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Goal

To obtain one unit of an item at the lowest price,
given the following parameters:

M: The maximum bidding price

D: The deadline for obtaining the item

G: The eagerness to obtain the item

Auctions are single-unit with fixed deadlines:

eBay-style auctions with or without proxy bids

FPSB and Vickrey auctions
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Approach

A bidding agent operates in 4 phases:

Compute bid plan

Planning

Revision 
Update probabilities

Place bids

Execution 

quote rise
new auction

Preparation

Estimate probabilities
Get bid histories
Get connection time

probability functions
bidding delay ( ) bidding price (r)

bidding planw( a)
δ a
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Preparation: Probability estimation

Given the history of Winning Bids (W.B.) and the
quote q of an auction, the probability of winning
with a bid of r can be computed in two ways.
Histogram method

w(r) � # of auctions with W.B. between q and r
# of auctions with W.B. greater than q

Normal distribution method

w(r)
= average W.B.
= std. dev. of W.B.
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Planning: Problem statement
Given a set Aa of announced auctions, find:

� A set of auctions As Aa

� A bidding price r � M

such that:

Auctions in As are mutually compatible
a1 a2 As end a2 end a1

Probability of winning 1 auction is satisfactory

a As wa(r) G

r is minimal w.r.t. the previous constraints
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Planning: Computing the best plan

For a given price r, it is possible to compute the
best bidding plan using a critical path algorithm.

P  0.2

  0.2

0.3  0.1

  0.2

  0.1

LEGEND

Two compatible auctions

Auction with prob. of losing P

Auction in best path

Prob. of loosing in best plan = .22 % .12 = .004
Prob. of winning in best plan = 1 – .004 = 99.6%
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Planning: Minimising the bidding price

For each r between 1 and M

Compute the best bidding plan at price r ;

If the prob. of winning with this plan is G,
stop iterating

If no appropriate r is found, notify the user.
Otherwise, take r as the bidding price.

Note: Binary search can be used as optimisation
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Plan execution

The agent places bids of amount r, using proxy
bidding and sniping tools if applicable.

The agent requests quotes of ongoing auctions
and retrieves new auctions.

A plan revision is triggered in the following cases:

A new auction for the required item appears

The quote of an auction in the plan rises
above the bidding price
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Heterogeneity between auctions

Alternative auctions are often heterogeneous:

� Different item characteristics

� Different settlement and shipping conditions

� Different sellers

Two approaches to deal with heterogeneity:

Price differentiation. The user sets a different
maximum price for each auction

Utility differentiation. The user provides a
multi-attribute scoring system
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Experimentation

Auction simulation platform
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Results
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Bidding
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Experimentation

Tested claims

1. The percentage of times that a probabilistic
bidder wins is equal to its eagerness

2. Probabilistic bidders pay less than local ones

3. The welfare of the market increases with the
number of probabilistic bidders
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Experimentation

Validation of Claim 2
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Experimentation

Validation of Claim 3
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Conclusion

Probabilistic bidding agents:

� allow bidders to make tradeoffs between price
and eagerness;

� increase the payoff of their users and the
welfare of the market

Future extensions:

� Multiple units of an item / multi-unit auctions

� Interrelated items (all-or-none transactions)
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