A Software Architecture for
Structuring Complex Web Applications

Mark D. Jacyntho, Daniel Schwabe
Dept. of Informatics, PUC-Rio, Brazil

{mark,schwabe}@inf.puc-rio.br
Gustavo Rossi
LIFIA, Univ. de La Plata, Argentina
gustavo@sol.info.unlp.edu.ar

P

Outline

Motivation

Overview of the Approach
Proposed Framework
Discussion

Future Work

v 7 v 7 7

© Daniel Schwabe, 2002

Motivation

N Increasing complexity of Web-based applications
- Read only & full functionality

N Increased speed of development

N\ Increased speed of the feedback loop
- Constant revision/evolution

N\ Need for greater productivity

© Daniel Schwabe, 2002

Goals

N\ To provide a software architecture to support web-based
applications of varying degrees of complexity
- Support navigation
- Support application functionality (business logic)
N To specify an implementation framework based on this
architecture
- Supporting design reuse
- Supporting code reuse
N Develop a set of guidelines and design patterns to help
using the framework

N Implement the framework using current application
server architecture

© Daniel Schwabe, 2002

Underlying Ideas - OOHDM Principles

N Applications are part of man-machine team that together
solves the problem
- Hypermedia for integration with computer-processed knowledge
- Hypermedia to support humans
N\ User navigates in Modes, which are views over
Conceptual Objects
N Nodes are organized into Navigational Contexts — sets of
objects relevant to tasks
N There is a clear distinction between Interface operations
and Navigation Operations

N\ Interface can be specified at an Abstract Level

© Daniel Schwabe, 2002 5

Underlying Ideas — J2EE, MVC

N\ Use Java 2 Enterprise Edition (J2EE)
- Widely used in industry

- Provides several system services, such as security, concurrency
control, transactions, etc...

- Many suppliers on the server side

- Allows component-based development
- Many possible types of clients

- Allows configuration through XML files

N Use well-known architectural approaches such as the
Model-View-Controller

© Daniel Schwabe, 2002 6

Model-View-Controller (MVC)Architecture

N\ Clear separation between functionality logic, data and
presentation logic;

N\ Model —represents application data (OOHDM Conceptual
Model);

N\ View— Data presentation to the client.

N\ Controller— defines application behavior.

- Translates user actions into events to be processed over the
model

- Selects a viewto present as a response to the client

© Daniel Schwabe, 2002

The MVC Architecture

CONTROLLER
(Session EJB, Servlets)

= Defines application behavior

= Maps http requests to model updates

= Selects view for response

= One for each functionality

MODEL
(EJBs)

= Encapsulates application data

= Provides an interface for state queries
= Provides an interface for functionality
= Notifies view of changes (push)

VIEW
(ISPs)
= Renders the model data

= Requests updates from model (pull)
= Allows controller to select the view

http response

© Daniel Schwabe, 2002

The OOHDM-Java2 Framework

7

Based on the MVC architecture;

Defines an architecture for implementing web applications.
Allows separation of concerns: web designers, programmers;
Eases maintenance and reuse;

Covers both navigation (read-only) and fully functional
applications;
Based on the J2EE platform.

Provides direct support for applications designed using the OOHDM
approach.

- May be used for applications designed using other methods

v v v v

7 7

© Daniel Schwabe, 2002

OOHDM-Java2 Modules

N\ Transactional
- Implements application functionality (business logic);
- Supports the execution of an event over the model,
N Navigational
- Implements navigation operations as specified using OOHDM

- Provides the instantiation of nodes in the corresponding context,
or of the access structure being navigated

- Provides exhibition of the appropriate navigation element

© Daniel Schwabe, 2002

10

Architecture Overview

Controller
Client
1) Http
Request Http Request
Translator
6) Http
Response
2) Business
Extended View Event 3) Application Model
Funcionality
ISP (layout) Invocation
l Executor %'sjizcets:
Navigational Node
(contents, model 5) Sglected
view) View View
«
Selector 4) Queries on
Model State
© Daniel Schwabe, 2002 11
Web Tier 7) Invokes the EJB Tier
Interface Manager to
Http request define the response
1) Client http interface
request /l 8) Defines
redirected to Response
this servlet. Interface
Conceptual
__-Qbjects___

2) Invokes the
Request
Manager,
passing the http
request to be
translated into
an event

3) Sends event
to Web
Controller.

/

object.

