
Juliana Freire 1WWW2002

VeriWeb:Automatically Testing
Dynamic Web Sites

Juliana Freire
http://www-db.bell-labs.com/~juliana

Bell Labs

Joint work with Michael Benedikt and Patrice Godefroid

Juliana Freire 2WWW2002

Web pages became very complex

Almost 90 different
actions (85 links and 3
forms);
96 gif images;
113 lines of JavaScript
code;
~570 lines of HTML

Juliana Freire 3WWW2002

5 navigation steps,
650kb transferred

Web navigation became very complex
Go to travelocity.com Enter login info

Choose 9 best itineraries

Enter itineraryFlight list

Juliana Freire 4WWW2002

Microsoft JET Database Engine error '80004005'
Could not find file 'e:\…..\cgi-bin\db\unimagem.mdb'.
/cgi-bin/…./main.asp, line 695

Many things can go wrong

Interactions between HTML pages
Applications that run in Web pages (e.g., applets,
javascript, plug-in applications)
Applications that run on the server side (e.g., cgi
scripts, database interfaces, logging applications,
dynamic page generators, asp)
Wide variety of servers and browsers
Rapidly changing technologies, multiple standards and
protocols

Juliana Freire 5WWW2002

Microsoft JET Database Engine error '80004005'
Could not find file 'e:\…..\cgi-bin\db\unimagem.mdb'.
/cgi-bin/…./main.asp, line 695

Many things can go wrong

Interactions between HTML pages
Applications that run in Web pages (e.g., applets,
javascript, plug-in applications)
Applications that run on the server side (e.g., cgi
scripts, database interfaces, logging applications,
dynamic page generators, asp)
Wide variety of servers and browsers
Rapidly changing technologies, multiple standards and
protocols

Need testing!

Juliana Freire 6WWW2002

Web Site Testing: Challenges

Sites are complex applications: hard to test
Web sites are updated often (content and
structure) hard to keep testsuite up-to-date
manually
Web-based systems are highly intertwined with
the environment (browsers, operating systems,
database engines, applications, etc)
impossible to test stand-alone
Users are inexperienced unexpected
behavior
– Need to test system response to the actions of

novice/inexperienced users: number of error
conditions is huge

Juliana Freire 7WWW2002

Changes to Travelocity

Before Feb, 2002Before April, 2001 Since Feb, 2002

Juliana Freire 8WWW2002

State of the Art

Crawlers: check links and pages for common
errors
–E.g., LinkCheck, SiteInspector, Weblint, Webtrends
–check for broken links, unreachable pages, HTML
errors, etc
–limited to static Web pages: can’t test Web
applications

Capture-replay tools: explore particular
scenarios in a dynamic Web site
–E.g., Macrobot, Silktest, etester, Rational TestStudio,
etc.
–users record interactive Web site application scenarios
that can be played back unattended on any predefined
schedule
–user’s must manually create testing scenarios

Juliana Freire 9WWW2002

Too many paths

85 links, 3 forms

Juliana Freire 10WWW2002

Web sites change
Go to travelocity.com Enter login info

Choose 9 best itineraries

Enter itineraryFlight list

And sites change
all the time!

Juliana Freire 11WWW2002

VeriWeb

Exercises multiple scenarios in a Web
application that are automatically discovered
by the system
– Like a crawler it exhaustively searches the site for

errors
– Like a capture-replay tool, it exploits scenarios that

include dynamic portions of sites
– Unlike a crawler, it can go through forms
– Unlike a capture-replay tool, no recording is needed

Juliana Freire 12WWW2002

VeriWeb: Features

Functional testing of both static and dynamic
elements of Web site
Regression testing
Standard correctness checks (e.g., broken
links, malformed URLs)
Realistic testing
– Tests are run through a Web browser and closely

mimic users’ actions

Juliana Freire 13WWW2002

Outline

VeriWeb architecture
How does VeriWeb work?
Automatically filling forms
Controlling search
Conclusion and Future Work

Juliana Freire 14WWW2002

VeriWeb Architecture

Juliana Freire 15WWW2002

Architecture Components

ChoiceFinder
– Find actions in page (JavaScript, links, forms)

