an extension to the RMM data model to overcome those deficiencies. We then present a

graphical notation and a program specification language for the new constructs. We

conclude the paper with a discussion of related work and a summary of our findings.

2. RMM Application: The JMIS Website
The Website for the Journal of Management Information Systems

(http://www.stern.nyu.edu/jmis) was designed to mirror the appearance of the physical

journal. As shown in Figure 1, each issue has its own page with an index of all the articles

and authors (table of contents) featured in that issue as well as a number of buttons

providing information about the journal in general. We also constructed a top-level page,

called the journal toppage, which lists all the issues of the journal currently available on the

Website.

Extending RMM

3

There is a separate page for each article in which the abstract, its keywords, and

the authors’ names are provided. The author names are linked to pages containing rich

information about each author. There is also a link to a keyword index that lists the

available JMIS articles classified by each keyword. Throughout the site, references such as

article titles, author names, and issue volume-number-season, are linked to the appropriate

pages.

 Figure 1: The issue table of contents page.

Extending RMM

4

The RMM diagram of the JMIS Website designed with the current methodology is

shown in Figure 2. One typically starts at the site’s homepage, “JMIS Homepage”, which

is a grouping in RMM. From there, one can click on the keyword index to obtain a list of

all keywords. Clicking on one of them would show all the articles classified by it. One can

then select an article and click on its title to bring up the article page. From there, one can

select the first author and click on the name to see information about him or her.

Figure 2 also shows a derived (inferred) relationship between the entities article

and journal . Such relationships are used in accordance with HDM (Garzotto, Paolini, and

Schwabe, 1993) and help to make the design of a hypermedia application more straight-

forward. By clearly showing the derived relationships on the diagram, one does not need

to explicitly trace them back to the composition of the actual relationships. In this

Keyword Art ic le

Key-
words

Articles by
Keyword

Contr ibu-
tor

Art icle
Index

Contr ibutor
Index

Issue

Article
Index

Issue

JMIS
Homepage

Keyword
Index

Most Recent
JournalIssue

Index

Journal

About this
Site

Journal

Figure 2: The basic RMM diagram for the JMIS Website.

Extending RMM

5

example the derived relationship in_journal between article and journal is the

composition of the existing relationships in_issue and in_journal between the entities

article and issue and the entities issue and journal respectively.

3. Limitations of RMM

In the final implementation of the Website we realized that RMM overly constrains

the resulting application. Suppose, for example, that for each keyword, we would like to

produce a list of all articles classified by it and describe each article with a full

bibliographic reference, as illustrated in Figure 4.

An RMM-driven implementation of the JMIS Website, based on the diagram in Figure 2,

results in a number of separate pages, one for each construct shown in the diagram

(assuming each entity has only one slice). The inability to put together, for example, the

article name and the authors’ names in the “Articles by Keyword” index, results in a

cumbersome implementation. Figure 3 illustrates the navigational path that a user is forced

to take in order to find the names of the contributors who authored a given article. Thus

the user has to navigate two links in order to reach the screen in Figure 3-c, which at that

point is devoid of context and meaning; the user may well have forgotten why he wanted

that information. Compare this to Figure 4, which shows what can be accomplished by

extending RMM as proposed in this article. The user can access the issue page, the article

page, or the authors’ pages with only one link.

Extending RMM

6

a) b)

d)c)

Figure 3: Pure RMM is limited in its functionality. The user would have to navigate from page a),
which contains only the titles of the articles classified under “business process reengineering” to
screens b) and c) to find out the names of the authors of that article; and to d) in order to find other
keywords classifying the same article. The extensions to RMM we present here enable richer designs
that are more natural to the user.

Extending RMM

7

Based on our experience with the JMIS Website, we identified three main limitations in

RMM:

1. The first limitation of RMM is its inability to specify what information is to be shown

as the content of an anchor, i.e. the source for the actual text or image that appears as

a hyperlink in a presentation unit such as a web page. For example, the title of an

article is the content of an anchor that links the table of contents of an issue to that

articles abstract page (see Figure 1)

Figure 4: The use of m-slices provides for better
navigation.

