IEEE P1484.2/D7, 2000-11-28

Draft Standard for Learning Technology —
Public and Private Information (PAPI) for
Learners (PAPI Learner)

Sponsored by the Learning Technology Standards Committee
of the IEEE Computer Society

Copyright © 2000 by the Ingtitute of Electrica and Electronics Engineers, Inc.
3 Pak Avenue

New York, NY 10016-5997, USA

All rights reserved.

This is an unapproved draft of a proposed IEEE Standard, subject to change. Permission is
hereby granted for IEEE Standards Committee participants to reproduce this document for
purposes of |EEE standardization activities. If this document is to be submitted to 1SO or IEC,
notification shal be given to the IEEE Copyright Administrator. Permission is aso granted for
member bodies and technical committees of 1SO and I1EC to reproduce this document for pur-
poses of developing a nationa position. Other entities seeking permission to reproduce this
document for standardization or other activities, or to reproduce portions of this document for
these or other uses, must contact the IEEE Standards Department for the appropriate license.
Use of information contained in this unapproved draft is at your own risk.

|EEE Standards Department
Copyright and Permissions

445 Hoes Lane, P.O. Box 1331
Piscataway, NJ 08855-1331, USA

[Note: Information about | EEE LTSC P1484.2 can be found at:

http://ieee.ltsc.org/ wy2

This document (PAPI Learner draft 6) isalso available at:

http://edut ool . com papi

Thisnotewill be removed upon reaching thefinal draft of this | EEE document.]

2000-11-28 P1484.2D7

| ntr oduction

(Thisintroduction is not part of IEEE P1484.2, Public and Private Information (PAPI) for
Learners.)

** TO BE SUPPLIED **

At the time this Standard was completed, the working group had the following member-
ship:

Mike Collett, Chair
Frank Farance, Technical Editor

aaa Josh Tonkel
Carlos. C Amaro Brendon Towle
Thor Anderson John Tyler
Debbie Brown Tom Wason
Peter Brusilovsky Eamonn Webster
Richard Burke lan Wright
Brant Cheikes Bill Young
Philip Dodds 77z

Mike Fore To be supplied
Paul Foster

Vladimir Goodkodsky

Martha Gray

Wayne Hodgins

Roger Lange

lan Kegel

Cindy Mazow

William A. McDonald

Bill Melton

Yves Nicol

Claude Ostyn

Bruce Peoples

Tom Probert

Dan Rehak

Kevin Riley

Steve Ritter

Robby Robson

Randy Saunders

Jm Schoening

Paul Siegel

Kathy Sinitsa

Gayle Stroup

Copyright © 2000 |EEE. All rights reserved.
Thisisan unapproved | EEE Standards Draft, subject to change. ii

2000-11-28 P1484.2D7

The following persons were on the baloting committee: (To be provided by |EEE editor a
time of publication.)

Copyright © 2000 |EEE. All rights reserved.
Thisisan unapproved | EEE Standards Draft, subject to change. 3

