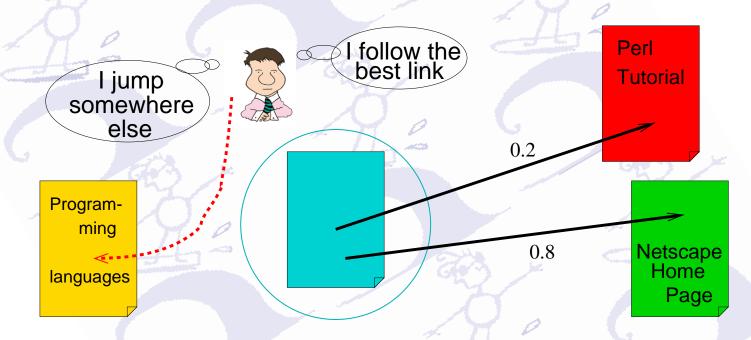
# Web Page Scoring Systems for Horizontal and Vertical search

Michelangelo Diligenti, Marco Gori, Marco Maggini {diligmic, marco, maggini}@dii.unisi.it

11-th World Wide Web Conference 5/9/2002

## Introduction: Web surfing

The goal of the paper is to model an user visiting the Web.



• The probability that the user is visiting a page, is proportional to the relevance of that page.

# Summary

- Definition of the probabilistic model.
- Deriving Google's PageRank and HITS from the model.
- Proposal of new models for vertical search engines.
- Experimental results.

Our surfer is allowed to perform the following basic operations:

j jump to a node of the graph;

• *l* follow a hyperlink from the current page;

• b follow a back-link (a hyperlink in the inverse direction);

ullet s stay in the same node.

Surfer actions depend on the content of current page:

 $\bullet$  x(l|q) the probability of following one hyperlink from page q,

• x(b|q) the probability of following one back-link from page q,

• x(j|q) the probability of jumping from page q,

• x(s|q) the probability of remaining in page q.

- x(p|q,j) the probability of jumping from page q to page p;
- x(p|q,l) the probability of selecting a hyperlink from page q to page p;  $x(p|q,l) \neq 0 \iff p \in ch(q)$ , being ch(q) the set of the children of node q in the graph G;
- x(p|q,b) the probability of going back from page q to page p;  $x(p|q,b) \neq 0 \iff p \in pa(q)$ , being pa(q) the set of the parents of node q in the graph G.

The probability of being located at page p at time step t+1 is

$$x_{p}(t+1) = \sum_{q \in G} x(p|q,j) \cdot x(j|q) \cdot x_{q}(t) +$$

$$+ \sum_{q \in pa(p)} x(p|q,l) \cdot x(l|q) \cdot x_{q}(t) +$$

$$+ \sum_{q \in ch(p)} x(p|q,b) \cdot x(b|q) \cdot x_{q}(t) + x(s|p) \cdot x_{p}(t)$$

 $m{x}(t)$  score vector at time t. Starting from a given initial distribution  $m{x}(0)$ :

$$x(t) = T^t \cdot x(0).$$

#### Surfer model and Markov chains

#### Proposition 1

T' is the state transition matrix of the Markov chain. T' is stable, since T' is a stochastic matrix having  $(\lambda_{max} = 1)$ . If  $\sum_{q \in G} x_q(0) = 1$ , then  $\sum_{q \in G} x_q(t) = 1$ ,  $t = 1, 2, \ldots$ 

By applying the results on Markov chains we can prove that:

#### Proposition 2

If  $x(j|q) \neq 0 \land x(p|q,j) \neq 0$ ,  $\forall p,q \in G$  then 1)  $\lim_{t\to\infty} x(t) = x^*$  where  $x^*$  does not depend on the initial state vector x(0). 2) All pages get a score  $\neq 0$ , thus the resulting scoring system can be applied globally to the entire Web. .

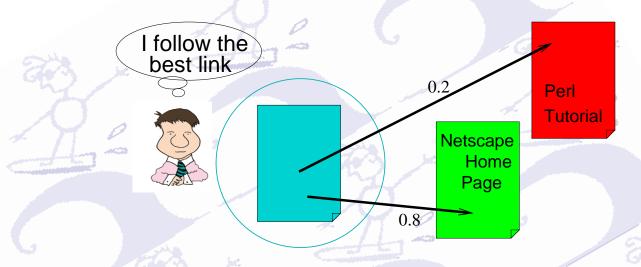
## Google's PageRank

- x(b|p) = x(s|p) = 0 for any page p.
- x(j|p) = 1 d, x(l|p) = d for any page p.
- x(p|j) = 1/N for any page p, where N is the number of pages on the Web Graph.
- $x(p|q,l) = 1/h_q$  where  $h_q$  is the number of outlinks of page q.