Extending RMM

8

2. RMM currently allows aggregation of attributes only within a single entity. This

problem is solved by the introduction of a new kind of slice: the Matrjeska1 slice (m-

slice), which allows the aggregation of attributes from different slices. For example, in

Figure 4, several slices are aggregated for the first article: “Managing Information

about Processes” taken from the article, “Journal of Management Information

Systems” taken from the journal, and “Vol. 12 No. 1, Summer 1995” taken from the

issue. In our experience, we have come across m-slices that have five or more levels

of nesting.

3. The third limitation is that RMM does not currently allow a slice to contain both

attributes and access structures (e.g., indices or guided tours). To arrive at an access

structure, one would have to traverse an extra link. The m-slice allows one to combine

any slice with an access structure, without the extra link. For example, in RMM,

“Thomas H. Davenport and Michael C. Beers” is represented by an access structure

(an index). That index is combined with other information pertaining to the first article

(see Figure 1).

It is important to note that the navigation afforded by RMM is the same in both

versions. The difference lies in the ability to cluster together different elements of the

application. This clustering ability is achieved through the use of the m-slice. The next

section gives a detailed description of this new construct and shows how it can be used in

the specific example of the JMIS Website.

1 This is named after the Russian dolls that appear to be solid, but are in fact nested.

Extending RMM

9

4. The M-Slice Solution

The construct we introduce here is the m-slice. M-slices are used to group

information into meaningful information units. M-slices can be aggregated and

nested to form higher level m-slices. The “m” in “m-slice” derives from the nested

nature of Russian Matrjeska dolls. Ultimately, HTML pages on the WWW, for

example, are the presentation units that visually render the higher level m-slices.

Those m-slices may contain lower level m-slices that can be re-used a multiple

number of times. Besides fostering reuse, this approach promotes structured

design which is inherent in the definition of an m-slice.

M-slices are a new construct that replaces the slice and grouping constructs

currently used in RMM. M-slice design preempts the original slice design and

should be performed after the navigational design. In this paper we do not discuss

design guidelines which we will undertake elsewhere.

Figure 5 depicts the rendering of the article.bib_citation m-slice, which

contains bibliographic information about an article and relevant links.

Extending RMM

10

Each m-slice is owned by one specific entity2 in order to be considered as an

element of that entity. In that way, an m-slice can be reused as many times as

needed, by itself or as part of another m-slice, without the need to redefine it. In

the case of article.bib_citation, the owner is the article entity. To stress the role

of owner entities, m-slices are denoted by <owner entity >.<slice name >. In

this case, it is denoted article. bib_citation. Note that in addition to containing

elements from its owner entity (the article title in

this case), the article.bib_citation m-slice also

contains elements from other sources. For

example, the names of the authors come from the

contributor entity, and “Vol. 12 No. 1, Summer

1995” (the date of the issue in which the article

was published) comes from the relevant issue entity instance. Thus m-slices

encapsulate information from various sources: attributes of the owning entity,

Figure 5: Rendering of the bibliographic_citation m-slice

Figure 6: The issue.date m-slice

The article title comes
from the article entityThe names of the authors

come from the
contributor entity.

The name of
the journal
comes from the
journal entityThe date comes

from the issue
entity

The page numbers come from the
in_issue relationship between article
and issue

Extending RMM

11

attributes of related entities, and access structures such as indices. They can also

be nested. For example, the issue.date m-slice, shown in Figure 6, which

aggregates the volume, number, season and year of an issue, is included in the

article. bib_citation m-slice.

We developed graphical and program specification languages to represent m-

slices. The graphical language is to be used in a GUI tool to assist in hypermedia

design. The specification language is to be generated by the GUI tool and read into

a compiler or interpreter that associates data with m-slices to generate the HTML

pages.

