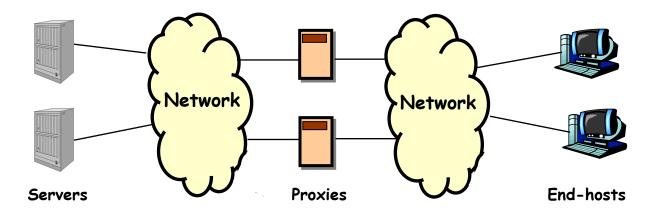
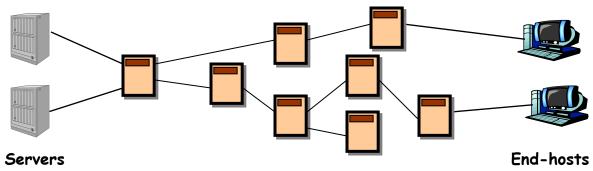
<u>Cooperative Leases: Scalable</u> <u>Consistency Maintenance in CDNs</u>


A. Ninan, P. Kulkarni, P. Shenoy, K. Ramamritham and R. Tewari

University of Massachusetts and IBM Research


<u>Motivation</u>

- Dramatic growth in world wide web traffic
- Web accesses are non-uniform in nature
 - Create hot-spots of server and network load, increase latency
- Solution: employ web proxy caches
 - Reduces user response times, server load, network load

Content Distribution Network

- Content distribution network (CDN)
 - Collection of proxies that act as intermediaries between servers and clients
 - Service a client request from "closest" proxy with the object
 - Similar benefits as single proxy environments, but larger scale
- Caching in CDN => must maintain cache consistency
 - Single proxy consistency mechanisms don't scale to CDNs
 - Example: TTL values
- □ Goal: scalable consistency mechanisms for CDNs

- Motivation
- Cooperative Leases: Design and Implementation
- Experimental Evaluation
- Related Work
- Concluding Remarks

Key Idea: Cooperative Consistency

Key Idea: CDN proxies cooperate to maintain consistency

- Cooperation reduces burden on servers
- Cooperation potentially reduces burden on individual proxies

Cooperative consistency orthogonal to cooperative caching
Coop. caching: cooperate to service user requests
Coop. consistency: cooperate to maintain consistency

Cooperative Consistency using Leases

Lease: fixed duration contract between server and proxy

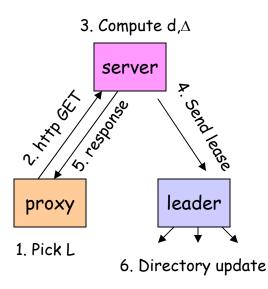
- Server agrees to notify proxy of all updates to an object over duration d
- "d" is the lease duration
- Lease may be renewed upon expiry
- Limitations of leases for CDNs
 - Server needs to notify each proxy caching the object of an update
 - Excessive burden for popular objects
 - Leases requires a server to maintain state
 - Overhead can be excessive for large CDNs
 - Leases provide strong consistency
 - Overkill for many cached web objects (weak consistency suffices)
- Problem: leases don't scale to CDNs

Scaling Leases to CDNS

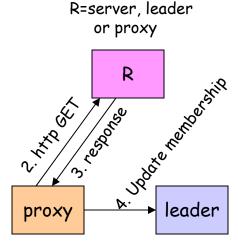
Problem: excessive notification burden at server

 Solution: send notification to subset of proxies, proxies forward to others

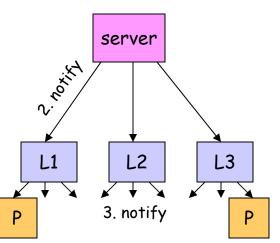
Problem: excessive state space overhead


- Solution: server only maintains state info for leader
 - Leaders maintain information about other proxies caching the object
- Problem: not all objects need strong consistency
 - \bigcirc Solution: associate a rate parameter \triangle each lease
 - Send notification no more than once every Δ time units
- Resulting scheme: "Cooperative Leases"

Cooperative Leases: Basics


- Use one proxy to represent a group (leader proxy)
- Server grants a single lease to the entire group
- Update => send notification only to leader
 - Leader forwards to other proxies in the group
 - Only those proxies caching the object are notified
- Leader renews lease on behalf of entire group
- Different proxies can be leaders for different objects
 - Distribute leader responsibilities across proxies in group