2000-11-28 P1484.2D7

CONTENTS
I Y= = 8
T S 00 o SR PRRPRRPIN 8
L2 PUIDOSE ...ttt ettt et he ettt e et e e e bt e e se e e ese e sase e be e e aneebeesabeebeeenneenneennreenns 9
1.3 Normative wording Vs, informative WOrding............coeverereeierneenieniesesee s 11
1.4 Document organization (FOad M)ccueeeerreerieeieeseeseeieesee e see e e sreeeesreeseeeneesns 11
2 NOrMALIVE FEFEN BNCES ...ttt b et sr e n e 13
G = 11011 o S 14
3.1 Definitions incorporated via normative refErenCe.coovereeeeseeseeieeseese e s 14
3.71 Acronyms and abbreviationscccceeieeieiie i 28
A CONFOMMI@INCE ...ttt e ee ettt e sttt e s ae e ee e st e s beebesseesaeesbeeneesbeetesneesseensennsesseensens 30
4.1 CONfOrMANCEIEVEL......c.eeeee et re e e eneenne s 30
S T 015 3SR 30
4.1.2 Strictly conforming implementationS............coeeieeiereeneere e 31
4.1.3 Conforming imMPIEMENTELIONSceeerieieiereere e 31
4.1.4 Non-conforming implementationsSccceeeereeiesieeseere e 32
4.1.5 Obligation of data@ements............ccceeviiieiie i 32
4.1.5.1 Mandatory data lemMENtS.........c.cceeeeeiierierieresie e 32
4.1.5.2 Optional data@emENtS........cccceiieieiiereee e 32
4.1.5.3 Conditional data &lemeEntS..........ccccerereeiinenise s 33
4.1.5.4 Extended data @lemMENtS.........coiireieeiieeseeie e 33
4.1.6 Longevity Of data ElEmMENES.........ccceviririeieie et 34
4.1.6.1 Obs0lete data EEmMENLS.coieieeieieeee e 34
4.1.6.2 Reserved data €lemeEntS........c.coiiiierieieneeseeie e 35
4.1.7 Recursive/contextua nature of obligation/longevity..........ccceeeverinivenineceenee, 36
4.2 ConformManCe laES........c.coiie s 36
4.3 CodiNG CONFOIMMANCE.......eciieeiieetie ettt et e b ra e ebe e saeeebe e reeenreeans 38
4.3.1 Data St COMTOMMANCE......eiveeeeereesteeeesseesteeseesseesseeseesseesseesesseesseesesseesseensesseessens 38
4.3.2 DatainStanCe COMOMMIBINGCE.euuerrerierieeeseeseesteseesse st sseseeeessessesbeseesaessesseenens 39
A4 APl CONTOMMBINCE.eetereerieesie et ettt sttt ettt sae e b e e e e s beesbesatesaeesbeennesneenneas 40
4.5 ProtoCOl CONFOMMEINCEoiueeieeieeiesie ettt sne e 40
4.6 Data AppliCation CONTOIMEBNCE.coeririeeieierie ettt 41
4.6.1 Strictly conforming data appliCation...........c.ccceeeeeieeieeieeie e 41
4.6.2 Conforming data appliCaliON..........cccereereriieienee e 41
4.6.3 Both drictly conforming and conforming data appliCations.............ccoeverereeneee. 42
4.6.3.1 CoNfOrMItY @SSESSIMEN.....c.vecieeieeeecieeieeee et e ste e re e e e e e re e eneennens 42
A.6.3.2 HIUSIFTBLIONS ...ttt ettt st sb et b e s s nne s 42
4.6.4 Data appliCation VANELIES.........c..eeerereeieieseesee sttt 43
N RS DL =N (= 010 = | (0 Y/ SRS 43
XSl BT r= U (== o[S SRR 44
N A DT = N1] (= SRR 44
S FUNCLIONAIITY ...ttt sb e 45
5.1 System functional reqUIFEMENES.cccueieeiieiie ettt 45
5.2 Application reqUIrEMENtS SYNOPSISveeueerueeierersieeseeeeesreestessessseessesseesseessessesssessens 45
5.3 Technical reqUIremMENtS SYNOPSIScouerueereiereerte st st st se et sse b i sae s sne e e 47
5.3.1 Controlling access to iNfOrMELiON...........cceceieereeie e 47
5.3.2 Culturd and ingtitutional CONVENLIONS..........coeerieriinie e 49
5.3.3 Connectivity tO iINFOrMBLION..........coveeeierieree et 49

Copyright © 2000 |EEE. All rights reserved.
Thisisan unapproved | EEE Standards Draft, subject to change. 4

2000-11-28 P1484.2D7

5.3.4 Partitioning INfOMMBLION...........coeriiieieieie e 50
5.3.5 Summary of enginesring goalScccueierierererene e 50

X @algTe= o1 U T I 4 gTo T [SR 51
6.1 Learner information, learner profiles, PAPI LEAINESccccoveeveriinieneee e 51
6.2 Information types vS. data rEPOSITONES.coveeeriirieresie e 53
6.3 Data 8CCESS MOUEL........coveieieieeiee ettt 53
6.4 Extending PAPI within an gppliCation ar€a............ccccvevieiieeiie e 55
6.5 LImMiting PAPI EXIENTONS.......ocuiiiiiitiiieriesieeeee e 55
6.6 Distance, distributed, and NOMadiC SYSEEMSccceeierieiece e 55
6.7 Correlation of granularity |EVEIScceeii i 55
6.8 SECUNMTLY MOTE ...t 55
S = 1= 1o TS 58
7.1 Genera data OPEralionNS.cceeiueeiieeeeceesteeee s e re e st et e e r e e e e reenesreesreeneens 58
7.2 Application-specifiC data OPEratioNS...........ccveieerieeiisie et 59
7.3 Data COMPALTDITTY......eeeeeeeeeeeee e 59
PR S olN 1o > 1T0 7= [0 = =)Y 0= S 60
7.4.1 PAP _learner_context [abel type.......ccvviieiiee i 60
TA2ATAYIIT ... e b e 60
A 101 L aTe T 1Y oSS 61
TAAMISING BITAY.c..eceeeieete ettt st ste e sre et e e e e saeetesrnesreenne e 61
745 PAPI_learner DUCKEL TYPE.....ueeiiiieitiee ettt 61
7.4.6 PAPI_learner identifier TYPe.....ccviveieeieree e eie et et 62
7.4.7 PAPL_learner Nid tYPe.....ooeeiieee ettt s 63
7.4.8 PAPI_learner_identifier_type tyPe......cooviieieeieceesee et 64
749 PAPI_learner_data cartifiCation tYPe........cceveeeereereeie e e e 64
7.5 PAPI learner persona information datatypes.........cccveeevieeveeieesieeie e 65
7.5.1 PAP _learner_persona infO tYPe......ccceiieeieeiie et 65
7.5.2 PAPI_1€8rNEr_NAIME LYPE.....coiveeeeeieesieeiesieeste e seesteesee e steenee e sseeeesreesreenseens 70
753 PAPI_learner_formal_Name tYPe........cccovveereeienieese et see e 71
754 PAPI_learner_full_Name tYPe.........ccoveieiieiece ettt s 72
7.5.5 PAPI_learner_telephone type.......ccooeeiiieieeeee e 72
7.5.6 PAPI_learner_email_CONtaCt tYPe.......ccoereereeeeeeeseesiesee e see e ee e 72
7.5.7 PAPI_learner_postal address tyPe......covveeveeiecee e 73
7.6 PAPI learner relations information datatypesS.........oovvveerierieniesieee e 74
7.6.1 PAPI_learner_relations iNfO _TYPe......ccovreereeiesieseeiesee st see e 74
7.6.2 PAPI_learner_relationship_tyPe tYPe......coeeveeieeeesieeie et ie et 77
7.6.3 PAPI_learner relationship tYPe.....cueccuieiieciie ettt 77
7.7 PAPI learner security information datayPES.eoverververeerereeeeiesie e 78
7.7.1 PAPI_learner_SeCurity infO tYPe.....civeie ettt 78
7.7.2 PAPI_learner_security_crendential type.......ccccveveiieie i 80
7.8 PAPI learner preference information datatyPes.........covvererereeieerieniesesiese s 80
7.8.1 PAPI_learner_preference info type......cooooeierine i 80
7.8.2 PAPI_learner_device preferenCe type.......ccoecceeeeieecie e 83
7.8.3 PAPI_learner_device 10 PrefErenCe........cocuveeieniene e 84
7.8.4 PAPI_learner_device parameter tyPe.......cccooeierereneneneeieseese s 85
7.9 PAPI learner performance information datatypes...........coveveeveeseeiesieeseese e e 86
7.9.1 PAP_learner_performance infO tYPe........ccveeiieeiiesie et 86
7.10 PAP! learner portfolio information datatyPes..........coeeererereeieeiieriesiesie s 90

