
'
&

$
%

Aliasing on the WWW
Prevalence and Performance Implications

Terence Kelly Jeffrey C. Mogul
U. Michigan EECS Compaq WRL

Ann Arbor, MI Palo Alto, CA

11th International World Wide Web Conference
Honolulu, Hawaii 9 May 2002

$Id: aliasing_slides.tex,v 1.8 2002/04/24 07:33:13 tpkelly Exp $

1



'
&

$
%

What Is Web Aliasing?

Aliasing: multiple names for the same thing

Aliasing in the Web:

� “Things” of interest: HTTP reply payloads

� Static view: two URLs “point to” same
payload

� Dynamic view: two transactions, with
different URLs, have same reply payload

2



'
&

$
%

Motivation to study Web aliasing
� Aliasing increases cache miss rates

– At both proxies and clients

– Causes redundant data transfers

� Previous crawler-based (static) studies:

– Broder et al. similarity study: 18–41% of
reachable payloads are aliased

– Shivakumar & Garcia-Molina: 36%

3



'
&

$
%

Goals of our research
Look at dynamic prevalence of Web aliasing:

� How much aliasing in transactions?
– # of payloads aliased
– # of transactions w/ aliased payloads
– # of aliased bytes transferred

� Look for correlations with other attributes

� Measure redundant transfers in
conventional cache hierarchies

� How can we eliminate redundant transfers?

4



'
&

$
%

Outline of talk
� Motivation

� Terms and example

� Methodology and traces

� Prevalence of aliasing

� Correlates of aliasing

� Performance implications

� Solutions

5



'
&

$
%

Terms

Payload: “Entity body” of HTTP reply

Aliased payload: Accessed via � 2 URLs

� I.e., payloads are bit-for-bit identical

Payload Hit: Payload comes from cache

� Note: “304 Not Modified” is a payload hit

Payload Miss: Must fetch payload via network

6



'
&

$
%

Example reference stream

URL Payload Reason for cache miss

1 A 1 new payload
2 A 2 new payload
3 A 1 resource A is modified
4 B 1 payload 1 is aliased

� In conventional Web cache, all are misses

� Transfers #3 and #4 are redundant

� Aliasing not sole cause of redundant xfers

7



'
&

$
%

Methodology
� Analyze real users’ accesses

traces include anonymized

– URLs

– payload digests (using MD5)

� Simulate behavior of:

– browser/proxy cache hierarchy

– cacheless & infinite-cache browser

� Tabulate redundant payload transfers

8



'
&

$
%

Anonymized Traces
� All traces made at non-caching proxies

– So: all payloads came from origin server

� WebTV trace:

– Cache-busting proxy (no client caching!)

– Sept. 2000

� Compaq trace:

– Clients did use caching

– Jan–Mar 1999

9



'
&

$
%

Trace characteristics
WebTV Compaq

Days 16 90
Clients 37 K 22 K
URLs 32 M 20 M
Payloads 36 M 31 M
Transactions 326 M 79 M
Working Set 596 GB 501 GB
Bytes transferred 1,838 GB 841 GB

Among the largest and most detailed traces
used in Web-related research.

10



'
&

$
%

Prevalence of Aliasing

WebTV: aliased payloads account for

� 5% of unique payloads

� 54% of transactions

� 36% of bytes transferred

Only 10% of transactions involve modified
resources.

Aliasing is more prevalent than resource
modification by several measures.

11



'
&

$
%

Correlates of Aliasing
� Aliased payloads are smaller:

Median Median
unique payload transfer

non-aliased 5.5 KB 2.5 KB
aliased 3.1 KB 1.3 KB

� GIF both popular & heavily aliased
45% of transfers carry aliased GIFs!

� Are Web authoring tools to blame?

12



'
&

$
%

Content Naming & Caching
Conventional caches:

� Indexed by URL

� Store (at most) one payload per URL

But: (URL; payload) binding in traces not 1:1

So: cache could see redundant xfers due to

� Aliasing: � 2 URLs bind to 1 payload

� Modification: 1 URL binds to � 2 payloads
– Redundant if payloads are (1; :::;2; :::;1)

– e.g., ad rotation

13



'
&

$
%

Performance Implications
� What price do we pay?

� Simulate URL-indexed browser/proxy
cache hierarchy

– Payload miss rate

– % redundant transfers

� Do not model redundant transfers due to
faulty metadata, silly cache management.

14



'
&

$
%

Payload Miss Rates

Payload miss rate (%
)

%
redundant xfers

WebTV ∞-cache clients 29.5 9.8

WebTV proxy (warm)
cacheless clients 12.9 23.1
∞-cache clients 46.3 22.8

Compaq proxy (warm) 44.9 18.5

Client cache size has little effect on
% redundant at proxy!

15



'
&

$
%

Causes of Redundant Transfers

Our results consider interplay between
URL-indexed caching & content naming
(aliasing, resource modification)

Other causes can include:

� Finite caches (capacity misses)

� Silly caches: e.g., evict-upon-expire

� Silly metadata: e.g., changing Etags

16



'
&

$
%

Eliminating Redundant
Transfers
“Duplicate Transfer Detection” (DTD)

� Cache retains old payloads indefinitely

� Index cache also by payload digest

� Server sends digest before payload

� Cache looks for entry w/ same digest

� Don’t transfer payload if already cached

Never receive same payload twice.

Devil is in the details (details are future work!)

17



'
&

$
%

Other Possible Solutions

Educate site designers/implementors:

� 1:1 URL-payload mapping where possible
(CDNs do this already)

� Eliminate within-site aliasing

If Web authoring tools are to blame:

� Serve “clip art” images from one site/CDN

� Bundle clip art with browsers

18



'
&

$
%

Summary
� Aliasing happens:

54% of transfers carry aliased payloads

� Redundant transfers happen:
10% at browser, 22% at proxy

� Avoidable causes include:

– Content-naming practices

– combined with URL-indexed caching

� Comprehensive solution: DTD

19



'
&

$
%

Credits
� Traces: WebTV Networks, Compaq

� Computers: Compaq, U-M & UCSD
supercomputer centers

� Web mystery explainer: Mikhail Mikhailov

20



'
&

$
%

Backup slides

21



'
&

$
%

Conventional & DTD Caches

URL-indexed cache DTD cache

if cache[URL] == correct payload if u cache[URL] == correct payload
payload hit++ payload hit++

else else
payload miss++ send URL
send URL receive payload digest
receive payload if d cache[digest] == correct payload
cache[URL] := payload payload hit++

send “don’t bother”
else

payload miss++
send “proceed”
receive payload
d cache[digest] := payload
u cache[URL] := payload

22



'
&

$
%

Details: Duplicate Transfer
Detection

� Hop-by-hop HTTP extension

� Cache every payload forever

� Index cache using payload digest

� Before receiving payload, check cache
using digest from sender

Note: No special treatment for “dynamic”
content. A payload is a payload.

23



'
&

$
%

DTD Implementation I:
“Proceed” Model

� Server sends payload digest only

� Client says “proceed” if not in cache

� No redundant bytes ever sent

� Extra RTT for payload misses

24



'
&

$
%

DTD Implementation II:
“Abort” Model

� Server sends digest + full payload

� Client says “abort” if cached

� No additional client latency

� Some redundant bytes sent

25