Cooperative Leases: Operations


First-time Requests

1. Dir. lookup

Subsequent Requests

Object update

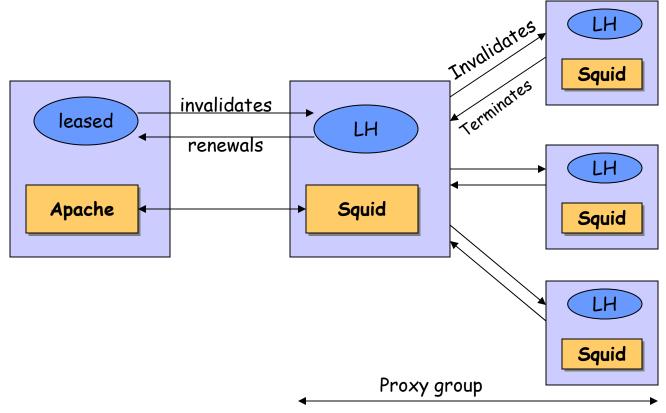
Design Considerations

- How to choose a leader?
 - First proxy is leader
 - Potential imbalance but less communication overheads
 - O Use a hashing function: leader = hash(URL)
 - Better load balancing, potentially more communication
- When should a leader renew a lease?
 - Eager renewals: renew while there are interested proxies
 - Use terminate message to indicate lack of interest
 - Suitable for popular objects
 - Lazy renewals: renew only if a proxy makes subsequent requests after expiry
 - Suitable for less popular objects

Design Considerations

Propagating updates versus invalidates

- Updates: more overhead, especially if no subsequent access
- Invalidate: extra overhead upon subsequent access
- Choose based on object characteristics
 - Send updates for popular objects, invalidates for others


\square How to choose lease duration and notification rate Δ ?

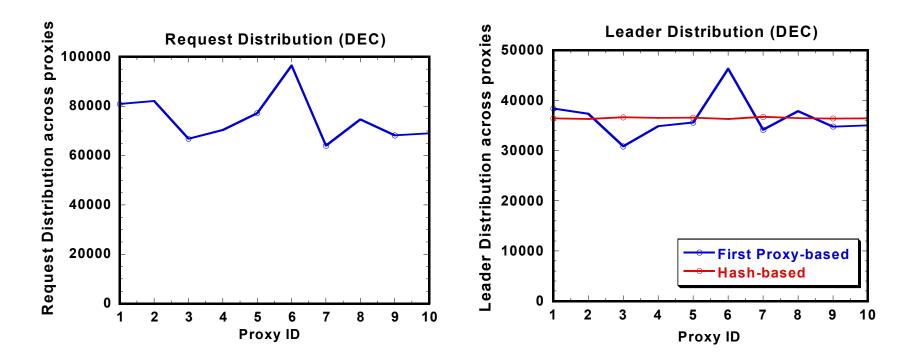
- Analytical models for choosing lease duration [Infocom00]
- \bigcirc Choose \triangle proportional to server load
 - Stronger guarantees to low/moderate loads
 - Progressively weaker guarantees at high loads
- \circ Δ can also be chosen based on the object type/user preferences
 - Example: choose Δ based on object size

Prototype Implementation

Implemented Cooperative Leases in Apache and Squid

- Motivation
- Cooperative Leases: Design and Implementation
- Experimental Evaluation
- Related Work
- Concluding Remarks

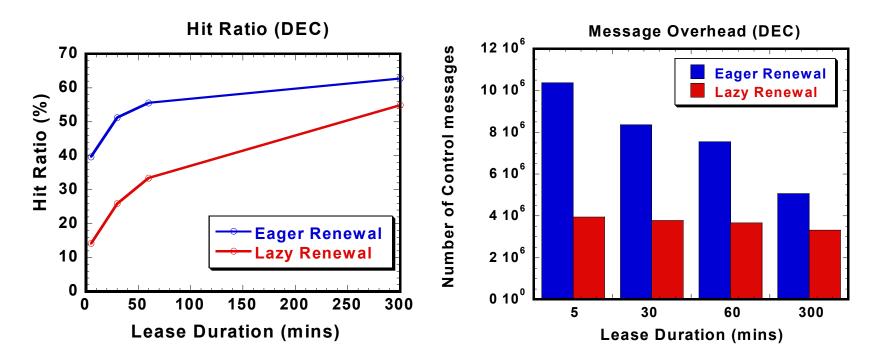
Methodology


Combination of simulation and prototype evaluation

- Use simulations to explore design space
- Use prototype to measure implementation overheads
- Simulations use traces from actual proxies