Copyright © 2000 |EEE. All rights reserved.
Thisisan unapproved | EEE Standards Draft, subject to change. 5

2000-11-28 P1484.2D7

7.10.1 PAPI_learner_portfolio_infO_tYPe......cooeeieeiereie e 90

ST = T 0[] 0o SO S PP VPORPRRRSON 93
LS 1o o [T RS 93
10 Annex A: Bibliography (INfOrMatiVe).........ccceiiriiiienieieseesee e 94
11 Annex B: ISO/IEC 11404 data model summary (informative)..........ccocoeeverereeenne. 95
11.1 FOuNdational dalatyPES.........ceeeerueriesieerieeiesteesieeeesree e e see e e teenee e e sseeeesreenneeneenns 95
11.2 PAPI learner persona information datatyPesS.......ccuvevveeieeiiieesie e e e see e 97
11.3 PAPI learner relations information datatyPes.c.cvverereeieeieenieniesese e 99
11.4 PAPI learner security information datatyPeS........cceeeeveereeeieesieeseeeeseeseeeseesseeneens 100
11.5 PAPI learner preference information datatypes.........c.cceevveeieeeeesesieeveesieecee e 101
11.6 PAPI learner performance information datatypes...........cceveveereereneneneneseseeeenes 102
11.7 PAPI learner portfolio information datatyPes.........ccovvererereeneeniesesesee s 103
12 Annex C: XML coding binding (conditionally normative)............cccceeveveveecveenene. 105
12.1 Generating and ProduCing XML.........ccooeeiirienennesee e e 105
12.2 Consuming and interpreting XIML........coceeiieneeeeeee s 108
12.3 Representation of basiC datatyPesS........covevveieeriecie i 109
12.3.1 Characters and CharaCter StriNGS.......cvvivveeiieiiiie ettt 109
R A | 010 o = £ TSR URS PR ORPPRPRRPORN 110
12.3.3 REE NUIMDENS. ..ottt bbb 110
12.3.4 Date and tiME VAIUEScceviiieicieeieeie ettt 110
12.3.5 VOIO EYPES ...ttt bbbt sn e sn e 112

12.4 Encoding of character repreSentations...........oovvveverereneseeieee s 112
12.5 Handling exceptions and EXLENSIONScccuveeeiiecrie e eee st nne s 113
12.5.1 Implementation-defined DENAVIONcooeeiiiiiiieeeee e 113
12.5.2 UNSPeCified DENAVION.........ccoiiiieeeeee e 113
12.5.3 UNdefiNed DENAVIONc.oiviiiiiceseee e 113

13 Annex D: DNVP coding binding (conditionally normative)............ccceeevvcveeieecnenne 114
13.1 Dotted Name-Vaue PairsS (DNVPS) ... 114
13.1.1 BasiclexiCal EementS........ccocovireierieeiese e 114
13.1.2 Fiddd name and field VAU.coeeieieieee e 116

13. 1.3 NEWIINE PrOCESSING ...ccuveueeeeriestesie sttt st sb et se b sre b e ne e 116
13.1.4 SYNEAX SUMIMIAIY.....eeveeeeeieenteesiesee st esse s s e sseesse e e sseesnesnnessnesnesnesneenrens 116

