
60 1094-7167/01/$10.00 © 2001 IEEE IEEE INTELLIGENT SYSTEMS

T h e S e m a n t i c W e b

Creating Semantic
Web Contents with
Protégé-2000
Natalya F. Noy, Michael Sintek, Stefan Decker, Monica Crubézy, Ray W. Fergerson, and
Mark A. Musen, Stanford University

Because we can process only a tiny fraction of information available on the Web,

we must turn to machines for help in processing and analyzing its contents. With

current technology, machines cannot understand and interpret the meaning of the infor-

mation in natural-language form, which is how most Web information is represented

today. We need a Semantic Web to express informa-
tion in a precise, machine-interpretable form, so soft-
ware agents processing the same set of data share an
understanding of what the terms describing the data
mean.1

Consequently, we’ve recently seen an explosion
in the number of Semantic Web languages devel-
oped. Because researchers and developers haven’t
yet reached a consensus on which language is the
most suitable, which features each language must
have, or which syntax is the most appropriate, we are
likely to see even more languages emerge. We need
to develop tools that will let us experiment with these
new languages so we can compare their expressive-
ness and features, change language specifications,
and select a suitable language for a specific task.

In this article, we describe Protégé-2000, a graph-
ical tool for ontology editing and knowledge acqui-
sition that we can adapt to enable conceptual model-
ing with new and evolving Semantic Web languages.
Protégé-2000 lets us think about domain models at a
conceptual level without having to know the syntax
of the language ultimately used on the Web. We can
concentrate on the concepts and relationships in the
domain and the facts about them that we need to
express. For example, if we are developing an ontol-
ogy of wines, food, and appropriate wine–food com-
binations, we can focus on Bordeaux and lamb
instead of markup tags and correct syntax.

Naturally, designing a new tool specifically for a
new language could be better than adapting an exist-
ing tool. We can offer several reasons, however, for

adapting an existing tool at the stage where no sin-
gle language has emerged as the winner. First, we
can experiment with emerging languages without
committing enormous amounts of resources to cre-
ating tools that are custom-tailored for these lan-
guages—only to decide later that the languages are
not suitable. Second, Protégé-2000 already provides
considerable functionality that a new tool will need
to replicate, both at the modeling and user-interface
levels. Third, using different customizations of the
same tool to edit ontologies in different languages
gives us most of the translation among the models
in the languages “for free.” Translating a model from
one language to another becomes as easy as select-
ing a “save as…” item from a menu.

Semantic Web languages
AI researchers have used ontologies for a long

time to express formally a shared understanding of
information. An ontology is an explicit specification
of the concepts in a domain and the relations among
them, which provides a formal vocabulary for infor-
mation exchange. Specific instances of the concepts
defined in the ontologies—instance data—paired
with ontologies constitute the basis of the Semantic
Web. In recent experiments to prototype the Seman-
tic Web, members of different communities with dif-
ferent backgrounds and goals in mind have created
a multitude of languages for representing ontologies
and instance data on the Web (see Table1). Typically,
a Semantic Web language for describing ontologies
and instance data contains a hierarchical description

As researchers continue

to create new languages

in the hope of developing

a Semantic Web, they still

lack consensus on a

standard. The authors

describe how Protégé-

2000—a tool for

ontology development

and knowledge

acquisition—can be

adapted for editing

models in different

Semantic Web

languages.

of important concepts in a domain (classes).
Individuals in the domain are instancesof
these classes, and properties (slots) of each
class describe various features and attributes
of the concept. Logical statements describe
relations among concepts. For example, con-
sider an ontology describing wines, food, and
appropriate wine–food combinations. Some
of the classes describing this domain are Wine,
Wineries, and different types of Food. Some
properties of the Wine class include the wine’s
flavor, body, sugar level, and the winery that pro-
duced it.

These notions are present in many Seman-
tic Web languages existing today including
SHOE, Topic Maps, XOL, RDF and RDFS,
and DAML+OIL.

The SHOE (Simple HTML Ontology
Extensions) language, developed at the Uni-
versity of Maryland, introduces primitives to
define ontology and instance data on Web
pages. Classes are called categoriesin SHOE.
Categories constitute a simple is-ahierarchy,
and slots are binary relations. SHOE also
allows relations among instances or instances
and data to have any number of arguments
(not just binary relations). Horn clauses
express intensional definitions in SHOE.

The Hytime community developed Topic
Maps, a recent ISO standard (ISO/IEC
13250). Topic Maps aim to annotate docu-
ments with conceptual information. Topics
correspond to classes in other ontology lan-
guages and can be linked to documents. Top-
ics are instances of Topic Types(other topics),
which can be related to one another with Asso-
ciations. Associations correspond closely to
slots in other ontology languages. Associa-
tions belong to Association Types, which are
again Topics. Topic Maps do not have a spe-
cialized primitive for representing instances.
Any instance of a topic type can act as a topic
type itself.

The bioinformatics community designed
XOL for the exchange of ontologies in the
field of bioinformatics. It evolved to become
a general language for interchange of ontol-
ogy and instance data. Being an interchange
language, XOL includes primitives found in
many knowledge-representation systems,
object databases, and relational databases. It
provides means to define classes, a class hier-
archy, slots, facets, and instances.

RDF (Resource Description Framework)
provides a graph-based data model, consist-
ing of nodes and edges. Nodes correspond to

objects or resourcesand the edges to prop-
erties of these objects. The labels on the
nodes and edges are Uniform Resource Iden-
tifiers (URIs). However, RDF itself does not
define any primitives for creating ontologies.
It is the basis for several other ontology-def-
inition languages such as RDFS and
DAML+OIL.

