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What Is Web Aliasing?

Aliasing: multiple names for the same thing

Aliasing in the Web:

� “Things” of interest: HTTP reply payloads

� Static view: two URLs “point to” same
payload

� Dynamic view: two transactions, with
different URLs, have same reply payload
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Motivation to study Web aliasing
� Aliasing increases cache miss rates

– At both proxies and clients

– Causes redundant data transfers

� Previous crawler-based (static) studies:

– Broder et al. similarity study: 18–41% of
reachable payloads are aliased

– Shivakumar & Garcia-Molina: 36%
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Goals of our research
Look at dynamic prevalence of Web aliasing:

� How much aliasing in transactions?
– # of payloads aliased
– # of transactions w/ aliased payloads
– # of aliased bytes transferred

� Look for correlations with other attributes

� Measure redundant transfers in
conventional cache hierarchies

� How can we eliminate redundant transfers?
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Outline of talk
� Motivation

� Terms and example

� Methodology and traces

� Prevalence of aliasing

� Correlates of aliasing

� Performance implications

� Solutions
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Terms

Payload: “Entity body” of HTTP reply

Aliased payload: Accessed via � 2 URLs

� I.e., payloads are bit-for-bit identical

Payload Hit: Payload comes from cache

� Note: “304 Not Modified” is a payload hit

Payload Miss: Must fetch payload via network
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Example reference stream

URL Payload Reason for cache miss

1 A 1 new payload
2 A 2 new payload
3 A 1 resource A is modified
4 B 1 payload 1 is aliased

� In conventional Web cache, all are misses

� Transfers #3 and #4 are redundant

� Aliasing not sole cause of redundant xfers
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Methodology
� Analyze real users’ accesses

traces include anonymized

– URLs

– payload digests (using MD5)

� Simulate behavior of:

– browser/proxy cache hierarchy

– cacheless & infinite-cache browser

� Tabulate redundant payload transfers
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Anonymized Traces
� All traces made at non-caching proxies

– So: all payloads came from origin server

� WebTV trace:

– Cache-busting proxy (no client caching!)

– Sept. 2000

� Compaq trace:

– Clients did use caching

– Jan–Mar 1999
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Trace characteristics
WebTV Compaq

Days 16 90
Clients 37 K 22 K
URLs 32 M 20 M
Payloads 36 M 31 M
Transactions 326 M 79 M
Working Set 596 GB 501 GB
Bytes transferred 1,838 GB 841 GB

Among the largest and most detailed traces
used in Web-related research.
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Prevalence of Aliasing

WebTV: aliased payloads account for

� 5% of unique payloads

� 54% of transactions

� 36% of bytes transferred

Only 10% of transactions involve modified
resources.

Aliasing is more prevalent than resource
modification by several measures.
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Correlates of Aliasing
� Aliased payloads are smaller:

Median Median
unique payload transfer

non-aliased 5.5 KB 2.5 KB
aliased 3.1 KB 1.3 KB

� GIF both popular & heavily aliased
45% of transfers carry aliased GIFs!

� Are Web authoring tools to blame?
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Content Naming & Caching
Conventional caches:

� Indexed by URL

� Store (at most) one payload per URL

But: (URL; payload) binding in traces not 1:1

So: cache could see redundant xfers due to

� Aliasing: � 2 URLs bind to 1 payload

� Modification: 1 URL binds to � 2 payloads
– Redundant if payloads are (1; :::;2; :::;1)

– e.g., ad rotation
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Performance Implications
� What price do we pay?

� Simulate URL-indexed browser/proxy
cache hierarchy

– Payload miss rate

– % redundant transfers

� Do not model redundant transfers due to
faulty metadata, silly cache management.
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Payload Miss Rates

Payload miss rate (%
)

%
redundant xfers

WebTV ∞-cache clients 29.5 9.8

WebTV proxy (warm)
cacheless clients 12.9 23.1
∞-cache clients 46.3 22.8

Compaq proxy (warm) 44.9 18.5

Client cache size has little effect on
% redundant at proxy!
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Causes of Redundant Transfers

Our results consider interplay between
URL-indexed caching & content naming
(aliasing, resource modification)

Other causes can include:

� Finite caches (capacity misses)

� Silly caches: e.g., evict-upon-expire

� Silly metadata: e.g., changing Etags
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Eliminating Redundant
Transfers
“Duplicate Transfer Detection” (DTD)

� Cache retains old payloads indefinitely

� Index cache also by payload digest

� Server sends digest before payload

� Cache looks for entry w/ same digest

� Don’t transfer payload if already cached

Never receive same payload twice.

Devil is in the details (details are future work!)
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Other Possible Solutions

Educate site designers/implementors:

� 1:1 URL-payload mapping where possible
(CDNs do this already)

� Eliminate within-site aliasing

If Web authoring tools are to blame:

� Serve “clip art” images from one site/CDN

� Bundle clip art with browsers
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Summary
� Aliasing happens:

54% of transfers carry aliased payloads

� Redundant transfers happen:
10% at browser, 22% at proxy

� Avoidable causes include:

– Content-naming practices

– combined with URL-indexed caching

� Comprehensive solution: DTD
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Credits
� Traces: WebTV Networks, Compaq

� Computers: Compaq, U-M & UCSD
supercomputer centers

� Web mystery explainer: Mikhail Mikhailov
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Backup slides
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Conventional & DTD Caches

URL-indexed cache DTD cache

if cache[URL] == correct payload if u cache[URL] == correct payload
payload hit++ payload hit++

else else
payload miss++ send URL
send URL receive payload digest
receive payload if d cache[digest] == correct payload
cache[URL] := payload payload hit++

send “don’t bother”
else

payload miss++
send “proceed”
receive payload
d cache[digest] := payload
u cache[URL] := payload
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Details: Duplicate Transfer
Detection

� Hop-by-hop HTTP extension

� Cache every payload forever

� Index cache using payload digest

� Before receiving payload, check cache
using digest from sender

Note: No special treatment for “dynamic”
content. A payload is a payload.
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DTD Implementation I:
“Proceed” Model

� Server sends payload digest only

� Client says “proceed” if not in cache

� No redundant bytes ever sent

� Extra RTT for payload misses

24



'
&

$
%

DTD Implementation II:
“Abort” Model

� Server sends digest + full payload

� Client says “abort” if cached

� No additional client latency

� Some redundant bytes sent
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