13.2 Generating and producing dotted name-value Pairs..........ccccceeeereeieeseesiesieeseennens 117
13.3 Consuming and interpreting dotted name-value Pairs.........c.cccovererieieenesieeseenens 118
13.4 Representation Of basiC dalatyPeS.......ccevveierierierereree s 120
13.4.1 Characters and CharaCter StHNQGS........coveeeeeeerieeiesee s eee e se e s sreeseesee e 120
G [110 T £ TSR 120
13.4.3 REA NUMDEIS......cciiieieieeiesiee et ste e sseeste e sreesseeneesneenrens 120
13.4.4 Date and tiME VAIUBSoceiuiiiriereeee ettt 120
IR A o L0 1Y o= USRS 120

13.5 Encoding of character repreSantations...........covoeverereneneeeeee s 121
13.6 Handling exceptions and EXIENSIONScccouererierenie e 121
13.6.1 Implementation-defined BENAVIONc.ccveiieieiiesececee e 121
13.6.2 UNSPeCified DENAVION..........ooiiiieriesee e 121
13.6.3 UNdefiNed DENAVIONoceeieieiece e 121

14 Annex E: Document development (informative)..........cceeveeeeveevieccieceesie e 122
14.1 REVISION NISLOMY ...ttt e sne e eare e 122
14.2 Release notes for thiS dOCUMENT...........coviriiiieneee e 122

Copyright © 2000 |EEE. All rights reserved.
Thisisan unapproved | EEE Standards Draft, subject to change. 6

2000-11-28 P1484.2D7

14.3 Resolved issues
LA OPON ISTUBS. ...ttt st st st sse et e e e et sa e besb e e bt st e e et et et e sbesbenbeeaenneeneenes
14.5 Comments on this document

Copyright © 2000 |EEE. All rights reserved.
Thisisan unapproved | EEE Standards Draft, subject to change.

2000-11-28 P1484.2D7

1 Overview

Abstract

The Public and Private Information (PAPI) for Learners (PAPI Learner) is a standard "port-
able" learner (student) records. PAPI Learner is a data interchange specification, i.e., commu-
nication among cooperating systems. The data is exchanged: (1) via externa specification,
i.e, only PAPI Learner coding bindings are used while some other data communication
method is mutually agreed upon by data exchange participants; (2) via control transfer mecha-
nism to facilitate data interchange, e.g., PAPI Learner API bindings; (3) via data and control
transfer mechanisms. e.g., PAPI Learner protocol bindings.

A key feature of the PAPI Learner Standard isthe logica division, separate security, and sepa-
rate adminigtration of severd types of learner information: (1) persond information. eg.,
name, address, socia security number; (2) relations information, e.g., cohorts, classmates, (3)
security information, eg., public keys, private keys, credentids; (4) preference information,
eg., useful and unusable 1/0O devices, learning styles, physica limitations; (5) performance
information, e.g., grades, interim reports, log books; (6) portfolio information, e.g., accom:
plishments and works. These six types of information are dso known as "profile information”
and "learner profiles’. The PAPI Learner Standard may be integrated with other systems,
protocols, formats, and technologies.

1.1 Scope

This Standard specifies the syntax and semantics of a"Learner Modd", which characterizes a
learner (student or knowledge worker) and his or her knowledge/abilities. This Standard n-
cludes eements for recording knowledge acquisition, skills, abilities, learning styles, records,
and personal information. This Standard alows these eements to be represented in multiple
leves of granularity, from a coarse overview, down to the smallest conceivable sub-element.
The Standard allows different views of the Learner Modd (learner, teacher, parent, school,
employer, etc.) and substantially addresses issues of privacy and security.

Note: Initidly, this Standard was developed for learning technology applications but the PAPI
approach may be easily applied to other types of human-related information such as medica
and financid applications.

The following features are outside the scope of this Standard:

Specific Extensions. Not al human information about learners is specified by this
Standard. For example, "personal information”, in general, might include "shoe size",
but the PAPI learner persona information is a limited subset of "personal informa-
tion", which does not require the inclusion of "shoe size". Implementations may pro-
vide their own data extensions to this Standard, but these systems might change from
"strictly conforming implementations’ to "conforming implementations’. This Stan-
dard supports data extension mechanisms that may be used by users, groups, ven-
dors, ingtitutions, industries, and others.

Copyright © 2000 |EEE. All rights reserved.
Thisisan unapproved | EEE Standards Draft, subject to change. 8

2000-11-28 P1484.2D7

Granularity. This Standard does not specify the granularity of information. For ex-
ample, in learning technology applications PAPI learner records can have granularity
ranging from professiona certifications (e.g., years of learning), to semester grades
(e.g., months of learning), to lesson scores (e.g., days of learning), to minute-by-
minute data samples of learner progress (e.g., minutes of learning). This Sandard
may be used for a wide range of data recording applications.