RDF Schema2 defines the primitives for
creating ontologies. Figure 1 shows an exam-
ple of a graph representing our ontology of
wines as an RDFS. In RDFS, there are
classes of concepts, which constitute a hier-
archy with multiple inheritance. For exam-
ple, the class Wine is a subclass of the class
Drink. Classes typically have instances (for
example, a specific red wine is an instance
of the Red Wine class) and a resource can be an
instance of more than one class (for exam-
ple,Romariz Port is an instance of both the Red
Wine and the Dessert Wine classes). Resources
have properties associated with them (for
example,Wine has flavor). Properties describe
attributes of a resource or a relation of a
resource to another resource. RDFS defines
a property’s domain—resources that can be
subjects of the property—and a property’s
range—resources that can be objects of the

MARCH/APRIL 2001 computer.org/intelligent 61

Table 1. A selection of Semantic Web languages.

Language Description URL

XOL XML-based ontology-exchange language www.ai.sri.com/~pkarp/xol

Topic Maps ISO standard for describing knowledge structures www.topicmaps.org

SHOE Simple HTML Ontology Extensions www.cs.umd.edu/projects/plus/SHOE

RDF and Resource Description Framework and www.w3.org/RDF
RDFS RDF Schema

DAML+OIL DARPA Agent Markup Language + www.daml.org
Ontology Inference Layer

rdf:type

rdfs:subClassOf

rdfs:subClassOf

rdf:type

rdf:type
rdf:type rdf:type rdf:type

rdf:type

rdf:type

rdf:type

rdf:type

rdfs:range
rdfs:range

rdfs:subClassOf

rdfs:subClassOf rdfs:subClassOf

rdfs:domain

rdfs:domain

rdf:Property

d:White_wine d:Dessert_wine

d:Drink d:maker

d:grape

rdfs:Class

d:Wine

d:Winery

d:Red_wine d:Rose_wine

d:Wine_grape

Figure 1. An RDF Schema graph representing the Wine ontology.

property. For example, the property maker
may have a class Wine as its domain and a
class Winery as its range.

DAML+OIL (DARPA Agent Markup lan-
guage + Ontology Inference Layer)3 takes a
different approach to defining classes and
instances. In addition to defining classes and
instances declaratively, DAML+OIL and
other description-logics languages let us cre-
ate intensional class definitions using Boolean
expressions and specify necessary, or neces-
sary and sufficient, conditions for class mem-
bership. These languages rely on inference
engines (classifiers) to compute a class hier-
archy and to determine class membership of
instances based on the properties of classes
and instances. For example, we can define a
class of Bordeaux wines as “a class of wines
produced by a winery in the Bordeaux region.”
In DAML+OIL, we can also specify global
properties of classes and slots. For example,
we can say that the location slot is transitive: if
a winery is located in the Bordeaux region and
the Bordeaux region is located in France, then
the winery is in France. We will describe
DAML+OIL in more detail later.

We can see from this discussion that
Semantic Web languages for representing
ontologies and instance data have many fea-
tures in common. At the same time, there are
significant differences stemming from dif-
ferent design goals for the languages. In
adapting Protégé-2000 as an editor for these
languages, we build on the similarities
among them and custom-tailor the tool to
account for the individual differences.

Protégé-2000
For many years now, experts in domains

such as medicine and manufacturing have
used Protégé-2000 for domain modeling. We
show not only how we adapt Protégé-2000
to the new world of the Semantic Web—
reusing its user interface, internal represen-
tation, and framework—but also how our
changes enable conceptual modeling with the
new Semantic Web languages.

Protégé-2000 is highly customizable,
which makes its adaptation as an editor for a
new language faster than creating a new edi-
tor from scratch. The following features
make this customization possible:

• An extensible knowledge model.We can
redefine declaratively the representational
primitives the system uses.

• A customizable output file format. We can
implement Protégé-2000 components that
translate from the Protégé-2000 internal
representation to a text representation in
any formal language.

• A customizable user interface.We can
replace Protégé-2000 user-interface com-
ponents for displaying and acquiring data
with new components that fit the new lan-
guage better.

• An extensible architecture that enables
integration with other applications. We
can connect Protégé-2000 directly to
external semantic modules, such as spe-
cific reasoning engines operating on the
models in the new language.

Protégé-2000 knowledge model
Protégé-2000’s representational primi-

tives—the elements of its knowledge
model4—are very similar to those of the
Semantic Web languages that we described
earlier. Protégé-2000 has classes, instances

62 computer.org/intelligent IEEE INTELLIGENT SYSTEMS

T h e S e m a n t i c W e b

The tabs representing different
views of a knowledge base and the

configuration information

The class hiearchy The slot definition

The facets

Figure 2. A snapshot of the ontology representing wines. The tree on the left represents a class hierarchy. The form on the right
shows the definition of the Wine class.

of these classes, slots representing attributes
of classes and instances, and facets express-
ing additional information about slots.

Figure 2 shows an example definition of a
class, which is part of an ontology describing
wines, food, and desirable wine–food com-
binations. In the figure, the tree on the left
represents a class hierarchy. The class of Pauil-
lac wines, for instance, is a subclass of the
class of Médoc wines. In other words, each
Pauillac wine is a Médoc wine. The class of Médoc
wines is, in turn, a subclass of Red Bordeaux
wines and so on. The form on the right in Fig-
ure 2 represents the definition of the selected
class (Wine). There is the name of the class,
its documentation, a list of possible con-
straints, and definitions of slots that the
instances of this class will have. Instances of
the class Wine will have slots describing their
flavor, body, sugar level, the winery that produced
the wine, and so on.