9)InvokesNavigation
al Manager to
assemble navigation

10) Acesses Web
\ Controller, which
provides acces to
business objects

»

4) Redirects event
to EJB Controller.

—p

EJBs

the event

6) Query and

Updates to the DB

over the
business
objects.

12

Instantiating OOHDM-Java2

1. Define the structure and behavior of application business objects
Define the business events in the application

3. Customize the Executor component by indicating the execution logic
for each business event object.

4. Specialize the View Selector component adding the application’s
specific logic to select the response interface.

5. Identify the meaningful contexts (sets) of nodes, specializing the
Navigational Context component.

6. Define the structure of nodes in the application, by refining the
Navigational Node component.

7. Define the layout for the corresponding navigational node structure
by specifying the JSP pages in the application.

© Daniel Schwabe, 2002 13

Mapping between OOHDM and OOHDM-Java2

OOHDM Model OOHDM-Java2 Framework

Navigational Model

© Daniel Schwabe, 2002 14

Interface Definition

JSP Template Parameter Instantiated
with parameters definitions interface

Title XPTO

ool |
)

Footer XPTO

222222222222
222222727222

\

Place Holders (parameters) The parameter’s value
defined using the { i may be either a text or
“parameter” custom tag. ©1aJSP page.

© Daniel Schwabe, 2002 15

Template.jsp — CD Store

<%@page contentType="text/html"%>
<%@ taglib uri="/WEB-INF/taglib.tld" prefix="oohdmjava2" %>

<html>
<head>
<title>
<oohdmjava2:parameter name="HmtITitle"/>
</title>
</head>
<body>
<table height="85%" width="100%" cellspacing="0" border="0">
<tr>
<td valign="top">
<oohdmjava2:parameter name="HtmIBody"/>
</td>
</tr>
<tr>
<td valign="bottom">
<oohdmjava2:parameter name="HtmlFooter"/>
</td>
</tr>

</table>
 CD Store Home Page
</body>
</html>

© Daniel Schwabe, 2002 16

A CD Store Scenario

“Beatles” instance of Node
“Artists in Alphabetical Artist in the “Artists in

Order” index. Alphabetical Order” context.
Usuario
1) User select the
“Artists in 2) User selects
Alphabetical Order” “Beatles”.
index.
3) User selects
“Sgt. Pepper”
Node “Order” is “Sgt. Pepper” instance of node
shown CD in “CD by Artist” context
4) User adds
CD to shopping
cart.
© Daniel Schwabe, 2002 17

Transactional Model — “AddltemEvent”

% The The Additem CDStore CDStore Additem EJB Cart The
Front Request Request Web EJB Event Cart Web Interface
The Web Serviet Manager Handler Controller Controller Handler Object Manager
Container i
H i
M process(request) |
process(request)

|

1

i

i

|

process(request) §
g i

i

|

i

handleEveni(event) .

handleEvent(event),

process(event)

addltem(item)

update()
getCartState() [J

setCurréntinterface(request)

!

Transactional Model Configuration XMLs

N urlmappings.xml — Maps the request’s URL to its
response interface and, if necessary, to the associated
request handler or interface handler.

-<er'I_mapping path = "/additemcart" interface = "CART_CONTEXT">

<request_handler
class="pucrio.inf.oohdmjava2.cdstore.web.requesthandlers.cart.AddI temRequestHandler"/>

</url_mapping>
<url_mapping path = "/removeitemcart" interface = "CART_CONTEXT">

<request_handler
class = "pucrio.inf.oohdmjava2.cdstore.web.requesthandlers.cart.RemoveltemRequestHandler"/>

</url_mapping>

© Daniel Schwabe, 2002 19

Transactional Model Configuration XMLs

eventmappings.xml — Maps each event to its corresponding event handler;

exceptionmappings.xml — Maps each event exception to its corresponding
exception handler and/or response

interface interfaces.xml — For each interface, defines its exhibition
template and its parameter values

<interface name=“Order_Per_Client_CONTEXT" template="/template.jsp">
<parameter name="HtmlTitle" value="Client Order." as_is="yes"/>
<parameter name="HtmIBody" value="/0rderByClientContext.jsp" as_is="no"/>
<parameter name="HtmlFooter" value="0OHDM-JAVA2 CD Store - Context: Client Orders.*
as_is="yes"/>
</interface>