M-slices are a very powerful element of RMM. They allow a precise definition

of information elements to be presented to the user while hiding (a) details - which

are encapsulated in other m-slices, and (b) elements of the user-interface.

Examples of (b) include the relative placement of the information elements on a

screen, the format in which an index is presented, e.g., as a bulleted list, or - as in

the contributor_index case - a conjunctive list (a list of items separated by

commas, with an “and” between the last two).

It is important to stress that m-slices describe what information is to be part of

a construct and where to obtain it. M-slices do not dictate how this information is

to be shown. That is left to the user-interface design stage of RMM. M-slices

provide the power needed for RMM to represent arbitrarily complex information

organizations while supporting a structured, re-usable, manageable and

programmable approach to hypermedia design and development.

5. Graphical Notation for m-slices
The graphical notation for the design of the structural user interface of a

hypermedia application uses many of the existing primitives of RMM as well as some new

ones. A complete list of the primitives used is supplied in

2 We also consider m-slices with no specific owner in section 5.

Extending RMM

12

Appendix A and we describe many of them within the context of our specific

example of the JMIS Web site. These graphical representations are immediately followed

by the equivalent program code, which we discuss later.

The graphical notation for the m-slice, depicted in Figure 7, consists of the RMM

entity and slice primitives which are enlarged and placed so that they

partially overlap. The entity portion represents the owner entity of the

m-slice. This means that the instance of this entity defines what

information appears in this m-slice. Relationships within the m-slice use

the owner entity as their source. The name of the owner entity is placed

in the top left-hand corner of the rectangle.

The slice portion, whose name appears at the bottom of the drawing, contains the

constituent elements of the m-slice. Note that the complete name of the m-slice consists of

the owner entity name followed by the slice name, e.g. article.bib_citation. Drawing the

m-slice in this way, allows us to distinguish between its physical and conceptual

boundaries (see Figure 8). The slice portion defines the physical boundaries. Elements

appearing within those boundaries are the constituent elements of the m-slice. They are

the ones that will physically appear in the presentation unit that is based on that m-slice.

For example, everything that is visible on a web page is placed within the physical

boundaries of the m-slice that the page represents.

enti ty

sl ice

Figure 7: The m-
slice primitive

Extending RMM

13

There are, however, elements that are part of the m-slice’s immediate external

environment but do not appear in it

such as the destinations of hyperlinks

anchored in the m-slice. We place

such elements outside the m-slice’s

physical boundaries. These elements

define the conceptual boundaries of

the m-slice (Figure 8). If no such

elements exist, then the physical and

the conceptual boundaries of an m-

slice are identical. Those elements

(attributes or m-slices) of the m-slice

that belong to the owner entity appear

within the overlapping section, the

shaded area in Figure 8.

Consider, as an example, the contributor.name m-slice (Figure 9). The three

attributes first name, middle initial , and last name are attributes of the owner entity

contributor . In order to show that these three attributes are part of the m-slice

contributor.name, we place them within the overlapping section of the m-slice. Instead of

an attribute, one can also use another m-slice belonging to the owner entity. For example,

in contributor.info (Figure 10), the m-slice contributor.name is placed in the

overlapping section to show that it is owned by the owner entity contributor . Note that

no entity name is used in the description of the m-slice contributor.name.

owner
entity

slice name

physical boundariesconceptual boundaries

Figure 8: Physical and Conceptual Boundaries

Extending RMM

14

contributor

name

middle
initial

last
name

first
name

contributor.name: m-slice
begin

first_name;
middle_initial;
last_name;

end ;

Figure 9: The contributor.name m-slice

These
attributes
belong to the
entity
contributor.

Extending RMM

15

contr ibutor

info

contact
_info

journal

toppage

contributes_to

Index

article

bib_cit
ation

is_author_of

name

long
name

journal

contr ibutor

n a m e

first name

last name
middle initial

contributor.info: m-slice
begin

[contributes_to] Æ * journal.longname ⇒ journal.toppage;
name;
contact_info;
index begin

relation : [is_author_of];
content: article.bib_citation;

index end ;
end ;

Figure 10: The contributor.info m-slice is an example of a nested m-slice (contributor.name).