The form in Figure 3 displays an instance
of the class Pauillac representing Château Lafite
Rothschild Pauillac, and the fields display the slot
values for that instance. Therefore, we know
that Château Lafite Rothschild Pauillac has a
full body and strong flavor among other
properties. Both the class-definition forms
(the right-hand side in Figure 2) and the
instance-definition forms (Figure 3) are
knowledge-acquisition formsin Protégé-
2000. The fields on the knowledge-acquisi-
tion forms correspond to slot values, and we
define classes and instances by filling in slot
values in these fields. Protégé-2000 gener-
ates knowledge-acquisition forms automati-
cally based on the types of the slots and
restrictions on their values.

The Protégé-2000 user interface (Figure
2) consists of several tabsfor editing differ-
ent elements of a knowledge base and cus-
tom tailoring the layout of the knowledge-
acquisition forms, such as the forms in
Figures 2 and 3. The Classes tab defines
classes and slots, and the Instances tab
acquires specific instances. The Forms tab
allows us to change the layout and the con-
tents of the knowledge-acquisition forms.

We can customize almost all of the Pro-
tégé-2000 features we have described to fit
a specific domain or task by

• changing declaratively the standard class
and slot definitions;

• changing the content and the layout of the
knowledge-acquisition forms; and

• developing plug-ins using the Protégé-
2000 application-programming interface.5

Let’s look at how we can customize Pro-
tégé-2000 and then see how we can use this
flexibility to create Protégé-based editors for
new Semantic Web languages.

Changing the notion of classes
and slots

The definition of the Wine class in Figure 2
is a standard class definition in Protégé-2000,
with a class name, documentation, list of
slots, and so on. What if we need to add more
attributes to a class definition, or change how
a class looks, or change the default definition
of a class in the system? For instance, we
might want to add a list of a few best winer-
ies for each type of wine in the hierarchy.
Such a list is a property of a class (such as
Pauillac wines) rather than a property of spe-
cific instances of the class (such as Château
Lafite Rothschild Pauillac). The list of the best
wineries for a class is not inherited by its sub-
classes: The best wineries producing red Bor-
deaux are not necessarily the same as the best
Médoc or Pauillac wineries (although, they
may overlap). Therefore, this list must
become a part of a class definition the same
way as documentation is a part of a class def-
inition. The Protégé-2000 metaclassarchi-
tecture lets us do just that.4,5

Metaclassesare templates for classes in
the same way that classes are templates for
instances. We can define our own meta-
classes and effectively change a definition of
what a class is, in the same way we would
define a new class. The default Protégé-2000
template (the standard metaclass) defines the
fields that we see in Figure 2. We can extend
declaratively this standard definition of what

a class is with new fields of any type by
defining a new metaclass, which simply
becomes a part of the knowledge base. Fig-
ure 4 shows a definition of the Red Bordeaux
class that includes the additional field with a
list of the best Bordeaux wineries.

Similarly, we can define new metaslotsas
user-defined templates for new slots. If slot
definitions in our system must have fields in
addition to the ones that Protégé-2000 has,
we simply define new templates where we
describe these new fields.

Custom-tailoring slot widgets for
value acquisition

The look and behavior of the fields on the
knowledge-acquisition forms in Figures 2
and 3 depend on the types of the values that
the fields can take. A field for a string value,
such as a class name, has a simple text win-
dow. A field that contains a list of complex
values is a list box with buttons to add and
remove values and to create new values.
These fields are called slot widgets. They not
only display the values appropriately, but also
help to ensure that the values are correct
based on the slot definitions in the ontology.
For example, the maker of a wine must be a
winery—an instance of the Winery class. The
slot widget for the maker slot in Figure 3 lets
us set the value only to a Winery instance.

Developers can extend Protégé-2000 by
implementing their own slot widgets that are
tailored to acquire and verify particular kinds
of values. Suppose we wanted to be more
precise about the sugar level in wine and to
mark it on a scale rather than simply choos-
ing among three values—dry, sweet, or off-dry.

MARCH/APRIL 2001 computer.org/intelligent 63

Figure 3. An instance of the class Pauillac representing the Château Lafite Rothschild Pauillac. This
wine has a full body, a strong flavor, and a moderate tannin level, among other properties.

We could store the value as a number in the
sugar slot. We could use a slot widget that
would let us select the value on a slider rather
than enter a number (see Figure 5). When we
customize knowledge-acquisition forms, we
choose not only the layout of the fields on
the form, but also the slot widgets that must
be used for different fields. The slot widgets
we choose do not usually affect the contents
of the knowledge base itself, but their use can
make the look and feel of the tool much more
suitable for a particular domain or language.
Slot widgets also can help ensure the internal
consistency of a knowledge base by check-
ing, for example, that an integer value that
we enter is between the allowed maximum
and minimum for that slot.

Using a back-end plug-in to
generate the right output

When we develop a domain model in Pro-
tégé-2000, we do not need to think about the
specific file format that Protégé-2000 will use

to save our work. We think about our domain
at the conceptual level and create classes, slots,
facets, and instances using the graphical user
interface. Protégé-2000 then saves the result-
ing domain models in its own file format.
Developers can change this file format in the
same way they plug in slot widgets. Back-end
plug-ins let developers substitute the Protégé-
2000 text file format with any other file for-
mat. For example, suppose we wanted to use
XML to publish the wine ontology and other
domain models we create using Protégé-2000.
We would then need to create an XML back
end that substitutes files in the Protégé-2000
format with the files in XML. A back end cre-
ates a mapping between the in-memory rep-
resentation of a Protégé-2000 knowledge base
and the file output in the required format. The
back end also enables us to import the files in
that format into Protégé-2000. The new file
format has the same status as the Protégé-2000
native file format, and the users can choose
either format for their files.