Repository Design. This Standard does not specify the implementation or admini-
stration of the records repositories but supports a wide variety of design and imple-
mentation possibilities. For example, all types of PAPI learner information may be
implemented as a single, combined repository or may be implemented as separate re-
positories. The specific design of the repository (or repositories) is a "quality of im-
plementation” feature and is outside the scope of this Sandard. The choice and de-
sign of partitioning repositories into one or more administrative "realms’ is a feature
of the implementation and application, and is outside the scope of this Standard.
Specific Security Technologies. This Standard supports the incorporation of various
security architectures, methods, and techniques that support a wide range of imple-
mentations and security policies. However, no specific security technologies (e.g.,
128-bit encryption) are mandated by this Sandard.

1.2 Purpose

The purpose of this Standard is:

To enable learners (students or knowledge workers) of any age, background, location,
means, or school/work situation to create and build a personal Learner Model, based
on standards, which they can utilize throughout their education, learning experiences,
and work life.

To enable courseware developers to develop materials that will provide more person-
alized and effective instruction.

To provide educational researchers with a standardized and growing source of data.
To provide a foundation for the development of additional educational standards, and
to do so from a student-centered learning focus.

To provide architectural guidance to education system designers.

This Standard describes interoperability thet is:

General. This Standard may be implemented across a wide variety of platforms, op-
erating environments, applications, and industries.

Lasting. This Standard is expected to span a technical horizon of 5-10 years. Con-
forming implementations are expected to be interoperable for at least the duration of
the technical horizon. Technical Corrigenda (corrections), Amendments (enhance-
ments), and Revisions (regular 5-year cycle) will be developed through the accredited
standards development process to assure continuity and consistency for stakeholders.
Precise. Interoperability can be tested, measured, and assessed for implementations
that claim conformance to this Standard.

Formal. The IEEE 1484.2 Learner Model Working Group is responsible for: devel-
oping this Standard; maintaining this Standard; correcting defects within this Stan
dard; and for formal interpretation of this Standard resolution of any ambiguities.

Copyright © 2000 |EEE. All rights reserved.
Thisisan unapproved | EEE Standards Draft, subject to change. 9

2000-11-28 P1484.2D7

IEEE is an open, accredited standards development organization that administers the
formal standards process for the Learning Technology Standards Committee (IEEE
LTSC) and IEEE 1484.2, aworking group within LTSC.
Commercially Viable. The "quality of implementation” can be varied to meet com-
mercial needs. Implementers and vendors may create a spectrum of implementation
qualltles from which consumers may choose, such as varying levels of:
Conformance: from "strictly conforming” (maximum interoperability) to "con-
forming" (avariety of extended capabilities);
System Performance: avariety of performance metrics;
Purchase and Maintenance Cost: avariety of financia metrics;
Interoperability. The level of interoperability is related to the level of confor-
mance to this Standard, related standards, and related specifications. However,
conformance is subtly different from interoperability: conformance is the satis-
faction, by an implementation (or a system), of the requirements of a standard or
specification, while interoperability is the successful interaction among two or
more implementations and the automation, to the level desired, of said interac-
tions. For example, several combinations of interoperability are possible:
¥, Scenario #1: An implementation interoperates only among strictly con-
forming implementations. Example: The implementation might only i+
clude the features of this Standard, but no extensions or proprietary fea-
tures are used.
¥, Scenario #2: An implementation interoperates with other implementations
from the same vendor, user, or institution.
¥, Scenario #3: An implementation interoperates with a wide variety of user-
specific, vendor-specific, institution-specific, and/or industry-specific ex-
tensions.
Interoperability is dependent upon the kind of conformance to this Standard, and
may be dependent upon conformance to features outside this Standard (e.g., ex-
tensions, such as related standards, specifications, and contractual agreements).
Extendable. This Standard describes a set of features developed and agreed to in the
formal consensus-building process. However, users, vendors, institutions, industries,
and others will desire additional features (extensions) to support their specific needs.
Conforming PAPI Learner implementations may use extensions, as permitted by im-
plementations and as permitted data interchange interoperability requirements. As
certain extensions become widely used, the consensus-building process may choose
to incorporate these features into this Standard via a future Amendment or Revisions
(see above). Thus, widely used extensions now may later become additiona re-
quirements that will be imposed upon future, strictly conforming (maximally interop-
erable) implementations. |EEE 1484.14.x "Extension Techniques' describes these
standards lifecycle processes.

Note: PAPI Learner was initiadly developed for learning technology applications but may be
eadly extended to other types of human-related information such as medica and financiad ap-
plications.

Copyright © 2000 |EEE. All rights reserved.
Thisisan unapproved | EEE Standards Draft, subject to change. 10

2000-11-28 P1484.2D7

1.3 Nor mative wording vs. infor mative wor ding

Note: This subclause isinformative and not normative.

This document contains two types of technical description:

Normative wording. This wording places technical requirements on conforming
implementations — normative wording is the essence of this Standard. Conformity
assessment (e.g., conformance testing) is based solely on normative wording. Nor-
mative wording excludes introductory material, overview, rationale, footnotes, exam:
ples, bibliography, informative annexes, and sections labeled "this sec-
tion/clause/subclause is informative and not normative'.

Informative wording. This wording is helpful, but not required, for understanding
this document. Clause 1 and Annexes A-B and E are informative. Other informative
wording is identified in individua cases. The Notes given provide clarification of the
text, examples, and guidance — they do not contain technical requirements and do
not form an integral part of this Standard.