Extending RMM

16

This is also a good example of how m-slices can be nested to make the design of

the hypermedia application more flexible. One can “explode” any nested m-slice to get its

complete structure when using an on-line CASE tool.

An m-slice can also contain parts of entities other than the owner entity. Those are

placed in the part of the large slice that does not overlap with the owner entity. For

example, notice how in Figure 11 the m-slice issue.date is nested in article.bib_citation.

article

bib_citation

t i t le

in_issue

Index

contrib
utor

nam
e

contributor

info

written_by

issue

date

issue

toc

abs t r
ac t

p a g e s

in_journal

l o n g
n a m e

journal

article.bib_citation: m-slice
begin

* title ⇒ article.abstract;
index begin

relation : [written_by];
content : * contributor.name ⇒ contributor.info;

index end ;
[in_journal] Æjournal.longname;
[in_issue] Æ * issue.date ⇒ issue.toc;
[in_issue].pages;

end;

Figure 11: The article.bib_citation m-slice

Extending RMM

17

Since it is not part of the owner entity article, its primitive indicates both its

owner entity, issue, as well as the slice’s name, date. In many cases, m-

slices contain just one attribute. To make their notation simple we use a

shorthand notation, depicted in Figure 12.

Whenever we use an m-slice owned by another entity we must also specify the

relationship between the two owner entities. Relationships are denoted by either a solid

line for actual relationships or a dotted line for inferred relationships. The relationships

always have the owner entity of the m-slice as their source, so the lines always start from

the owner entity’s border. An example of an actual relationship in article.bib_citation is

in_issue while an example of an inferred relationship is in_journal .

M-slices can also combine different access structures such as indices. When an

index is used, the relationship on which the index is based is indicated

by the usual straight or dotted line. When designing the hypermedia

application, however, it is necessary to indicate the information to be

used as the content of the index in the m-slice. Therefore, two lines

are used to connect the index with its content slice (Figure 13).

Whether it’s another m-slice or a single attribute, this information

determines what will be used as the actual content of the m-slice based

on the relationship that the index represents.

For example, in article.bib_citation the index represents the relationship

written_by . This relationship has, as its source, the entity article and, as its target, the

Attr ibute

entity

Figure 12: A
single
attribute m-
slice

Index

entity

slice

Figure 13: Index
with content slice

Extending RMM

18

entity contributor . The content of the index is the contributor.name m-slice which is

connected to the index by two lines.

In some cases, m-slices contain attributes that belong not to entities but to

relationships. Thus, relationships can also own m-slices. For example, in

article.bib_citation, seen in Figure 11, pages is an attribute of the relationship in_issue

(between the entities article and issue). In cases such as this one, the attribute (or m-slice)

is connected by a solid line to the relationship that owns it.

Sometimes, an m-slice is used as an anchor of a hyperlink to another m-slice. Such

a link is shown by an arrow that crosses the border of the m-slice. In article.bib_citation,

the m-slice issue.date serves as a hyperlink to the m-slice issue.toc. This is shown by a

uni-directional arrow connecting the two m-slices while crossing the border of the m-slice

article.bib_citation. The same is done for the index of the relationship written_by where

its content slice, contributor.name, now becomes an anchor hyperlinked to the m-slice

contributor.info .

In article.bib_citation we can also see an example of a link to an m-slice that is

owned by the same owner entity. The attribute title of the entity article serves as a link to

the m-slice article.abstract. Since that slice is also owned by article it appears outside the

physical boundaries of the m-slice article.bib_citation but within the entity article.

A hyperlink can also initiate a process such as e-mail, a video, an audio file, or a

file download. For all those cases, special primitives are used to indicate the external link

or the process involved (see Error! Reference source not found.).