Editing Semantic Web languages
with Protégé-2000

Armed with the arsenal of tools to custom-
tailor Protégé-2000 quickly and easily, let’s
look at what is involved in creating a Protégé-
2000 editor for a new Semantic Web language.
We will use the Protégé-RDFS editor devel-
oped in our laboratory as an example, but the
ideas are the same for any new language.

We start creating a Protégé-2000 editor for
our new language by determining the differ-
ences between the knowledge models of the
two languages: the knowledge model of Pro-
tégé-2000 and the knowledge model under-
lying our language of choice. We then decide
which of the available tools—metaclasses,
custom user-interface components, or a cus-
tom back end—we will use to reconcile the
differences or to hide them from the user.

In practice, the overlap between the knowl-
edge models underlying the Semantic Web
languages available today is very large. The
models might use different terminology for

64 computer.org/intelligent IEEE INTELLIGENT SYSTEMS

T h e S e m a n t i c W e b

The field in the
 new template

Figure 4. A class definition that uses a nonstandard template. We added the best wineries slot to the standard class-definition template.

the same notion (for example,slotsin Pro-
tégé-2000 and propertiesin RDFS). How-
ever, the structure of the concepts, the under-
lying semantics, and the restrictions are often
similar.

When we compare the two knowledge
models, we identify four categories of con-
cepts (see Figure 6):

1. Concepts that are exactly the same in the
two languages (possibly with different
names). Usually, classes, inheritance,
instances, slots as properties of classes and
instances, and many of the slot restrictions
fall into this category.

2. Concepts that are the same but expressed
differently in the two languages. For
example, Protégé-2000 associates slots
with classes by attaching a slot to a class.
RDFS defines essentially the same rela-
tionship by defining a domain of a property.

3. Concepts in our language of choice that
do not have an equivalent in Protégé-2000.
For example, RDFS allows an instance to
have more than one type, whereas in Pro-
tégé-2000 each instance has a unique direct
type.

4. Concepts that Protégé-2000 supports and
our language of choice does not. For exam-
ple, Protégé-2000 allows a slot to have

more than one allowed class for its values,
whereas the range of a property in RDFS
is limited to a single class.

Naturally, we can express all the features
of our language that fall into the first category
directly in Protégé-2000. We deal with the dif-
ferences in the other three categories by defin-
ing appropriate metaclasses and metaslots and
by resolving the remaining changes in the
back end. We hide the differences from the
user behind custom-tailored slot widgets.

The second item on the list, the concepts
that do not have a direct equivalent in Protégé-
2000 but that can be mapped to native Pro-
tégé-2000 concepts, deserves a special dis-
cussion. Consider domains of properties in
RDFS (rdfs:domain). A domain specifies a class
on which a property might be used. For exam-
ple, the domain of the flavor property is the Wine
class. Protégé-2000 slots are similar to prop-
erties in RDFS. Attaching a slot to a class in
Protégé-2000 also specifies that a slot can be
used with that class. For example, the flavor slot

MARCH/APRIL 2001 computer.org/intelligent 65

A slider widget for
numeric values

Figure 5. Changing a slot widget. We use a slider instead of a simple field to acquire
numeric values for the sugar level.

(2) Concepts that can be
encoded as native Protégé

concepts

(1) Concepts
that are identical

semantically

(3) Concepts that do not
have an equivalent
in native Protégé

(4) Concepts in Protégé that
do not have an equivalent

in the language

Use native
Protégé concepts

Use Protégé
concepts directly

Use metaclasses and
metaslots to encode

the information

Use custom labels and
slot widgets to hide

the differences

Back end

Use custom slot widgets
to facilitate

knowledge entry

Use knowledge-acquisition
forms to disable

the features

Map between the model in
Protégé and the model

required by the language

Map directly into
the model required

by the language

Modeling

User interface

Map between the model in
Protégé and the model

required by the language

Define the means of storing
the information in the

language format

The new language3

1

2

4 Protégé-2000

Figure 6. Comparing the knowledge models of Protégé-2000 and a new Semantic Web language.

is attached to the Wine class. We have two ways
to encode the RDFS domain information in a
Protégé-RDFS editor. First, we can add a
domain slot to a template (metaslot) that we will
use for all our slots. Then, a field for domain
will appear on each form for a slot, and we
will fill it in there. Second, we can simply use
the native Protégé-2000 notion of slot attach-
ment and translate the attachments of slots to
classes into domains of properties in the back
end. The second solution lets us use the Pro-
tégé-2000 user interface directly and hides the
features of a specific language used to store
the information.

We find it extremely beneficial to adopt the
paradigm of using the native Protégé-2000 fea-
tures wherever possible and of resorting to
additional definitions, such as metaclasses and
metaslots, only when absolutely necessary.
This approach maximally facilitates the
exchange of domain models among different
languages, which we edit (or will edit) with
Protégé-2000. As new languages emerge and
we experiment with them, the knowledge mod-
els underlying these languages will undoubt-
edly overlap. By encoding as much as possible
in the native Protégé-2000 structures and leav-
ing part of the translation between the Protégé-
2000 model and the language to the back end,
we maximize the amount of information that
we will preserve by simply loading a knowl-
edge base in one language supported by Pro-
tégé-2000 and saving it to another language.
Even though there would often be some parts

of these models that will not be part of this
overlap, we are maximizing the amount of
information that gets ported among models in
different languages for free.

Having generated the four groups of con-
cepts after comparing the two knowledge
models (see Figure 6), we can reconcile the
differences using

1. modeling—by changing default defini-
tions of classes and slots at the modeling
level;

2. the user interface—by developing spe-
cialized user-interface components; and

3. the back end—by implementing the new
back end that will translate between the
domain model in Protégé-2000 and the
domain model in our language of choice.

Let’s look at how each of these three lev-
els works using the development of a Pro-
tégé-based RDFS editor as an example (see
Table 2 for a summary of the entire process).