1.4 Document organization (road map)

Note: This subclause isinformative and not normative.
This Standard conssts of 9 clauses and 5 annexes.

It is strongly recommended that the stakeholders Application Developer, Ingtitutional Admin-
istrator, Security Administrator, Regulator (e.g., Legidator), and User (Learner) read Annex
C, Stakeholder Perspectives, for additional guidance on reading this Standard.

The following is an overview of each section.

Clause 1 [Introduction]: background information and a high-level summary of the
features of this Standard.

Clause 2 [Normative Refer ences|: normative wording that is incorporated by refer-
ring to other standards and specifications.

Clause 3 [Definitions]: a list of terms and their definitions, and a list of abbrevia
tions.

Clause 4 [Conformance]: the technical requirements for claiming conformance to
this Standard.

Clause 5 [Functionality]: description of the purpose and use of PAPI Learner m-
plementations.

Clause 6 [Conceptual Model]: description of a"logica" (in contrast to "actua™) im-
plementation; the PAPI learner information types. personal, relations, security, pref-
erence performance, portfolio.

Clause 7 [Semantics]: the meaning of data interchange across implementations and
bindings.

Clause 8 [Bindings]: the mapping of semantics to one or more codings, APIs, and
protocols.

Copyright © 2000 |EEE. All rights reserved.
Thisisan unapproved | EEE Standards Draft, subject to change. 11

2000-11-28 P1484.2D7

Clause 9 [Encodings]: the representation and format of information as data formats,
calling conventions, and communication layers.

Annex A [Bibliography, informative]: references to related documentation.

Annex B [ISO/IEC 11404 Data Model Summary, informative]: a summary of the
data model in ISO/IEC 11404 notation.

Annex C [XML Coding Binding, conditionally normative]: the XML coding
binding of PAPI Learner data interchange.

Annex D [DNVP Coding Binding, conditionally normative]: the RFC 822-Style
(E-mail header) binding of PAPI Learner data interchange.

Annex E [Document Development, informative]: a revision history and list of all
outstanding issues with respect to this document.

Copyright © 2000 |EEE. All rights reserved.
Thisisan unapproved | EEE Standards Draft, subject to change. 12

2000-11-28 P1484.2D7

2 Nor mativereferences

The following normative documents contain provisions which, through reference in this text,
condtitute provisons of this Internationa Standard. For dated references, subsequent amend-
ments to, or revisons of, any of these publications do not apply. However, parties to agree-
ments based on this International Standard are encouraged to investigate the possibility of gp-
plying the most recent editions of the normative documents indicated below. For undated ref-
erences, the latest edition of the normative document referred to applies. IEEE and members
of 1SO and IEC maintain registers of currently valid Standards.

ANSI X3.30:1998, "Representation of Calendar Date and Ordina Date for Informa-
tion Interchange"

ANSI X3.42:1990, "Representation of Numeric Vaues in Character Strings for In-
formation Interchange”

ANS| X3.285:1998, "Metamodel for Data Representation”

ANSI "American National Standard Dictionary for Information Technology
(ANSDIT)"

|EEE 1484.1, Learning Technology Systems Architecture.

|EEE 1484.3, Learning Technology Glossary.

|EEE 1484.12, Learning Object Metadata (LOM).

|EEE 1484.13, Simple Human Identifiers.

|EEE 1484.14, XML Bindings.

|EEE 1484.15, Data and Control Transfer Protocol (DCTP).

| EEE 1484.20, Competency Definitions.

|IETF RFC 822, Format of E-mail Messages and E-mail addresses (?77?)

IETF RFC 2068, Hypertext Transfer Protocol (HTTP/1.1)

ISO/IEC 2382 "Information Technology — Vocabulary” (multiple parts)

SO 8601, "Date and Time Formats’

| SO/IEC 11404:1995, Language Independent Datatypes.

ISO/IEC 11179, "Metadata Registries’

|SO/IEC 15067-1, "Data and Control Transfer Protocol (DCTP)"

ISO/IEC 15945 " Specification of Trusted Third Party Services to Support the Appli-
cation of Digital Signatures’

ISO/IEC 17799-1, "Code of Practice for Information Security Management"

ISO/IEC 20944, "Metadata Access Service (MDAYS)"

W3C XML, Extensible Markup Language (XML)

http://www.w3.0rg/ TR/REC-xml

Copyright © 2000 |EEE. All rights reserved.
Thisisan unapproved | EEE Standards Draft, subject to change. 13

2000-11-28 P1484.2D7

3 Definitions

Note: The following definitions are being/have been harmonized with the IEEE 1484.3 Glos-
sary and Reference Materids.

3.1 Definitions incor por ated via nor mative r eference

Note: The following terms and their definitions have been incorporated via the normative ref-
erences.

|SO/IEC 2382 "Information Technology — Vocabulary” (multiple parts)

ANSI "American Nationa Standard Dictionary for Information Technology
(ANSDIT)"

|EEE 1484.3 Glossary and Reference Materials

3.2 accessor
A user, system, agent, or entity that attempts to access an asset within a security perimeter.

