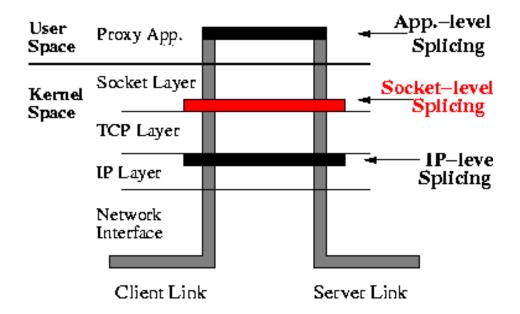
TCP Splice Benefits for Web Proxy Servers

Marcel C. Rosu

Daniela Rosu

IBM T.J. Watson


Server 'in-the-middle'

- Web proxies, CDN nodes, Edge Servers...
- Act as caches for Web content
 - Hit rates are 50% or lower
- Relay data between end nodes
 - Process small fraction of data (headers)
 - I Handle a very large number of connections
- Our target
 - Reduce overheads of data relay

Our Approach

- Use a General-Purpose Platform
 - Large servers vs. dedicated appliances
- Improve the data-forwarding path
 - Lower CPU overheads and packet latencies
- Restrict OS & app changes to a minimum
 - Improves chances of being deployed
- In-kernel connection splicing

TCP Connection Splicing

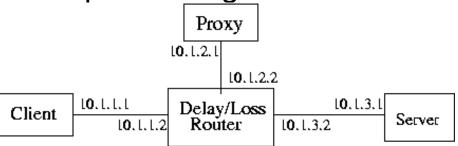
Related Work

- IP-level Splice [Maltz et al., Spatcheck et al.]
 - For firewalls, mobile gateways
 - Restricts splicing to connections with identical characteristics
- Socket-level Splice [Balakrishnan et al.]
 - Evaluated for throughput implications
 - Mobile gateways

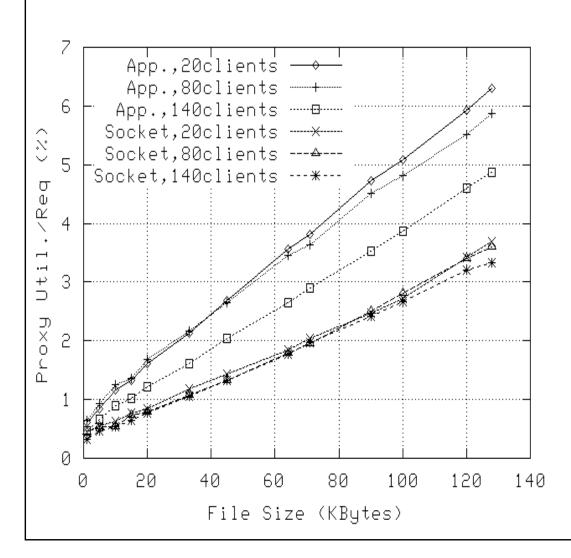
Our work

- Use socket-level splice for Web Proxies
- Evaluate for overhead reductions

Outline


- Implementation
- Experimental Testbed
- Experimental Evaluation
 - Forwarding overheads and latencies
 - GET requests and SSL Tunnels
 - Interaction with serving from proxy cache
- Conclusions and Future Work

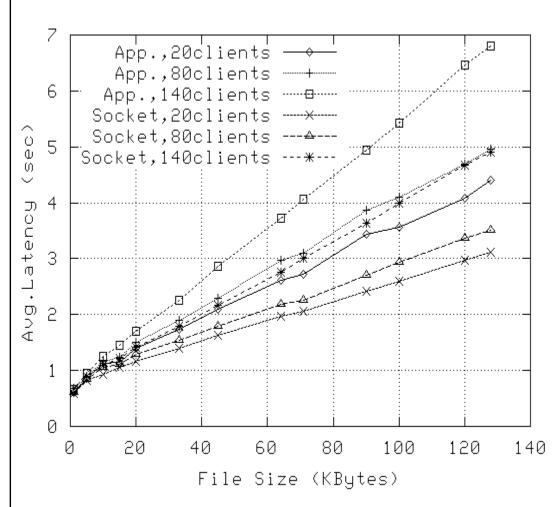
Implementation


- New system call in AIX
 - Integrated with the TCP stack
- Data forwarding path
 - ≥ 100 lines C code
 - Executes in interrupt context