The modeling level
We start by determining which concepts in

our language of choice are identical to Protégé-
2000 concepts or that can be represented using
the native Protégé-2000 concepts. We use the
native Protégé-2000 as a means to model this
group of concepts, even if it is not how these
elements are directly expressed in our lan-
guage. We then define the new templates for
class and slot definitions if necessary.

Consider, for example, the two attrib-
utes—rdfs:seeAlso and rdfs:isDefinedBy—that are
associated with each class and each property
in RDFS. The rdfs:seeAlso property specifies
another resource containing information
about the subject resource, and the rdfs:isDe-
finedBy property indicates the resource defin-
ing the subject resource. The values of these
properties are other resources or URIs point-
ing to other resources. We must add these two
fields that the Protégé-2000 itself does not
have to each class and slot form in our knowl-
edge base. To add these fields, we define a
new metaclass that will serve as a template
for RDFS classes. This metaclass is, in fact,
equivalent to the RDFS class rdfs:Class. Figure
7 shows the definition of rdfs:Class with the new
template slots that will appear on each class
form that uses this template.

The user-interface level
When creating a Protégé-based editor for a

new language, we can change both the behav-
ior and the look and feel of the knowledge-
acquisition forms to reflect the terminology
and the features of the language. First, we can
change the labels on the forms—the simplest
type of customization. For example, we can
easily replace Protégé’s “Template slots”
label in a class definition with the RDFS
“Properties” label to give the form an RDFS
look. Other elements that we can easily con-
figure by manipulating the forms include
whether or not a field should be visible to the

66 computer.org/intelligent IEEE INTELLIGENT SYSTEMS

T h e S e m a n t i c W e b

Table 2. Creating the Protégé-based RDFS editor.

Category (1) Concepts in RDFS (2) Concepts in RDFS (3) Concepts in RDFS (4) Concepts in Protégé
that are (nearly) identical that can be encoded that do not have an that do not have
to Protégé concepts as native Protégé concepts equivalent in native Protégé an equivalent in RDFS

Modeling rdfs:Class = :STANDARD-CLASS Do not use explicit rdfs:domain and rdfs:Class is a default for Cardinality, inverse slot,
rdfs:subClassOf = rdfs:range for properties; rdfs: metaclass, and rdf:Property is a and default value facets;

subclass of domain encoded as slot attachment; default metaslot; add properties multiple allowed classes
rdf:type = instance of rdfs:range encoded as allowed class rdfs:isDefinedBy, rdfs:seeAlso for a slot
rdf:Property = Instance-typed slots as core slots; add

:STANDARD-SLOT rdfs:ConstraintProperty and
rdfs:subPropertyOf = rdfs:ConstraintResource as

subslot of core classes; multiple types of
rdfs:Resource = :THING an instance
rdf:comment =

:DOCUMENTATION

User Custom labels on class Plug-in URI slot widget for Disable default-value and
interface and slots forms (for validating URI-type slots. inverse-slot widgets on

example, “Properties” slot forms.
and “Comment”)

Back end Map Protégé concepts Translate slot attachments On import, create new class Write out extra facet information
directly to RDFS concepts as rdfs:domain for as a subclass of the multiple as Protégé-specific properties

properties and allowed types. on properties. If a slot has
classes as rdfs:range multiple allowed classes, create

a new class for rdfs:range
value. On import, do the reverse.

user, the buttons on the fields, the position and
size of the fields, and the slot widgets to be
used for each field. We perform this configu-
ration entirely in the Protégé-2000 Forms tab
and not in the programming code.

We could also develop our own slot-wid-
get plug-ins to allow editing and verification
of elements that are unique to our language.
For example, a URI widget in the Protégé-
RDF editor can validate that the user has
entered a correct URI or even take the user
to the corresponding Web page.

Disabling fields for some slots on the form
prevents the user from exercising Protégé-
2000 features that the particular Semantic Web
language does not support. For example, we
can disable the field for entering default slot
values in the Protégé-RDFS editor, because
RDFS does not support default values.

The back-end level
Whatever the differences between Protégé-

2000 and our language that we could not
resolve at the modeling and user-interface lev-
els, we will need to reconcile in the module
that saves the internal Protégé-2000 repre-

sentation in the required output file format—
the back-end plug-in. The back-end plug-in

1. saves a Protégé-2000 knowledge base in
a file format that conforms to the syntax
of our language of choice;

2. maps the elements of the Protégé-2000
knowledge base that do not have a direct
equivalent in our language to the appro-
priate set of elements in this language; and

3. imports domain models in this language
that were developed elsewhere for edit-
ing in Protégé-2000.

Usually, when developers define a lan-
guage with a new syntax, they quickly imple-
ment a parser that allows developers to read
and write files in that language’s syntax.
Many of the new languages are extensions of
XML or RDF, and thus we can often use the
existing XML and RDF parsers to take care
of the syntactic part of adapting to the new
language.

In RDFS, the back end must deal with a
number of issues that we did not resolve at
the modeling level or in the user interface. We

might have resolved some of these issues
there, but it would have unnecessarily com-
plicated the editor for the user. For example,
instances in Protégé-2000 are of a single
class, whereas in RDFS they can be direct
instances of several classes (for example, they
have several direct types). Because the RDFS
model is more general, we have no problem
in saving a Protégé-2000 knowledge base in
RDFS. However, when we import RDFS
instance data into Protégé-2000, we must deal
with instances that have several direct types.
Suppose we have a class for red wines and a
class for dessert wines. We have Romariz Port as
an instance of both classes in RDFS. When
we import this RDFS instance data into Pro-
tégé-2000, the back end can create a new class
that is a subclass of both classes (for exam-
ple, denoting a concept of dessert red wines)
and make the Romariz Port instance an instance
of this new class. We can record the two orig-
inal classes of Romariz Port as additional slots
on the newly created class (as shown in Fig-
ure 4). When saving back to RDFS, the back
end can extract the information from this slot,
thus preserving the original model.