For Proposition 2 PageRank converges to a vector independent from the starting distribution.

Note: setting x(j|p) = 1 and x(l|p) = 0 for any sink page p, the resulting model is still probabilistically coherent.

### Focused Google's PageRank



- PageRank: the *random* surfer follows each outlink of page q with probability 1/ch(q);
- Focused PageRank (Domingos 2001): a surfer follows the links according to suggestions provided by a page classifier.

$$x(ch_i(q)|q,l) = \frac{s(ch_i(q))}{\sum_{j=0}^{h_q} s(ch_j(q))}$$

# Double Focused Google's PageRank

Surfer actions depend on content of current page:

ullet probability of following a link in page p is proportional to classification score s(p) of p

$$x(l|p) = d_1 \cdot \frac{s(p)}{\max_{q \in \mathbf{G}} s(q)}$$

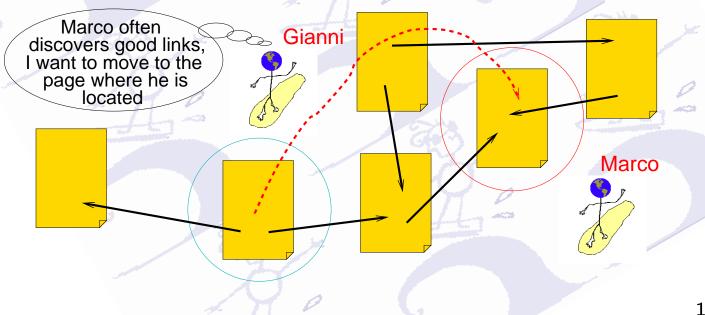
ullet probability of jump to p is proportional to s(p)

$$x(p|j) = \frac{s(p)}{\sum_{q \in \mathbf{G}} s(q)}$$

For Proposition 2 the resulting scoring system is stable and converges to a distribution independent from the initial conditions. All pages get a non-zero score (allowing global ranking).

# Collaborative walks (Multi State models) 1

- A model based on a single variable may not capture relationships among pages (i.e. HITS scheme uses 2 variables).
- We define a multi-variable scheme by considering a pool of surfers each associated to a variable. A surfer can accept suggestions of surfer i, jumping to the page visited by i.



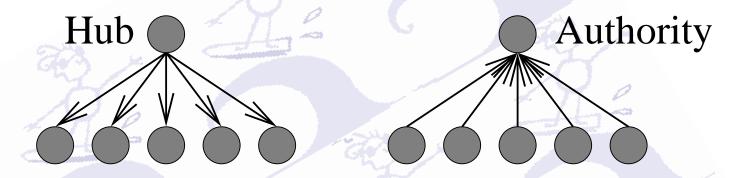
# Collaborative walks (Multi State models) 2

The set of M interacting surfers can be described as a set of matrix equations as follows

$$\begin{cases} x^{(1)}(t+1) = T^{(1)} \cdot X(t) \cdot A^{(1)} \\ \vdots \\ x^{(M)}(t+1) = T^{(M)} \cdot X(t) \cdot A^{(M)} \end{cases}$$

where the j-th element of vector  $A^{(i)}$  indicates the probability that surfer i will relocate to the actual position of surfer j.

# Hubs/Authorities



The HITS algorithm assigns an *authority* and *hubness* score to each page p. It is modeled by a collaborative walk of 2 surfers:

- Surfer 1 associated to the page hubness.
- Surfer 2 associated to the page authority.
- $x^{(1)}(l|p) = 0$ ,  $x^{(1)}(b|p) = 1$  for each page p.
- $x^{(2)}(l|p) = 1$ ,  $x^{(2)}(b|p) = 0$  for each page p.

# Hubs/Authority

- $x^{(1)}(p|q,b) = 1$  for each page q and  $p \in pa(q)$ .
- $x^{(2)}(p|q,l) = 1$  for each page q and  $p \in ch(q)$ .
- Surfer interaction:  $A^{(1)} = (0,1)'$ ,  $A^{(2)} = (1,0)'$