VeriSoft
– Tool for systematic software testing ("model checking")
– Controls the search

WebNavigator
– Executes browsing actions

Error checker
– Plugin your favorite checks (e.g., HTTP errors, HTML

validation, …)

Juliana Freire 16WWW2002

How does VeriWeb work?
ExploreSite(startingURL,constraints)
currentPage = Navigator.load(startingURL);
while (true) {
error = ErrorHandler(currentPage,constraints);
if (error.status==true)
VeriSoft.assert(currentPage,error);

if (this page has been seen before)
VeriSoft.abort(currentPage,``cycle'');

else {
choices = ChoiceFinder(currentPage);
selectedChoice = VeriSoft.toss(choices);
currentPage =
Navigator.execute(selectedChoice,choices);

if (currentPage.error != null)
VeriSoft.assert(currentPage,error);

}
}

Juliana Freire 17WWW2002

Form: Which values to use?

Login:___________
Password:________

Juliana Freire 18WWW2002

Form: Many Choices

23 different values for both the From and the to
prices (i.e., Any, 1,000, 2,000, etc.);
4 values for the Sale Type (i.e., No Preference, By
Owner, etc.),
Virtually infinite number of possible choices for
Keyword(s);

Each way to fill up this form corresponds to a different
action

Juliana Freire 19WWW2002

SmartProfiles

Flexible mechanism for populating forms
– Provide values for text fields
– Constrain the values for enumerated fields (e.g., lists)

Tester specifies a user view of the data
– independent of the structure of the Web site
– reusable as structure of Web site changes
– not scenario-based: testing engine tries all ‘reasonable’

combinations of profiles

Juliana Freire 20WWW2002

SmartProfile: Specification

<!DOCTYPE smartprofile [
<!ELEMENT smartprofile (signature* |
profile*)>

<!ELEMENT signature (name, field+)>
<!ELEMENT field (name,synonym)>

<!ATTLIST field key CDATA>
<!ELEMENT profile (name, signature,
fieldvalue+)>

<!ELEMENT fieldvalue (name,regexp)>

<!ELEMENT regexp (#PCDATA) >
<!ELEMENT name (#PCDATA)>

<!ELEMENT synonym (#PCDATA)>
]>

Juliana Freire 21WWW2002

SmartProfiles: Signature

Juliana Freire 22WWW2002

SmartProfiles: Profiles

Juliana Freire 23WWW2002

Filling out Forms

Page analysis
– find keywords related to fields in forms

Profile-to-form matching
– expression matching, default policies and thresholds

ExecuteForm(form,policy)

formSchema = analyzeForm(form);

candidateProfiles = findProfile(formSchema,policy);

selectProfile = VeriSoft.toss(candidateProfiles);

consistentCompletions = formCompletion(form,selectProfile);

selectCompletion = VeriSoft.toss(consistentCompletions);

currentPage = Navigator.fillOut(form,selectCompletion);

Juliana Freire 24WWW2002

Controlling the Search

Verisoft
Filtering
– Ignore “unimportant” actions, e.g., links to postscript, Word

docs, external sites, mailto links,…
Cycle detection
– State vs. stateless: page that look identical may represent

different states. E.g., the initial page of Amazon with and
without cookies

– Configurable cycle-detection
Profile policies
– Number of profiles of interest to the user may be too large to

exhaustively test every combination
– User can control the matching process, e.g., do not consider

more than one match per signature in a path

Juliana Freire 25WWW2002

Contributions: Summary

Novel infrastructure to automate testing of
dynamic Web sites
Search algorithms for automatically exploring
all the paths a user might follow in a Web
application
SmartProfiles as a high-level specification of
test data to populate forms
Strategies for automatically filling forms
during site exploration.

Juliana Freire 26WWW2002

Conclusions

Creating profiles is an iterative process
– System prompts tester for missing information

Flexibility is key
Currently experimenting with different Web sites
Sites are often developed in an “ad hoc” manner:
they are hard to test
– Need web engineering guidelines
– High-level specifications

Juliana Freire 27WWW2002

Acknowledgements

Avinash Vyas
Randy Hackbarth
Joanna McCaffrey