Extending RMM

19

Often, we need to place a hyperlink in an m-slice that does not

use information from the domain of the application. For example, we

may want to use a fixed text or an image as a button that can be

activated to open another page. We therefore need some primitive to

serve as a placeholder. We call this placeholder an empty slice and its

graphical notation is shown in Figure 14.

6. M-SLICE LANGUAGE DEFINITION

The merits of a program specification language are : (a) it provides precise

definition and (b) it is executable. We illustrate the programming notation with

several examples. A full description of the language is given in Appendix B. Let’s

build the article.bib_citation m-slice, starting with the simpler elements.

∀

sl ice

⊥

Figure 14: An
empty slice

Figure 15: Rendering of the bib_citation m-slice

* article.text

* contributor.name

journal.
longname

* issue.date

[in_issue].pages

[written_by]

Extending RMM

20

As with any m-slice definition, we have the initial m-slice structure, as follows:

article.bib_citation : m-slice
begin

<body> ;
end ;

First, let us take a look at the simplest construct, the long name of the journal,

“Journal of Management Information Systems”. This is an attribute of an entity,

journal , related by a relation, in_journal . The syntax for this is the following:

[relation] → <entity>.<slice>

It is important here to note that in its simplest form, an m-slice contains a

single attribute. In those cases, we use the attribute’s name as a shorthand

notation for the m-slice. In this way we avoid having to define all single-attribute

m-slices. Here, the code is

[in_journal] → journal.longname ;

where longname is the only attribute used by the m-slice.

Next, we consider the page numbers of the article within the issue, in this

case, pp. 57-80. Pages is an attribute of neither the article nor the issue, but of the

relation between them. Syntactically, this is as follows:

[relation].<m-slice>

and, in this example, is

[in_issue].pages

Next, we describe the hyperlink construct. Consider, from Figure 5, the

anchor “Vol. 12 No. 1, Summer 1995”, which is the issue.date m-slice. This

anchor leads to the table of contents of the issue containing the cited article. The

corresponding code is

[in_issue] → * issue.date ⇒ issue.toc;

More generally, the syntax for hyperlinks is as follows:

Extending RMM

21

[relation] → * <anchor> ⇒ <destination>

where <anchor> and <destination> are m-slices.

No matter how complex <anchor> and <destination> are, the * and ⇒

characters tell us immediately that we have a hyperlink.

The anchor “Managing Information about Processes” illustrates another

example of a hyperlink. The title is an attribute of the article, and here it serves as

an anchor to that article’s abstract page. The code is as follows:

[this] → * article.title ⇒ article.abstract;

“ this” is a special relationship, meaning “this same entity instance”. When an

attribute (or m-slice) is of the owner entity, we use this as the relationship. To

simplify the notation, we usually employ a shorthand, omitting the

“ [this] →<entity> .” prefix. Using this shorthand, the code for the title anchor

becomes

* title ⇒ abstract;

The most complex construct in the article.bib_citation m-slice is the list of

authors who wrote the article, which introduces the index construct. An index

consists of two parts, the content to be displayed (an m-slice) and a specification

of the entity instances from which to draw the content. The syntax for an index is

the following:

index begin
relation : <relation name>
content : <m-slice> | <hyperlink>

index end

In this example, it is

index begin
relation : [written_by];
content : * contributor.name ⇒ contributor.info ;

index end ;

Extending RMM

22

Note that the content of this index is a hyperlink from contributor.name to

contributor.info . If the content were the contributor.name m-slice without a

hyperlink, the code would be as follows:

index begin
relation : [written_by];
content : contributor.name;

index end ;

The article.bib_citation m-slice would appear as follows:

and it would not be possible to click on the contributors.

Putting all the pieces together, we have

article.bib_citation : m-slice
begin

[in_journal] → journal.longname ;
* title ⇒ abstract ;
[in_issue] → * issue.date ⇒ issue.toc ;
[in_issue].pages ;
index begin

relation : [written_by];
content : * contributor.name ⇒ contributor.info ;

index end ;
end;

Due to space constraints, the remaining constructs are described in Appendix

B.