3.3 aggregate (datatype, value)

A generated datatype or value, each of whose datatypes or vaues is, in principle, made up of
the component datatypes or values. The datatype or vaue is generated by applying an ago-
rithmic procedure to combine the component datatypes or values. The component values are
accessible via characterizing operations. The properties of the aggregate are independent of
the properties of its components.

Example 1. An array aggregate contains components all of the same type. A characterizing
operation uses an index (a number) to accessindividua components.
ny_array:

array (0..9) of (integer), [// an array of integers
nmy_array(4) // accessing el enent #4

Example 2: A record aggregate contains components, each component individually typed and
labeled. A characterizing operation uses a element name (an identifier — a word) to access
individual components.

A. record

(

B: integer,

C. void,

D. characterstring(iso-10646-1),
)y

A.B // accessing element |abeled B

Note: Thisdefinition is adapted from 1SO/IEC 11404.

3.4 application area
An industry or market segment for which a set of related applications are devel oped.

Copyright © 2000 |EEE. All rights reserved.
Thisisan unapproved | EEE Standards Draft, subject to change. 14

2000-11-28 P1484.2D7

3.5 binding

An agpplication or mapping from one framework or specification to another.

3.6 coding

(1) In information interchange, a formalized or structured representation of information. See
Also: encoding.

(2) A process of representing information in some structure.

3.7 conditional data element

Within the appropriate context, an element of a data structure that is defined and required
within an instance of the data structure, if certain conditions are satisfied.

The "conditiona" nature of a data element is an obligation attribute.

See Also: extended data e ement; mandatory data €lement; obligation (data element); optiona
data e ement.

3.8 confidentiality
This subclause is informative and not normative.

A security technique that minimizes outbound security threets to an acceptable level by per-
mitting retrieval or read access to authorized entities, and prohibiting retrieval and read access
to unauthorized entities.

Note: Various security technologies may implement "confidentiality".

See Also: |IEEE 1484.2.3 "PAPI Learner Information Security Notes', for more details on
confidentiality-related issues.

3.9 consume (data)

To read data and then process it to the extent that some lexica or coding boundaries are dis-
covered. A dataconsumer performs alimited number of trandation phases.

Other Forms. consume data, data consumer, data consumption.
See Also: interpret (data); produce (data).
Note: Data is consumed before it isinterpreted.

Example 1: In the following character stream:

<R>
<A>123. 45</ A>
PQR</ B>
<C X="Y">Z</ &
</R>
<R>

Copyright © 2000 |EEE. All rights reserved.
Thisisan unapproved | EEE Standards Draft, subject to change. 15

2000-11-28 P1484.2D7

<D>JKL</ D>
<BE>
<F>XXX</ F>
<GYYY</ &
</ B>
</ R>

a data consumer might recognize:

there are two records, both with tags "R"
the first "R" record contains three records with tags "A", 'B", "C"
the second 'R" record contains two records with tags "D" and "E"

However, the data consumer:

might not understand the meanings of tags. what does '. . . </ B>" mean?

might not validate the tags. is'<C>" permitted to have the attribute "X"?

might not validate the contents of the records: within record 'A", is "123. 45" avdid
value?

might limit the depth of its analysis. 'R" is only explored one level deep to discover
tags 'D" and 'E", but only alimited analysis (e.g., finding balanced tags) of the con-
tents of "E" is performed such that tags 'F" and "G" are not analyzed or discovered.

Thus, a data consumer might only have a partid understanding of an information structure.

Example 2. Bdow is an APl example that distinguishes data consumption from data interpre-
tation in a case where extended data of the implementation is indirectly used, yet the imple-
mentation is rictly conforming.

/111 This exanple shows two files: the header "std_data.h",
/1] and a strictly conform ng application that includes
/11l the header.

FHELLETE i
/111l The following is the include file "std_data. h"

struct std_data

{
int std_el enent _1,; /1 Mandatory el ement.
void *std_elenent_2; // Optional element.
i nt ext_el ement _3; /'l Extended el enent.
b

FEPELETE T
/111 The strictly conform ng application begins.

/1 Include the standard header (contents |listed above)
#include "std _data. h"

struct std _data x; [// Declares "x" as standard dat a.

nmy_code()
{

struct std_data y,z; // Declares "y" and "z".

Copyright © 2000 |EEE. All rights reserved.
Thisisan unapproved | EEE Standards Draft, subject to change. 16

2000-11-28 P1484.2D7

/1l Strictly conform ng code, yet

/'l extended el enent "ext_el ement_3"
/1l is copied.

mencpy(&y, &x, si zeof x);

/] Assign string to "std_el ement_2".

/'l Assign length to "std_el enent _1".
y.std_el enent_2 "hello there";
y.std_elenment _1 strlen(y.std_el enent _2);

/1l Still strictly conform ng code, yet
/'l extended el enent "ext_el ement_3"
/1 is copied.

mencpy(&z, &y, si zeof vy);

}
FEEEEEEE bbb rrrrrrrir

This example is gtrictly conforming because the implementation only interprets or generates
elements from a standard s, i.e,, std_el enent _1 and std_el enent _2. The nentpy
(copy object in memory) operations are the equivaent consumeand produce operations in this
hypothetical API binding, while the direct element accesses (eg., y. std_el enment _1) are
the interpret and generation operations for this hypothetical APl binding.

