
Moving Enterprise Applications
into VoiceXML

May 2002

Moving Enterprise Applications Moving Enterprise Applications
into into VoiceXMLVoiceXML

May 2002May 2002

2

ViaFone OverviewViaFoneViaFone OverviewOverview

ViaFone connects mobile employees
to enterprise systems to improve
overall business performance.

ViaFone connects mobile employees
to enterprise systems to improve
overall business performance.

Enterprise Application Focus;
not Consumer

Customer-facing Employees:
Field Sales and Service

Vertical Industry Focus

Companies Have Enterprise
Systems Installed: CRM, SFA,
ERP, Email/PIM

3

Existing Speech Application Framework being moved
onto VoiceXML

All VoiceXML generated dynamically

Mobile Application
Server

Mobile Presentation
Server

Dialog Server VoiceXML Browser

4

Differentiating Speech Platform Features
• Adaptive Matching, N-Best Filtering, Constraints
• Natural Language Support
• Centralized Dialog Flow Description
• Declarative

Existing Vertical Applications
• MobileSales
• MobilePharma
• MobileService
• MobileAssistant

5

Enterprise ApplicationsEnterprise ApplicationsEnterprise Applications

Very Difficult to move to Deployment
• Recognition Quality and Dialog Design
• Demonstration of Business Value
• Commitment to ongoing maintenance

Characteristics
• Often very large, dynamic databases
• Perceived easiest applications often the hard recognition/dialog

problems
• Not a consumer app, recognition must work well for everyone
• Recognition must work consistently well for all items
• (Lack of) Acceptance of technology limitations by USERS

6

The ProblemsThe ProblemsThe Problems

Recognition Quality
• Not just error rate but types of errors
• Rejections, user interface flaws perceived as recognition problems
• Names and non standard categories

Dialog Complexity
• Deceptive, even simple apps when fully fleshed out are surprisingly complex
• Specification of behavior and behavior very difficult
• Going far enough to make it worth it.

Spoken Language
• Problems get worse from pilot to deployment
• User Feedback rarely part of the design cycle
• Getting representative samples of speakers and data

Deployment and Maintenance
• Scale up for Actual Deployment
• Ongoing maintenance and tuning of grammars and dictionaries

7

A limited definition of “Natural
Language”
A limited definition of “Natural A limited definition of “Natural
Language”Language”

phrase� variations

"10� servers“

"10� n-class� servers"

multiple� "orthogonal"� slots

“save� email� and� send”

<action1� "save� email”>� <action2� "send">

multiple� "combinatorial"� slots

"update� it� to� 90%“

"update� win� probability� to� 90%“

"what� is� the� win� probability?"

Clause� variations

“90%� for� the� win� probability”

Underspecification

"update� probability"� +� “90%”

“set� it� to� 90%”

semantic� and� syntactic� ambiguity

8

Natural Language in VoiceXMLNatural Language inNatural Language in VoiceXMLVoiceXML

Filled mechanism is weak
• Complicates generation when slots are “combinatorial”
• Similar to overgeneration problem in grammars

N-Best Filtering
• N-best must be parsed independantly
• No mechanisms for choosing amongst competing parses

Interpretation of Utterances
• Requires Application State Information
• Insufficient Semantics Model (including proposal in 2.0)

9

Our ApproachOur ApproachOur Approach

Kept the Centralized Dialog Flow Engine
• 1 - to – many relationship from states to pages
• Pages kept very simple
• We do our own parsing for natural language support

Templatized Voice XML
• We generate a very simple skeleton
• XSL Processing step to customize for different browsers
• Customization of standard behavior in pages

Centralized Grammar Skeleton
• Grammar Sharing Mechanisms in XML, make testing and tuning difficult
• Maintain one grammar with dynamically generated rules
• Split the grammars for VoiceXML browsers

10

ViaFone Solution: Adaptive
Matching
ViaFone Solution: Adaptive ViaFone Solution: Adaptive
MatchingMatching

Data Preprocessing
• Abbreviations, expansion of numbers
• Combine descriptions of different features (fields from database)

- For example:
· “10 n-class servers for hp”

- Becomes:
· “ten one zero n dash class servers for h p hewlett packard”

Grammar Generation
• Very simple grammar structure

Application Logic
• Likely matches for recognition
• “Correction” for misspellings, autopron mistakes
• Application constraints to determine most relevant and/or likely matches

11

Why it WorksWhy it WorksWhy it Works

Statistical Argument
• For most mis-spelled or mis-phoneticized word, there is a similar word

(or shorter word) that is correctly represented
• Requires a certain size of data set
• Paradoxically works better when grammar is large

Application Constraints
• Subsetting for each representative
• Integration with scheduler
• Recent usage, usage of related companies

12

Recognition: Example 1Recognition: Example 1Recognition: Example 1

Selecting Opportunities from a Sales Database
(e.g. Siebel)
• All opportunities have arbitrary names
• Misspellings, Abbreviations, Duplicates, etc…
• The key feature to the user may be contact, company, etc…
• Sales rep can have 10 – 100 depending on industry, etc…
• Many thousands of entries total

A type of “natural language” problem
• User’s don’t remember exact name, or they remember other features
• Ambiguity in description

Conventional Grammar Solution
• Return a slot with id, phrasing variations (type A) hand-coded in grammar
• 6 Man months effort (for a subset of 500 entries)
• 60% Recognition Rate
• Low coverage of phrasing variations

13

SolutionSolutionSolution

Dialog Structure

• 87% hit rate in first response
• 13,000 entries covering any variation in phrasing
• Searchable on multiple fields (name, contact, company)
• refinement of searches
• No rejections, matching errors more natural (for the most part)