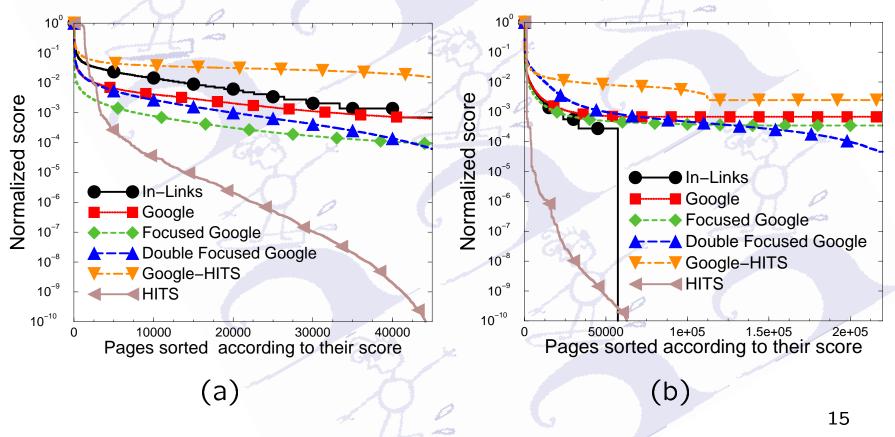
HITS does not respect the probabilistic model:

$$\sum_{p \in ch(q)} x^{(1)}(p|q,b) = |ch(q)| > 1$$
$$\sum_{p \in pa(q)} x^{(2)}(p|q,l) = |pa(q)| > 1$$

HITS can be modified to respect the probabilistic model and the conditions stated on Proposition 2 (more details on the paper).

#### Experimental results

2 focus crawling sessions for the topic "Linux" (50.000 pages) and "cooking recipes" (300.000 pages). We report the rank values of pages (sorted by the rank value).



### Qualitative results 1

#### PageRank

www.zdnet.com

www.google.com

search.internet.com/power\_search

www.ibm.com

www.yahoo.com

www.ibm.com/planetwide/select

java.sun.com

www.osdn.com

#### HITS

www.openbsdapps.com/?page=category&...

www.openbsdapps.com/?page=category&...

www.openbsdapps.com/?page=category&...

www.openbsdapps.com/?page=category&...

www.openbsdapps.com/?page=category&...

www.openbsdapps.com/?page=category&...

www.openbsdapps.com/?page=newupdate...

www.openbsdapps.com/?page=linkus

8 top "Linux" score pages, using either the PageRank surfer, or a HITS surfer pool (considering the authority value).

# Qualitative results 2

#### Focused PageRank

www.internet.com/sections/linux.html

www.slackware.com

www.linux.org

www.zdnet.com

jobs.osdn.com

www.yahoo.com

www.linux.org/books/index.html

www.python.org

#### Double Focused PageRank

www.internet.com/sections/linux.html

www.slackware.com

www.li.org

www.linux.org

www.linuxhq.com

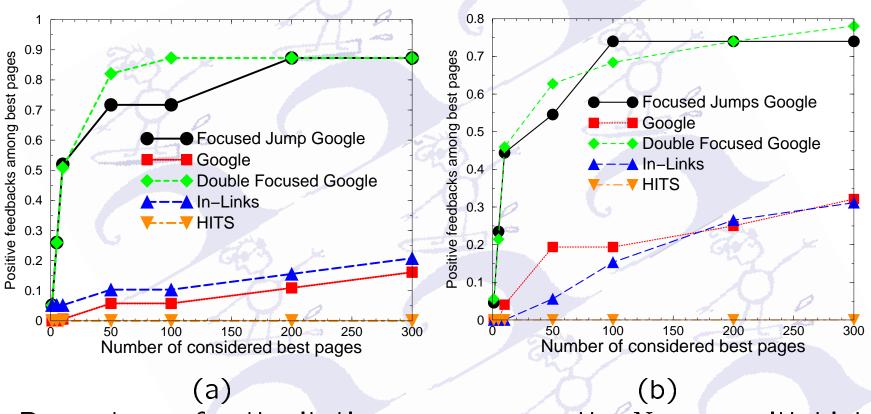
www.slackware.org

www.linux.org/index.html

www.linuxusers.org

8 top "Linux" score pages, using the proposed focused versions of the PageRank surfer.

# Expert judgments



Percentage of authoritative pages among the N pages with highest score. 10 experts labelled the pages as "authoritative" or not "authoritative" for the topic.

#### Conclusions

- We defined a probabilistic model from which many popular scoring algorithms can be derived.
- Properties of a scoring system based on our model:
  - 1. stable (at each iteration the sum of scores is equal to 1);
  - 2. converges to a solution independent from initial condition;
  - 3. non-zero score to each page (allowing global ranking).
- We proposed new scoring algorithms for vertical and horizontal search. Experts judgments confirm that proposed algorithms provide better results than other scoring systems.