Experimental Testbed

- Platforms
 - AIX 5.10 on RS/6000s and Linux/Pentium
- Clients
 - s-client: generates concurrent request streams
 - best-effort workload
- Custom proxy
 - event-driven, minimal header processing
- HTTP server emulator
 - SSL handshake
- WAN emulation
 - enhanced Nistnet

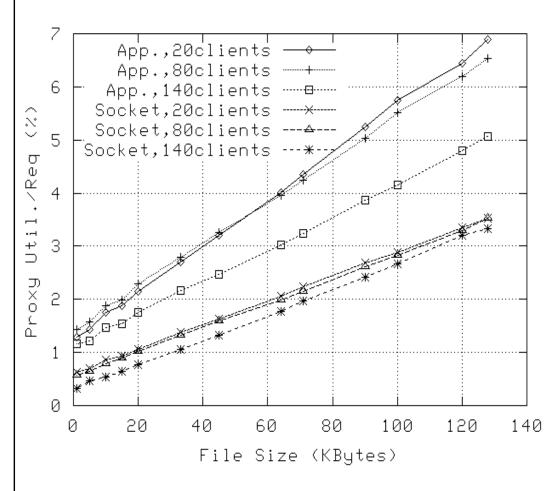
Forwarding Overheads: GET


Proxy utiliz./req

- 25-50% reductions
- Proxy overloaded for 140 clients, app-level splicing

WAN conditions

- C-P: 10ms, loss 0.1%
- P-S: 90ms, loss 1.0%


Forwarding Latency

Latency

- Significant reductions
 - 5k+ files: 5-25%
- Small increases (< 5%)
 - I small files, many clients
- Most important contribution:
 - Congestion window opens faster

SSL Tunneling

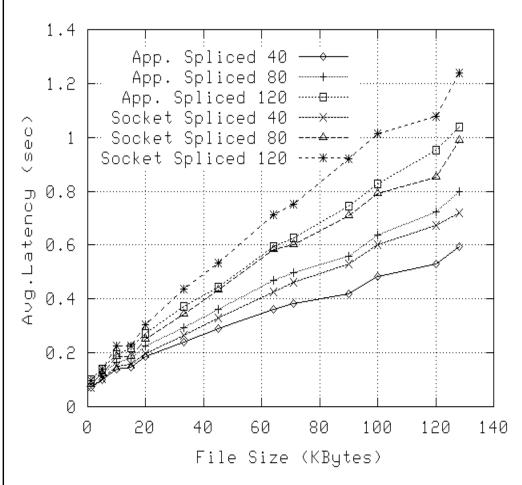
Proxy utiliz./req

■ 25-50% reductions

SSL Handshake (full)

Client: 98 bytes

Server: 2239 bytes


Client: 73 bytes

Server: 6 bytes

Client: 67 bytes

Server: 61 bytes

Mixed Traffic: Cache & Server

Workload mix:

- 40 clients to cache
- 40/80/120 to server

Performance

- Rates similar for appand socket-level splicing
- Latencies higher for socket-level splicing

Comparing to IP-level Splice

Faster loss recovery

- Independent loss recovery on the two TCP connections
- Lower RTTs and loss rates

WAN conditions

- C-P: 50ms, loss 0.1%, 56k modem
- P-S: 90ms, loss 1-2%

Conclusions

- Socket-level Splicing in proxy servers
 - Enables substantial overhead reductions
 - I for medium and large data transfers
 - Requires small/few kernel & app changes
- Future Work
 - Extend splicing interface
 - I HTTP/1.1, handle cacheable content
 - Control resource allocation (memory, CPU)
 - kernel vs. application