Query Matching Present

Refine

14

Recognition: Example 1Recognition: Example 1Recognition: Example 1

Voice XML Template
<vxml version="1.0"� application="http://...">

<property� name="universals"� value="none"/>

<form� id="noname">

<USE_NBEST/>

<USE_DTMF params="..."/>

<block>

<prompt bargein="true"><audio src="http:..."/></prompt>

</block>

<field� name="Result">

<grammar src="http>//..."/>

<REC_SUBMIT� next=http://...?SESSIONID=10964368 method="post“ namelist="Result DTMFCount�
DTMFStopTone� nbestresult"/>

<ERR_SUBMIT� next="http://...?SESSIONID=10964368"� method="post“ namelist="Result"/>

</field>

</form>

</vxml>

http://.../?SESSIONID=10964368

15

Processed TemplateProcessed TemplateProcessed Template

<vxml version="1.0"� application="http://...">
<property� name="universals"� value="none"/>
<form� id="noname">

<var� expr="initial"� name="nbestresult"/>
<var� expr="1"� name="DTMFCount"/>
<var� expr="'pound'"� name="DTMFStopTone"/>
<block/>
<field� name="Result">

<prompt bargein="true"><audio src="http:..."/></prompt>
<property� name="maxnbest"� value="4"/>
<property� name="confidencelevel"� value="0"/>
<grammar src="">

<nbest><![CDATA[
for(var i� =� 0;� i� < lastresult$.length;� i++){

var inter� =� new� String(lastresult$[i].interpretation);
var� len =� inter.length;
var� idx =� inter.indexOf('=',� 0);
inter� =� new� String(inter.substring(idx+1, len-1));
var conf� = lastresult$[i].confidence;

if(i� ==� 0)� {
nbestresult =� inter� +� '|'� +� conf;

}else{
nbestresult = nbestresult +� ';'� +� inter� +� '|'� +� conf;

}
}
return lastresult$;]]>
</nbest>

</grammar>
<filled>

<submit� next="http://...?SESSIONID=10964368"� method="post" namelist="Result DTMFCount� DTMFStopTone� nbestresult"/>
</filled>
<dtmf>+[dtmf-1 dtmf-2 dtmf-3 dtmf-4 dtmf-5 dtmf-6 dtmf-7 dtmf-8 dtmf-9 dtmf-0 dtmf-star dtmf-pound]
</dtmf>
<catch� event="noinput">

<assign expr="'#NoHear'"� name="Result"/>
<submit� next="http://...?SESSIONID=10964368"� method="post" namelist="Result"/>

</catch>
<catch� event="nomatch">

<assign expr="'#InputRejected'"� name="Result"/>
<submit� next="http://...?SESSIONID=10964368"� method="post" namelist="Result"/>

</catch>
</field>

</form>
</vxml>

16

Recognition: Example 2Recognition: Example 2Recognition: Example 2

User Authentication
• Large Database of Users
• Names have very non-standard phonetics
• PIN codes present technical, usability and security problems

Pure Recognition and Verification Problem
• Conventional grammar on names presents recognition problems
• Name + password helps, but users uncomfortable with speaking

password

Adaptive Matching + Authentication
• Present cross constraints, verification is a filter on recognition
• Match list can be used to adjust confidence in verification results

17

SolutionSolutionSolution

Verification Process

Voice XML Template
<vxml version="1.0"� application="http://...">

<property� name="universals"� value="none"/>
<form� id="noname">

<PLATFORM� vendor="Nuance"/>
<USE_NBEST/>
<USE_VERIFY� type="buffer"/>
<block>

<prompt bargein="true"><audio src="http:..."/></prompt>
</block>
<field� name="Result">

<grammar src="http>//..."/>
<REC_SUBMIT� next="http://...?SESSIONID=10964368"� method="post" namelist="Result DTMFCount
DTMFStopTone� nbestresult� "/>
<ERR_SUBMIT� next="http://...?SESSIONID=10964368"� method="post" namelist="Result"/>

</field>
</form>

</vxml>

Custom Speech Object for verification of multiple IDs

Recognize
(Buffered)

Match
(retrieve ids) Validate Ids Verify ID list

Query
Additional

18

Deployment and MaintenanceDeployment and MaintenanceDeployment and Maintenance

Scale up

Custom Grammar development

Maintenance is ongoing and expensive

Specialized expertise required

19

Levels of TestingLevels of TestingLevels of Testing

Grammar Coverage

Dialog Flow

Correctness of Generated VoiceXML

Application and Usability Testing

20

Testing Support ToolsTesting Support ToolsTesting Support Tools

Static Analysis of Application Semantics
• Coverage of all recognition events
• Listing all state transitions

Driver Application for Dialog Flow
• Validating browser behavior
• Load Testing more representative of actual usage
• Instrumenting the application

Http Request Validation
• Validation of application logic and flow independent of browser issues
• Templates provide for easy checking and automation
• Static analysis makes it possible to do full coverage
• The real problem is the external specification of application behavior

21

Final ObservationsFinal ObservationsFinal Observations

Speech recognition is not an out of the box technology.

Look for the right balance between browser and server side
presentation layer logic.

Consider the whole application life cycle when designing
architecture. What can be done to make testing and
maintenance easier and more automated.

	Moving Enterprise Applications into VoiceXMLMay 2002
	ViaFone Overview
	
	
	Enterprise Applications
	The Problems
	A limited definition of “Natural Language”
	Natural Language in VoiceXML
	Our Approach
	ViaFone Solution: Adaptive Matching
	Why it Works
	Recognition: Example 1
	Solution
	Recognition: Example 1
	Processed Template
	Recognition: Example 2
	Solution
	Deployment and Maintenance
	Levels of Testing
	Testing Support Tools
	Final Observations