<interface name=“Cart_CONTEXT" template="/template.jsp">
<parameter name="HtmITitle" value="Shopping Cart." as_is="yes"/>
<parameter name="HtmIBody" value="/CartContext.jsp" as_is="no"/>
<parameter name="HtmIFooter" value="OOHDM-JAVA2 CD Store - Context: Shopping Cart."
as_is="yes"/>
</interface>

® "© Daniel Schwabe, 2002 20

10

Navigational Module — Creation of the “Cart” node
2

CartContext.jsp

i
M process(request, “cartContext”):

Manager

The Cart
Navigational

Node Creator

CDStore Web
Controller

Cart Web Object:
NavigationalBlackBoard

Tiel Schwabe, 2002

createNode(request,
CDStoreWebController)

JSP page uses the
“create_node”
custom tag to
invoke this method,
which instantiates
the node and stores
it within the

getObject(“Cart”)

getNavigationalBlackBoard H
(“CartWebObject”)

getIndex
(“cdCartSimplelndex™)

request’s scope

The CartNodeCreator
invokes the
NavigationalManager
to obtain the index to
CDs in Cart. The
NavigationalManager,
in turn, calls the
corresponding
IndexCreator

The CartNodeCreator
invokes the
“CartWebObject”
NavigationalBlackBoard
to obtain the State
Object containing the
node’s data. In this
case it is the
“CartWebObject” itself
21

Navigational Module Configuration XML

N\ contextmappings.xml — Defines the application’s navigational
contexts. For each one, it defines:

Context ID;
Internal navigat

ion type;

Navigational Context (the Java class name for the context)
If it is a homogeneous context, a Node Creator and an URL;
If it is heterogeneous, a Node Creator and an URL for each navigational

class.

<context_mapping context_id = “ArtistByCDContext"

navigation_type = “SI"
context_class =

"pucrio.inf.oohdmjava2.CDStore.web.navigational.cd.contexts.byArtist.CDByArtistContext/>

<simple url_path = "/cdbyartistcontext”
node_creator_class =

"pucrio.inf.oohdmjava2. CDStore.web.navigational.cd.contexts. byArtist.CDByArtistNodeCreator"/>
</context_mapping>

© Daniel Schwabe, 2002

22

11

Navigational Module Configuration XML

N\ Indexmappings.xml — Defines the indexes in the applicatoin.
Indexes with a corresponing /ndex Creator are defined first, followed
by index groups and hierarchical indexes. For each one, it defines:

- Index ID
- Index Creator (if it exists);
- URL (if it exists).

<index_mapping index_id = “genreAlfaSimpleIndex”
index_creator_class =
"pucrio.inf.oohdmjava2.CDStore.web.navigational.cd.indexes.GenreAlphalndexCreator"/>

<index_mapping index_id = “CDbyGenreSimplelndex“
index_creator_class =
"pucrio.inf.oohdmjava2.CDStore.web.navigational.cd.indexes.CDByGenreIndexCreator"/>

<hierarch_index_mapping index_id = "genreCDHierarchindex"
"url_path="/genrecdhierarchindex">
<index_ref index_id = "genreAlfaSimpleIndex"/> <I- first level -->
<index_ref index_id = “CDByGenreSimplelndex"/> <I- second level -->
</hierarch_index_mapping>

© Daniel Schwabe, 2002 23

Summary of OOHDM-Java2

N Support for a clear separation between application and presentation logic

N\ Further separation (wrt MVC) between navigation logic and interface
aspects

N\ Support for navigational contexts and set-based navigation
N\ Decoupling between JSP pages and business events
N Centralized control of http requests
- translation of http requests into business events
N\ Centralized control of business events execution
N\ Centralized selection of response interfaces

N Single entry points (Fagades) to business objects, both in the Web and EJB
layers.

N Single entry point for serializing requests of the same user
N\ Centralized mapping of business events into corresponding execution logic
N\ Centralized control of navigation logic

© Daniel Schwabe, 2002 24

12

Future Work

N\ Definition of domain-dependent frameworks

N\ Definition of custom tags for each Navigational
Component (e.g., Simple Indes, Anchor, Attribute, etc...)

N Automatic translation of OOHDM-ML specifications into
code skeletons

N\ Re-instantiating the architecture in other
implementation environments, e.g., .NET

© Daniel Schwabe, 2002

25

Thank you!

Further material available at
http://www.telemidia.puc-rio.br/oohdm/oohdm.html

© Daniel Schwabe, 2002

26

13