Figure 16: article.bib_citation without hyperlink

Extending RMM

23

7. Related Work

The research we presented here is based on the original RMM methodology

introduced by Isakowitz, Stohr and P. Balasubramanian (1995), which describes a

simpler approach to the design of slices. However, as noted earlier, this approach

is limited in many respects, particularly the ability to produce usable screens. More

complex kinds of RMM slices were presented by V. Balasubramanian, Bieber and

Isakowitz (1996), who describe the concepts of minimal and hybrid slices. Minimal

slices act as default anchors for links, thus they are a predecessor of the hyperlink

construct presented here. Hybrid slices aggregate elements from different RMM

elements, in the spirit of m-slices, but cannot be nested. None of these articles,

however, introduces the graphical and programming languages we discuss here.

Garzotto, Paolini, and Schwabe’s HDM data model (1993) and its successor

HDM2 (Garzotto et al., 1996) describe the structure of a database application

domain adequate to support hypermedia access, but provide little support for

building user views. In other words, while they describe an application domain,

they do not facilitate the design and development of applications. RMM builds on

HDM and HDM2 to provide the first full methodology. Lange’s EORM (1996)

and Schwabe and Rossi (1993) have proposed hypermedia design methodologies

based on the object-oriented paradigm. For database domains, RMM has the

advantage of using tools such as E-R diagrams, with which designers are already

familiar.

OOHDM incorporates some of the same functionality as RMM within an

Object Oriented framework. The OOHDM concept of navigational class schema,

presented in detail by Schawbe, Rossi and Barbosa (1996), is similar to the m-

slices described here. Although OOHDM has a programming-like language to

describe navigational class schemas, it lacks a graphical notation. A key difference

is that while m-slices focus on owner entities as the source of the information

needed to populate the application, OOHDM’s navigational class schemas lack a

Extending RMM

24

notion of ownership. Hence, they can be neither easily nested nor re-used via

relationships.

8. SUMMARY

We described the RMM limitations we encountered in developing a web site

(http://www.stern.nyu.edu/jmis). Specifically, these were the inability to define the

content of anchors and the inability to cluster elements from different entities.

These limitations led to the development of some powerful extensions to RMM.

M-slices are a very powerful element of RMM. They allow a precise definition

of information elements to be presented to the user while hiding (a) details - which

are encapsulated in other m-slices, and (b) elements of the user-interface. We

devised a graphical notation and programming language to facilitate the design and

implementation of M-slices. The extensions described in this article prove useful

for the design of and arbitrarily complex hypermedia applications in a rigorous and

structured fashion.

The extensions we provide here have been developed to be consistent with the

RMM process and notation so that they can be seamlessly integrated with existing

hypermedia design software tools such as RM-CASE (Diaz, Isakowitz, Maiorana

and Galliberti, 1995). The m-slice enhancement to RMM can provide the

necessary power and flexibility to RM-CASE necessary for the design of complex

hypermedia applications. At the same time it ensures that the applications are

well-structured and easy to maintain.

Extending RMM

25

REFERENCES

Balasubramanian, V. & Turoff, M. (1995). “A Systematic Approach to User Interface Design
for Hypertext Systems” in Proc. Twenty-Eighth Annual Hawaii International Conference
on System Science (HICSS ‘95). Volume III, 241-250.

Balasubramanian, V., Bieber, M.P. and Isakowitz T. (1996). “Systematic Hypermedia Design.”
CRIS Working Paper series. Stern School of Business, NYU.

Bieber, M., & Kacmar, C.J. (1995). “Designing Hypertext Support for Computational
Applications”. Communications of the ACM, 38(8), 99-107.

Bieber, M., & Kimbrough, S.O. (1992). “On Generalizing the Concept of Hypertext”.
Management Information Systems Quarterly, 16(1), 77-93.