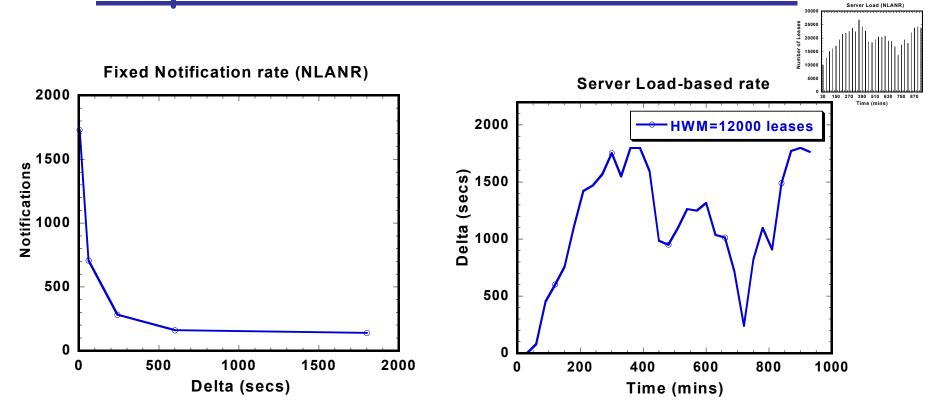
Trace	Requests	Objects	Writes
DEC	750K	276914	17126
NLANR	750K	393853	14385

Impact of Leader Selection Policy

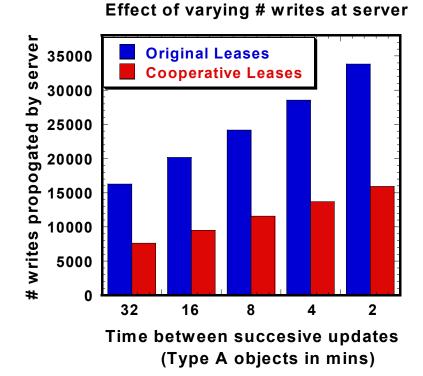

Hash-based scheme yields better load balancing

Increase in communication overhead small (< 10%)</p>

Result: hash-based schemes preferable for leader selection


Computer Science

Impact of Lease Renewal


- Higher hit ratios for eager renewals
- □ 33-175% increase in message overhead (extra renew messages)
- Tradeoff: better hit rate/response time versus message overhead

Impact of Notification Rate

- Smaller delta: more notifications (overhead), stronger guarantees
- Choosing delta based on server load can help at heavy loads

Comparison with Original Leases

Smaller server overhead as compared to original leases

- Reduction in server msg overhead: 2.5 X, state space: 20-30%
- But larger inter-proxy communication overheads (3.7 X)

Implementation Overheads

Server Overheads

Event	Time (ms)	
Lease grant	0.64	
Lease renew	0.28	
Send invalidate	3.36	

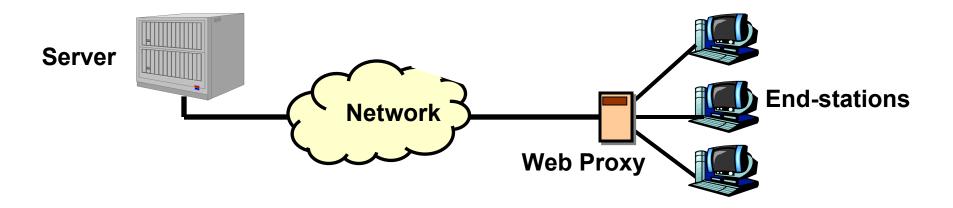
Proxy Overheads

Event	Time (ms)	
Dir. broadcast	2.7	
Lease renew	2.65	
Send invalidate	0.565	

• Implementation overheads seem reasonable

Related Work

- Volume leases: use a lease for a group of objects
- □ WCIP: protocol for propagating invalidates
- DOCP: distributed object consistency protocol
- Hierarchical WAN consistency [Yin99]
- Use of multicast for consistency in hierarchies [Yu99]


Concluding Remarks

Single proxy consistency mechanisms don't scale to CDNs

- Cooperative leases: flexible, scalable consistency for CDNs
 - Use a single lease for a group of proxies
 - Application-level multicast of server notifications
 - Effectiveness demonstrated via an experimental evaluation
- More at http://lass.cs.umass.edu

Web Proxy Caching: Benefits

- Reduces end-user access latencies
 - By deploying proxies close to clients
- Reduces network bandwidth on access links
 - By caching near access links
- Reduces server load
 - By servicing requests using cached data