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Summary

• Repeated relation instances have similar or identical layout  (efficient 
communication), though not necessarily identical encoding.

• The syntax of the encoding may not describe the syntax of the 
document element (better views of the document required).

• Instructing a learning system by examples requires capture of the users 
intentions (more examples reduce ambiguity, shared document idiom 
reduces examples).
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Wrapping and Learning Wrappers for HTML Pages.

• Aim – to be able to access structured (and relational) 
information on web pages programmatically, as if accessing a 
database.

• Input – some HTML and a query expression, Output – a set of 
relations.

• Simple solution – hand crafted scripts developed for each page; 
the query is implicit in the script.

• Ideal solution – machine generated programs produced with a 
minimum of human instruction; the query is elicited from the 
trainer.
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• Be future proof (tune using bias).
• Know when applicable and when 

broken.
• HTML –

– There are many ways to express a 
particular layout (e.g. tabular layout can 
be achieved in a variety of ways).

– Consistency in encoding is not required 
for visual consistency (e.g. ordering of 
text modifying tags).

• Inform the learning process in an 
intuitive and consistent manner.



Appropriate Document Representation

• The DOM is an obvious starting point.
• Other appropriate views of the document

– Token sequence.
– The result of certain normalizations of the DOM.
– A representation of the layout produced by the HTML when rendered in a 

browser.
– …

• Each document view is valid for learning certain types of 
concepts/document regularities.

• A learning system should be able to make use of multiple views and be 
extensible as new views are made available/demanded by new 
problems.



A Learning System for Wrapper Induction

• Premise : A wrapper learning system needs careful engineering
– 6 hand-crafted languages in WIEN (Kushmeric AIJ2000)
– 13 ordering heuristics in STALKER (Muslea et al AA1999)

• Approach : Architecture that facilitates hand-tuning the “bias” of 
the learner.
– Bias is an ordered set of “builders”
– Builders are simple “micor-learners”
– A single master algorithm co-ordinates learning.



A Learning System for Wrapper Induction

• A span is a subset of the document defined by a start and end point in 
the DOM.
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A Learning System for Wrapper Induction

• A predicate is a binary relation on spans : p(s1, s2) means that s2 is 
extracted from s1.

• Membership can be tested:
– Given (s1, s2) is p(s1, s2) true?

• Predicates can be executed:
– EXECUTE(p, s1) is the set of s2 for which p(s1, s2) is true.

• Example:
– p(s1, s2) iff s2 are the tokens below an li� in s1
– EXECUTE(p, s1) extracts:

• Pittsburgh, PA
• Provo, UT
• Honolulu, HI

– p(s1, s2) iff s2 starts with ‘P’…
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A Learning System for Wrapper Induction

• Predicates are implemented by simple languages.
• Lbracket: p is defined by a pair of strings [l, r] and p[l, r](s1, s2), is 

true iff s2 is preceded by l and followed by r.
• EXECUTE(p[for, Induction], s1) = {“Wrapper”}
• Ltagpath: p is defined by a sequence of tags {t0, t1, …, tk} and        

p{t0, t1, …, tk} (s1, s2) is true iff s1 and s2 correspond to DOM 
nodes and s2 is reached from s1 by following a path ending in 
t0, t1, …tk.



A Learning System for Wrapper Induction

• For each language L there is a builder BL which implements a 
few simple operations:
– LGG(positive examples of p(s1, s2)): least general p in L that 

covers all the positive examples.
• For Lbracket, longest common prefix and suffix of the 

examples.
– REFINE(p, examples): a set of p’s that cover some but not 

all of the examples.
• For Ltagpath, extend the path with one additional tag that 

appears in the examples.



The Learning Algorithm

• Inputs
– An ordered set of builders (order defines bias).
– Positive examples of the predicates to be learned (negative 

examples can be inferred).
• Algorithm

– Compute the LGG of positive examples for each builder.
– If any LGG is consistent with the implicit negative data, then 

return it (break ties in favour of earlier builders).
– Otherwise, execute the best LGG to get explicit negative 

examples, then apply a FOIL-like learning algorithm using 
LGG and REFINE to create “features”.



Extraction from Tables

Actresses

…………

LinksImagesShakespeareBrittany

LinksImages Madonna

Singers

…………

LinksImagesJolieAngelina

LinksImagesLawlessLucy

• How can we express “links to pages about singers”?



Extraction from Tables

• Classify HTML TABLE nodes as true tables or non tables.
• Render each table into a logical representation using an extended 

version of the HTML table rendering algorithm.
• Record the true logical table position of each cell (not limited to TD/TH 

nodes).
• Determine the geometric role of each cell – {cut-in, normal}.



Extraction from Tables : Deriving an Abstract Model

• Start with the standard table rendering algorithm.
• Attempt to “inline” complex geometric blocks:

– Nested tables
– Lists
– BR separated lines
– Plain text

<table>
<tr>

<td>Tel:</td><td>123 456</td>
</tr>
<tr>

<td>Fax:</td><td>123 567</td>
<tr>

</table>

Tel:       123 456
Fax:      123 567

<table>
<tr>

<td>Tel:<BR>Fax:</td>
</tr>
<tr>

<td>123 456<BR>123 567</td>
</tr>

</table>



Extraction from Tables

Actresses [cut-in cell] {0,0 – 3, 0}

…………

LinksImagesShakespeareBrittany

LinksImages Madonna

Singers [cut-in cell] {0,4 – 3,4}

…………

LinksImagesJolieAngelina

LinksImagesLawlessLucy
•Element 
name, words 
in last cut-in. 
(e.g. table 
cells where 
the last cut-in 
was “singers”)
•Tagpath 
builder with 
awareness of 
co-ordinates. 
(e.g. table 
cells with y = 
5).



Experiments : real world wrapping problems
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Experiments : real world wrapping problems

average accuracy versus number of 
training examples
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Conclusions

• Wrapper learners need tuning. Structuring the bias space provides a 
principled approach to tuning.

• Builders let one mix generalization strategies based on different views 
of the document:

– DOM
– Token sequence
– Table model
– …

• Multiple views of the document improve performance by allowing 
builders to express concepts in appropriate language.

• (The TABLE element is a  good example of a specification that failed –
cf Keynote talk, TBL).
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