Diaz, A., Isakowitz, T., Maiorana V. and Gilabert G. (1995). RMCase: “A Tool To Design
WWW Applications”. World Wide Web Journal, Vol. 1, No. 1, 1995, pp. 559-566.

Elmasri, R., & Navathe, S. (1990). Fundamentals of Database Systems. Second Edition.
Benjamin/Cummings Publishing Company,.

Garzotto, F., Mainetti, L., & Paolini, P. (1996). “Navigation in Hypermedia Applications:
Modelling and Semantics”. Journal of Organizational Computing and Electronic
Commerce, Vol. 6, No. 3, 1996, pp. 211-238.

Garzotto, F., Paolini, P., & Schwabe, D. (1993). “HDM - A Model-based Approach to
Hypermedia Application Design”. ACM Transactions on Information Systems, 11(1), 1-
26.

Isakowitz, T., Stohr, E., & Balasubramanian, P. (1995). “RMM: A Methodology for the Design
of Structured Hypermedia Applications”. Communications of the ACM, 38(8), 34-44.

Lange, D. B. (1996). “An Object-Oriented Design Approach for Developing Hypermedia
Information Systems”. Journal of Organizational Computing and Electronic Commerce,
Vol. 6, No. 3, 1996, pp. 269-294.

Nanard, J., & Nanard, M. (1995). Hypertext Design Environments and the Hypertext Design
Process. Communications of the ACM, 38(8), 49-56.

Schwabe, D., & Rossi, G. (1995). “Building Hypermedia Applications as Navigational Views of
Information Models” in Proc. The 28th Annual Hawaii International Conference on
System Sciences (HICSS ‘95).

Schwabe, D., Rossi, G., & Barbosa, S.D.J. (1996). “Systematic Hypermedia Application Design
with OOHDM” in Proc. Hypertext '96, 116-128.

Extending RMM

26

Appendix A

slice

Index

entity

slice

Attribute

entity

slice

Attri-
bute

entity

Index

Attri-
bute

entity

M-sl ice

Atribute of other entity

Attr ibute of owner enti ty

Empty sl ice

Index with single attr ibute
anchor

Index with M-sl ice anchor

external l ink

mailto

Relat ionship

Inferred
relationship

Hyperl ink

owner
enti ty

slice
name

Owner Ent i ty

Slice

Video

Aud io

Down load

∀

slice

⊥

Extending RMM

27

Appendix B

Complete Programming Language Specification for M-slices:

The meta-notation for an m-slice is the following:

<m-slice> :== <owner entity> .<slice>

where the slice <slice> belongs to the entity <owner entity> . For example,

article.abstract refers to the slice abstract owned by the entity article. The

notation for defining an m-slice is as follows:

<m-slice>: m-slice
begin

<body>;
end ;

For example, “article.title : m-slice” begins the definition of the slice title

owned by entity article. The entity that owns the slice is called the owner entity. In

the case above, article is the owner entity of the m-slice article.title .

The body of an m-slice is a set, possibly empty, of elements. Each element is

one of

1. attribute or m-slice

2. hyperlink

3. access structure

4. empty slice

(1) ATTRIBUTE OR M-SLICE

An attribute or an m-slice of an entity, denoted as follows:

 <attribute of an entity> :== [relation] → < entity>.<attribute>

Extending RMM

28

 <m-slice of an entity> :== [relation] → <m-slice>

For example, the slice name owned by entity journal accessible from the

defining entity via the relation [in_journal] would be denoted as follows:

[in_journal] → journal.name

When the attribute (or m-slice) is from the owner entity, we use this as the

relation name, as follows:

[this] → article.title

To simplify the notation, we usually employ a shorthand, omitting the

“ [this] →<entity> ” prefix. We thus can write

title

instead of

[this] → article.title

(2) HYPERLINK

A hyperlink consists of an <anchor> and a <destination > . The <anchor>

is an m-slice that becomes the clickable area in the implementation (e.g., on the

WWW). The <destination > is another m-slice. The notation is as follows:

<hyperlink> ::= [relation] → * < anchor > ⇒ < destination >

where <anchor> and <destination> are m-slices and * ⇒ denotes a

hyperlink. For example,

[in_journal] → * journal.name ⇒ journal.toppage

is a hyperlink whose clickable text is the journal name, and whose destination

is the journal’s top page.