MARCH/APRIL 2001 computer.org/intelligent 67

The additional slots
defining RFDS-specific

properties

Figure 7. A template definition for classes in RDFS. The class rdfs:Class inherits most of the slots from the standard class template, but
the two slots at the top of the list of properties are the ones that we defined for RDFS.

Any user-defined back end has the same
status as all the other back ends, including
the ones that are part of the core Protégé-
2000 system: it can be used as a storage for-
mat for Protégé-2000 knowledge bases.
Therefore, there is another, no less impor-
tant, goal of a back-end plug-in: to ensure
that when we create a knowledge base in Pro-
tégé-2000, save it using the back-end plug-in,
and load it again, we have preserved all the
information. Hence, we must find a way to
store the elements that Protégé-2000 sup-
ports, but that our language of choice does
not. Most Semantic Web languages are flex-
ible enough to easily store this information.
For example, in RDFS, we simply add new
Protégé-specific properties to slots to record
default values, which RDFS does not have.
These properties have no meaning to another
RDFS agent, but if we read the knowledge

base back in Protégé-2000, we will have the
default values preserved.

Creating new tabs to include
other semantic modules

In addition to creating a Protégé-based
editor for a new Semantic Web language,
developers can plug in other applications in
the knowledge-base–editing environment. In
addition to the standard tabsthat constitute
the Protégé-2000 user interface (Figures 2
and 4), developers can create tab plug-insin
the same way they can plug in new slot wid-
gets. These tabs can include arbitrary appli-
cations that benefit from the live connection
to the knowledge base. These applications
then become an integral part of the knowl-
edge-base–editing environment.

Consider our wine example again. Having
created a knowledge base of wines and food

and the appropriate combinations, we might
want to build an application that produces
wine suggestions for a meal course in a restau-
rant. Such an application would actively use
the data in the knowledge base but it would
also implement its own reasoning mechanism
to analyze suggestions. We can implement this
wine-selection application as a tab plug-in.

In practical terms, a tab plug-in is a sepa-
rate application, a developer’s own user-
interface space from which the developer can
connect to, query, and update the current Pro-
tégé-2000 knowledge base.

In the realm of the Semantic Web, a tab
can include any applications that would help
us acquire or annotate the knowledge base.
Such applications can

• enable direct annotation of HTML pages
with semantic elements;

68 computer.org/intelligent IEEE INTELLIGENT SYSTEMS

T h e S e m a n t i c W e b

Auxilliary core
classes

Figure 8. The definition for the spicy-red-meat-course class in the Protégé-OIL editor. In addition to the standard fields, such as those
shown in Figure 2), we have OIL-specific fields such as hasPropertyRestriction and subClassOf for specifying complex class expressions.
These slots use the OIL-specific slot widget to display expressions. The tree on the left contains the auxiliary core classes we
defined for OIL.

• provide connection to external reasoning
and inference resources;

• acquire the semantic data automatically
from text; and

• present a graphical view of a set of inter-
related resources.

Using Protégé to edit DAML+OIL
DAML+OIL, the Semantic Web language

that was heavily inspired by research in
description logics (DL), allows more types
of concept definitions in ontologies than Pro-
tégé-2000 and RDFS do. The DL-inspired
languages usually include the following fea-
tures in addition to the ones found in the tra-
ditional frame-based languages:

• We can specify not only necessarybut also
sufficientconditions for class membership.
For example, if a wine is produced by a
winery from the Bordeaux region, it is a
Bordeaux wine.

• We can use arbitrary Boolean expressions
in class and slot definitions to specify
superclasses of a class, domain and range
of a slot, and so on. For example, a spicy
red-meat course must contain red meat and
must contain food that is itself spicy or
food containing something that is spicy.

• We can specify global slot properties. For
example,location is a transitiveproperty: if
the Château Lafite Rothschild winery is in the Bor-
deaux region and the Bordeaux region is in
France, then the Château Lafite Rothschild winery
is in France.

• We can define global axioms that express
additional properties of classes. For exam-
ple, we can say that the classification of
the class of all wines into the subclasses
for red, white, and rosé wines is disjoint:
Each instance of the Wine class belongs
only to one of these subclasses.

We have adapted Protégé-2000 to work as
an OIL editor. (The OIL language is a pre-
cursor for DAML+OIL.) In doing so, we fol-
lowed the same steps we described in creat-
ing the Protégé-based RDFS editor. In
addition, we have integrated external services
for OIL ontologies into Protégé-2000. Inte-
grating DAML+OIL would require nearly
identical steps.

The modeling level
We introduce the new class and slot tem-

plates,OilClass and OilProperty, to specify com-
plex class and slot definitions. As a result, a

class template, for example, acquires these
three new fields (see Figure 8):

1. type—to specify whether the class defin-
ition contains only necessary or both
necessary and sufficient conditions for
class membership;

2. hasPropertyRestriction—to specify complex
expressions for slot restrictions; and

3. subclassOf—to specify complex expres-
sions describing the position of the class
in the class hierarchy.

To integrate OIL into Protégé-2000, we used
the names from the RDFS serialization syntax
of (Standard-)OIL and not the plain ASCII ver-
sion. See www.ontoknowledge.org/oil/ for the
various syntaxes and versions.

