

# Topic-Sensitive PageRank

Taher H. Haveliwala Stanford University

taherh@cs.stanford.edu

### Motivation

- Improve search results
  - Current engines work well for us "computer types", but not for novice users
- Exploit search context in a tractable and effective way
  - Current engines can only do so well when optimizing parameters for Joe User issuing query q

### **Search Context**

- Query context
  - Highlighted word on page
  - Previous queries issued
- User context
  - Bookmarks
  - Browsing history
- Placing Search in Context: The Concept Revisited
  - [Finkelstein et al. WWW10 '01]

### Link-Based Scoring (HITS)

- HITS ("Hubs and Authorities")
  - [Kleinberg SODA '98]
  - Determine important Hub pages and important Authority pages
  - +Query specific rank score
  - Expensive at runtime

# Link-Based Scoring (PageRank)

- PageRank
  - [Page et al. '98]
  - Assigns a-priori "importance" estimates to pages
  - Query independent rank score
  - + Inexpensive at runtime
- Algorithm has hooks for "personalization"

5



### Topic-Sensitive PageRank

- Assigns multiple a-priori "importance" estimates to pages
- One PageRank score per basis topic
  - + Query specific rank score
  - + Make use of context
  - + Inexpensive at runtime
- Related approach: one score per query word was considered in [Richardson, Domingos NIPS '02] (builds on [Rafiei, Mendelzon WWW '00])

Topic-Sensitive PageRank

query context

Query Processor

(page,topic)

TSPageRank()

Query-time

Offline

## Original PageRank Intuition

- "Page is important if many important pages point to it"
  - Many pages point to Yahoo!, so it is "important"
  - Because Yahoo! is important, anyone it prominently points to is "important"

PageRank Diagram

Graph structure for entire web

PageRank Diagram

Initialize all nodes to rank 1











### Original PageRank

- Input
  - Web graph G
- Output
  - $\blacksquare \text{ Rank vector } \textbf{r}: (\text{page} \rightarrow \text{page importance})$
- **r** = PR(*G*)

Influencing the Computation

Uninfluenced:

"Page is important if many important pages point to it."

Influenced:

"Page is important if many important pages point to it, and btw, the following are by definition important pages."

19

# Influencing the Computation Graph structure for entire web



### Influenced PageRank

- Input:
  - Web graph G
  - influence vector **v** 
    - v : (page → degree of influence)
- Output:
  - $\blacksquare$  Rank vector  $\textbf{r} \text{: } (\text{page} \rightarrow \text{page importance wrt } \textbf{v} \text{ })$
- r = IPR(G, v)
- How to choose v?

Topic-Sensitive PageRank

[query | context]

[query

# Topic-Sensitive PageRank: Part I (preprocessing)



- Goal: Generate multiple a-priori estimates of page importance, each score providing an importance estimate with respect to a topic
- Use the Open Directory as a source of representative basis topics (i.e., use ODP pages to form a set of influence vectors v<sub>j</sub>)
- Offline preprocessing step, just as with ordinary PageRank

24

### Offline Processing

- Input:
  - Web W
  - Basis topics [c<sub>1</sub>, ... ,c<sub>16</sub>]
    We use 16 categories (first level of ODP)
- Output:
  - $\begin{array}{l} \blacksquare \ \textit{List} \ \text{of rank vectors} \ [r_1, \ \dots, r_{16}] \\ r_j : (\text{page} \rightarrow \text{page importance wrt topic } c_j) \end{array}$

### Offline Processing

For each topic  $c_i \in FirstLevel(ODP)$ :

$$\operatorname{set} v_{i}[i] = \begin{cases} \frac{1}{|pages(c_{i})|} & \text{if } i \in pages(c_{i}) \\ 0 & \text{otherwise} \end{cases}$$

Compute  $\mathbf{r}_{i} = IPR(W, \mathbf{v}_{i})$ 







# Topic-Sensitive PageRank: Part II (query processing)



- Goal: calculate some distribution of weights over the 16 topics in our basis
- Use a multinomial Naive Bayes classifier
  - Training set: pages listed in ODP
  - Input: {query} or {query, context}
  - Output: probability distribution (weights) over the basis topics

# Two Usage Scenarios

- Classify the query
- Classify the query + context
  - query history
  - words surrounding a highlighted search phrase

### Classify the Query

- Only the link structure of pages relevant to the query topic will be used to rank
- Better to rank query 'golf' with the Sportsspecific rank vector

### **Example Topic Distribution**

• For the query 'golf', with no additional context, the distribution of topic weights we would use



### Classify the Query Context

- The topic distribution will influence rankings to prefer pages important to the topic of the query context
- If user issues queries about investment opportunities, a follow-up query on 'golf' should be ranked with the Businessspecific rank vector

34

### Picking the Topic Distribution

 If the query is 'golf', but the previous query was 'financial services investments', then the distribution of topic weights we would use is:



35

## Composite Link Score

Use the distribution w to weight the respective topic-specific ranks, forming the topic-sensitive PageRank score for document d:

$$s_d = \sum_i w_i r_i[d]$$

### Interpretation of Composite Score

■ For set of influence vectors {**v**<sub>i</sub>}

$$\sum_{i} [\mathbf{w}_{i} \cdot \mathsf{IPR}(W, \mathbf{v}_{i})] = \mathsf{IPR}(W, \sum_{i} [\mathbf{w}_{i} \cdot \mathbf{v}_{i}])$$

 Weighted sum of rank vectors itself forms a valid rank vector







# Implementation Platform

- Stanford WebBase repository: 120M pages
- For research experiments, topic weights can be estimated automatically by classifier, or specified explicitly

### Does it make a difference?

- Do the different topical rank vectors rank results for queries differently?
- To answer, measure the similarity of induced ranks for some set of test query results
- Details in paper, but short answer is, "yes, the different rank vectors induce different result rankings"

42

### User Study (no search context)

- Test set of 10 queries
- 5 users were each shown top 10 results to queries, when ranked using
  - Standard PageRank vector
  - Topic-Sensitive PageRank vector
- A page in the result was "relevant" if 3 of the 5 users judged it to be relevant

43

# User Study (no search context) TopicSenalive Mean (0.276) NoBlas TopicSenalive Mean (0.276) NoBlas Mean (0.276)

### User Study Follow-up

- After factoring in text-based scoring, the precision values for both standard and topic-sensitive ranking go up
- Topic-sensitive rankings still preferred
- "Precision" not the best metric to use
  - Some pages are "more relevant"
  - Some pages are of "higher quality"













### **Search Context**

- Advantages of mediating through basis topics, as opposed to 'keyword extraction':
  - Flexibility: uniformly treat variety of sources of context and personalization
  - Transparency: topic weights are easily interpreted by user
  - Privacy: topic weights reveal less unintentionally
  - Efficiency: low query time cost, with small additional preprocessing cost

51

### **Future Work**

 Finer grained set of representative topics, to reflect more accurately user preferences and search context















52

### **Future Work**

 Graph weighting scheme based on page similarity to ODP category, rather than page membership to ODP category









### **Related Work**

- Scaling Personalized Search
   [Jeh,Widom '02]
   Dynamic programming for generation of complete basis
- What is this Page Known For?
   [Rafiei,Mendelzon WWW9 '00]
   What keywords is a page known for?
- The Intelligent Surfer: ...
  [Richardson,Domingos NIPS '02]
  Computes PageRank once for each query
- [Tanudjaja,Mui HICSS '02]
   Enhances HITS with ODP data