Extending RMM

29

(3) ACCESS STRUCTURE

An access structure related to the owner entity via a relationship defined in the

RMM diagram. The index construct is as follows:

index begin
relation ::= [relation]
content ::= <m-slice> | <hyperlink>

index end

For example, the following is the index of contributors in an article:

index begin
source: [written_by] ;
content: * name ⇒ info ;

index end;

The first part, source , defines the entity that provides the index contents and

the relationship that determines which specific entity instances populate the index.

In this case the source entity is contributor and the relationship is written_by .

The second part, content , designates the elements (from the index source entity)

to appear in the index.

(4) EMPTY SLICE

Consider the following index.

This is from the keyword.uses m-slice. It is a placeholder that can be owned

by any entity and it is defined as follows:

∀.keywords_and_phrases : m-slice
begin
end;

Extending RMM

30

It is an empty slice. We use the bottom notation as a shorthand for it, as

follows:

∀.keywords_and_phrases-⊥

Extending RMM

31

Appendix C

The Relationship Management Methodology (RMM) in a Nutshell

The Relationship Management Methodology (RMM) addresses the design and

construction of hypermedia applications. We begin this section by briefly presenting RMM

and its data model, RMDM. A more detailed discussion can be found in (Isakowitz et al.,

1995).

Methodological Steps

RMM consists of the following seven steps, some of which can be conducted in

parallel: (1) Entity-Relationship design: models the information domain and its

relationships, (2) Slice design: how information units are sub-divided for display, (3)

Navigational design: how users will access information, (4) User-Interface Design: how

information will be presented, (5) Protocol Conversion Design: how abstract constructs

are to be transformed into physical-level constructs, e.g., what kind of WWW page

corresponds to an index, (6) Run-time behavior: how to populate the application with

data, and (7) Construction and testing.

Although first presented as a linear methodology RMM was conceived to be flexible

by supporting rapid feedback loops as prescribed in (Nanard and Nanard, 1995). Research

in this direction has been embodied in software design tools presented in (Díaz, Isakowitz,

Maiorana and Gilabert, 1995).

Extending RMM

32

The RMDM Data Model

The Relationship Management Data Model (RMDM) is the cornerstone of the RMM

methodology. Figure 17 presents its elements. RMDM includes elements for representing

information domain concepts (such as entities and relationships), and navigation

mechanisms (such as links). An application’s design is described via an RMDM diagram.

The RMDM model is based on the Entity-Relationship model (Elmasri and Navathe,

1990), and on HDM (Garzotto, Paolini and Schwabe 1993) and HDM2 (Garzotto,

Mainetti and Paolini 1996).

Because entities may have a large number of attributes of a different nature (e.g.,

salary information, biographical data, photograph), it may be impractical or undesirable to

present all the attributes of an entity instance in one screen. Thus, RMM groups attributes

into slices (the symbol for a slice resembles a pizza slice).

Extending RMM

33

Figure 17: The elements of the RMM Data Model (RMDM)

RMDM specifies navigation via the six access primitives at the bottom of Figure 17.

RMDM’s most significant access structures are indices, guided tours, indexed guided

tours and groupings. An index acts as a table of contents. A guided tour implements a

linear path through a collection of items allowing the user to move forwards or backwards

on the path. Indexed guided tours combine the functionality of indices and guided tours.

Logical conditions qualify these access structures. For example, a condition “type=panel”

attached to an index into a conference_event entity denotes an index to panels from that

Extending RMM

34

conference. The grouping mechanism serves as a major access gateway to other parts of

the system, as often found on many applications’ home pages or initial screens.