Just as for RDFS, we use as many native
Protégé-2000 mechanisms for modeling OIL
ontologies as possible. If a new class is sim-
ply a subclass of several existing classes in
the hierarchy, we use Protégé’s own notion of
subclasses by placing the new class where it
belongs in the hierarchy. However, if a super-
class definition requires boolean expres-
sions—something Protégé-2000 does not
allow—we use the subClassOf field that we see
on the template. Even though Protégé-2000
does not understand the semantics of this
field, we can represent this additional super-
class information declaratively, and then pass
it to a classifier or simply save in OIL.

We use the hasPropertyRestriction field when we
need complex expressions or when we need
to specify existentialslot constraints: Protégé-
2000 allows definition of value-type con-
straints on slots (“All values of this slot must
be instances of this class”). OIL allows exis-
tential slot constraints in addition to the value-
type constraints (“One value of this slot must
come from this class and one value must
come from that class”). We build the complex
expressions declaratively by creating
instances of core auxiliary classes. We can
see some of these core classes in the tree in
Figure 8. In the example, we specify a sub-
class of a meal-course, spicy-red-meat-course, which
we define as “a course that must contain red
meat and must contain food that is itself spicy
or food containing something that is spicy.”

Even though Protégé-2000 does not sup-
port some of the semantics that OIL has, we
can still encode the additional information
declaratively. Protégé-2000 will “ignore” the
information, but it will be able to pass it on
to a classifier or to encode it in OIL so that an
OIL agent can understand it.

The user-interface level
Apart from changing labels and rearrang-

ing fields on the forms for the OilClass and Oil-
Property templates, we created a new slot widget
to allow easier editing of nested expressions
such as the ones representing “food that is
itself spicy or food containing something that
is spicy” in Figure 8. This widget augments
the standard Protégé-2000 widget for select-
ing and creating values for instance-valued
slots with a display of the nested expressions
in a more practical form. A further extension
of this simple but effective slot widget can
include a full context-sensitive, validating
expression editor.

The back-end level
We describe here an OIL back end that pro-

duces the RDFS output for OIL. Therefore,
we can build largely on the existing RDFS
back end. In defining the class and slot names
and the structure of the auxiliary core classes
in the OIL editor, we have mainly adhered to
the RDFS specification of OIL. As a result,
just using the RDFS back end, described ear-
lier, gives us an output that is very close but
not identical to the RDFS OIL output that we
need. Thus, to create the OIL back end, we
started with the existing RDFS back end. We
adapted it to add the parts of definitions spec-
ified by the native Protégé-2000 means to the
complex class expressions.

The OIL back end encodes the concepts
that Protégé-2000 has and OIL does not
(global cardinality restrictions on slots, for
example) by defining additional statements
in a Protégé namespace. An OIL agent will
not understand these statements and will
ignore them, but Protégé-2000 will be able to
extract the necessary information from them.

Because many Semantic Web languages
are in their infancy and already come in many
different versions, there is an alternative
approach to developing specific back ends
for each of these versions. We can create a
general RDF back end for Protégé-2000 and
then use a declarative and easily adaptable
RDF transformation language for generating
the desired outputs. Some research groups
are currently investigating such a back end
and the corresponding RDF transformation
(and query) language.

Accessing external services through
a tab plug-in

The DL languages, such as OIL and
DAML+OIL, traditionally rely on an infer-
ence component—a classifier—to find the

MARCH/APRIL 2001 computer.org/intelligent 69

right position of a class in the class hierar-
chy and to determine which class definitions
are unsatisfiable (cannot have any instances).
Therefore, it is crucial to have a connection
to a DL classifier as part of the environment
for editing OIL and DAML+OIL ontologies.
Having created a set of definitions, we can
invoke the classifier to determine how the
evolving class hierarchy looks. We can see
the effects that changes in class definitions
will have on the evolving hierarchy. We can
immediately check if logical expressions
defining a class contradict one another mak-
ing the class unsatisfiable.

Therefore, in order to create a full-fledged
Protégé-based OIL editor, we need to con-
nect Protégé-2000 to such an inference com-
ponent and present the results to the user. We
implemented this connection as a Protégé-
2000 tab plug-in.

Figure 9 shows the OIL tab in action. Ini-
tially, the class hierarchy has the various meal-
course subclasses as siblings. In addition, we
specify that an oyster-shellfish-course is a meal-
course that has OYSTERS as the value for its FOOD slot;

a shellfish-course is a meal-course that has shellfish
as its food, and so on. We then use the OIL tab
to connect to a DL classifier, FaCT,6 and to
have it rearrange the class hierarchy accord-
ing to the class definitions. In the resulting
hierarchy, the oyster-shellfish-course class, for
example, is correctly classified as being a
subclass of the shellfish-course class.

W ith the advent of the Semantic Web,
the current network of online

resources is expanding from a set of static
documents designed mainly for human con-
sumption to a new Web of dynamic docu-
ments, services, and devices, which software
agents will be able to understand. Develop-
ers will likely create many different repre-
sentation languages to embrace the hetero-
geneous nature of these resources. Some
languages will be used to describe specific
domains of knowledge; others will model
capabilities of services and devices. These

languages will have different emphasis,
scope, and expressive power.

Protégé-2000 provides full-fledged sup-
port for knowledge modeling and acquisi-
tion. Developers also can custom-tailor Pro-
tégé-2000 quickly and easily to be an editor
for a new Semantic Web language. A Pro-
tégé-based editor enables modeling at a con-
ceptual level that allows developers to think
in terms of concepts and relations in the
domain that they are modeling and not in
terms of the syntax of the final output.

By adapting Protégé-2000 to edit a new
Semantic Web language rather than creating
a new editor from scratch or using a text edi-
tor to create ontologies in the new language,
we obtain a graphical, conceptual-level
ontology editor and knowledge-acquisition
tool. We get a new editor to experiment with
the new language without investing many
resources into it. And we can use Protégé-
2000 as an interchange moduleto translate
most of the models in other Semantic-Web
languages into our new language and vice
versa. In our experience, it takes a few days

70 computer.org/intelligent IEEE INTELLIGENT SYSTEMS

T h e S e m a n t i c W e b

OIL tab plugin

Figure 9. Tab plug-in for classification of OIL ontologies. On the right, we see a hierarchy of meal courses before classification. The
middle pane shows interactions with the FaCT classifier. The hierarchy on the right is the one that the classifier computed.

to adapt Protégé-2000 to a new Semantic-
Web language—a lot less time than is
required to create any sophisticated software
from scratch. We were able to create these
editors even for a language like OIL, which
takes a knowledge-modeling approach that
is different from the frame-based approach
for which Protégé originally was designed.
The extensible and flexible knowledge model
and the open plug-in architecture of Protégé-
2000 constitute the basis for developing a
suite of conceptual-level editors for Seman-
tic Web languages.

Acknowledgments
For more information about the Protégé project,

please visit http://protege.stanford.edu. A grant
from Spawar, a grant from FastTrack Systems, and
the DARPA DAML program supported this work.

References

1. T. Berners-Lee, M. Fischetti, and M. Der-
touzos, Weaving the Web: The Original
Design and Ultimate Destiny of the World
Wide Web by its Inventor, Harper, San Fran-
cisco, 1999.

2. D. Brickley and R.V. Guha, “Resource
Description Framework (RDF) Schema Spec-
ification,” World Wide Web Consortium, Pro-
posed Recommendation 1999, www.w3.
org/TR/2000/CR-rdf-schema-20000327 (cur-
rent 28 Mar. 2001).

3. J. Hendler and D.L. McGuinness, “The
DARPA Agent Markup Language, ”IEEE
Intelligent Systems, vol. 16, no. 6, Jan./Feb.,
2000, pp. 67–73.

4. N.F. Noy, R.W. Fergerson, and M.A. Musen,
“The Knowledge Model of Protégé-2000:
Combining Interoperability and Flexibility,”
Proc. Knowledge Engineering and Knowl-
edge Management: 12th Int’l Conf. (EKAW-
2000), Lecture Notes in Artificial Intelligence,
no. 1937, Springer-Verlag, Berlin, 2000,
pp.17–32.

5. M.A. Musen et al., “Component-Based Sup-
port for Building Knowledge-Acquisition
Systems, ”Proc. Conf. Intelligent Informa-
tion Processing (IIP 2000) Int’l Federation
for Information Processing World Computer
Congress (WCC 2000), Beijing, China, 2000,
http://smi-web.stanford.edu/pubs/SMI_
Abstracts/SMI-2000-0838.html (current 28
Mar. 2001).

6. I. Horrocks, “The FaCT system,”Proc. Auto-
mated Reasoning with Analytic Tableaux and
Related Methods: Int’l Conf. Tableaux 98, Lec-
ture Notes in Artificial Intelligence, no. 1397,
Springer-Verlag, Berlin, 1998, pp. 307–312.

MARCH/APRIL 2001 computer.org/intelligent 71

Natalya F. Noy is a research scientist in the Stanford Medical Informatics
laboratory at Stanford University. Her interests include ontology development
and evaluation, semantic integration of ontologies, and making ontology-
development accessible to experts in noncomputer-science domains. She has
a BS in applied mathematics from Moscow State University, Russia, an MA
in computer science from Boston University, and a PhD in computer science
from Northeastern University in Boston. Contact her at Stanford Medical
Informatics, 251 Campus Dr., Stanford Univ., Stanford, CA 94305;
noy@smi.stanford.edu.

Michael Sintek is a research scientist at the German Research Center for
Artificial Intelligence. Currently, he is project leader of the FRODO project
where an RDF-based framework for building distributed organizational mem-
ories is developed. He has a Diplom in computer science and economics from
the University of Kaiserslautern. Contact him at the German Research Cen-
ter for Artificial Intelligence (DFKI) GmbH, Knowledge Management Group,
Postfach 2080, D-67608 Kaiserslautern, Germany; sintek@dfki.uni-kl.de.

Stefan Deckeris a postdoctoral fellow at the Department of Computer Sci-
ence at Stanford University, where he works on Semantic Web Infrastruc-
ture in the DARPA DAML program. His research interests include knowledge
representation and database systems for the Web, information integration,
and ontology articulation and merging. He has a PhD in computer science
from the University of Karlsruhe, Germany, where he worked on ontology-
based access to information. Contact him at Stanford University, Gates Hall
4A, Room 425, Stanford, CA 94305; stefan@db.stanford.edu.

Monica Crubézy is a postdoctoral researcher in the Stanford Medical Infor-
matics laboratory at Stanford University. Her research focuses on the mod-
eling and integration of libraries of problem-solving methods in the Protégé
knowledge-based-system development framework. She graduated from the
École Polytechnique Féminine, France, in general engineering and computer
science. She has a PhD in computer science from the Institut National de
Recherche en Informatique et Automatique in Sophia Antipolis, France. Con-
tact her at Stanford Medical Informatics, 251 Campus Drive,Stanford Uni-
versity, Stanford, CA 94305; crubezy@smi.stanford.edu.

Ray Fergersonis a programmer in the Stanford Medical Informatics labo-
ratory at Stanford University. He has a BS in physics from the Colorado
School of Mines and a PhD in experimental nuclear physics from the Uni-
versity of Texas in Austin. Contact him at Stanford Medical Informatics, 251
Campus Drive, Stanford University, Stanford, CA 94305; fergerson@smi.
stanford.edu.

Mark A. Musen’s biography appears in the Guest Editors’ Introduction on page 25.

T h e A u t h o r s