3.10 data application

An information technology application within an gpplication area that is specified in the con-
formance clause or the conceptua model clause of a datainteroperability standard.

Examples. data repository, data reader, data writer.

Note: A PAPI learner data application is from a PAPI Learner gpplication. The latter is any
information technology application that incorporates and conforms to PAPI Learner, while the
former isalimited subset (i.e., data repository, data reader, data writer).

3.11 data instance
A data set rendered in some binding.

3.12 data object

A unit of data processing within the conceptua model of ng implementations data.

Note 1: A data object may be a data element or an implementation-defined object. Strictly
conforming implementations only use or access data objects that are data e ements.

Note 2: The behavior of a data object, further defined and constrained in the semantic defini-
tion, is a data structure. An instance of a data Structure is a data set. A data set, further de-
fined, congtrained, and rendered in some binding is a data instance.

See Also: data eement; datainstance; data set; data structure.

Copyright © 2000 |EEE. All rights reserved.
Thisisan unapproved | EEE Standards Draft, subject to change. 17

2000-11-28 P1484.2D7

3.13 data set

A data gtructure in its second definition, i.e,, "an instance ... of data elements’'.
Note: A data set isindependent of binding (binding-independent).

3.14 data structure

(1) The datatype of an aggregate of zero or more data € ements.

(2) Aninstance of an aggregate of zero or more data e ements.

Note 1. In a different context a data structure may be considered awhole, indivisible unit, i.e.,
in this context a data structure is a data e ement of some higher level data structure.

Note 2: The term "aggregate” is defined in ISO/IEC 11404.

Examples: arecord; a set; a sequence; alist; an array.

3.15 distance (access, system)

Is constrained by bandwidth limitations or delays in communication systems such that appli-
cations are significantly affected.

3.16 distributed (access, system)

Uses the internet or wide area networks as the primary means of communication among sub-
systems and related systems.

3.17 encoding

The bit and byte format and representation of information.

3.18 extended data element

Within the appropriate context, an element of a data structure that is defined outsde a stan-
dard, and may be used within an ingtance of the data structure, as permitted by data inter-
change participants and data interchange implementations.

The "extended" nature of a data element is an obligation attribute.

The "extended" nature of a data dement is a conformance levd feature (e.g., strictly con-
forming implementations vs. conforming implementations).

Example: mandatory extended data element, optional extended data element, conditional ex-
tended data element.

See Also: conditiond data € ement; mandatory data element; obligation (data element); qo-
tional data eement.

Copyright © 2000 |EEE. All rights reserved.
Thisisan unapproved | EEE Standards Draft, subject to change. 18

2000-11-28 P1484.2D7

3.19 generate (data)

To trandform data from its meaning to some form suitable for data interchange.

Example: To seridize a data structure according to a conceptua mode without rendering the
data in a specific coding or encoding.

See Also: interpret (data); produce (data).
3.20 group
A collection of users who share some common attributes.

Note 1: The nature and definition of the common attributes is outside the scope of this Stan
dard.

Note 2: Groups may be created by administrators, users, or others.

Note 3: Depending on administrator policy, a user may belong to more than one group.
3.21 human identifier

A sign associated with a human.

See Also: learner identifier.

Note: Identifiers are specified by |IEEE 1484.13 Smple Human Identifiers.

3.22 human information

Information that is primarily associated with, tracked by, tracked for, and about humans in in-
formation technology systems and learning technology systems.

3.23 implementation behavior
Externa observation, appearance, or action.

See Also: implementation-defined behavior; implementation value; undefined behavior; ur
specified behavior.

3.24 implementation-defined behavior/value

Unspecified behavior or an unspecified value(s) where each implementation documents how
the choice is made.

See Also: implementation behavior; undefined behavior/vaue; unspecified behavior/vaue.
Example: Permitting a maximum size, as measured in octets, of a coding.

3.25 implementation value

A quantifiable artifact associated with an implementation.

Copyright © 2000 |EEE. All rights reserved.
Thisisan unapproved | EEE Standards Draft, subject to change. 19

2000-11-28 P1484.2D7

See Also: implementation behavior; implementation-defined behavior/value; undefined ke
havior/value; unspecified behavior/vaue.
3.26 inbound security threat

An externa threat that breaches the security of a system and affects information inside the s
curity perimeter.

Examples: The data injected into a communications stream; changing information; destroying
informetion.

See Also: |IEEE 1484.2.3 "PAPI Learner Information Security Notes', for related information.

3.27 information type

A category of information within a particular gpplication area that is associated with some
subset of application use and/or administration.

Example: "PAPI learner information™ (an application area) contains six information types: (1)
"PAPI learner persona information”, (2) "PAPI learner relations information”, (3) "PAM
learner security information”, (4) "PAPI learner preference information”, (5) "PAPI learner
performance information”, and (6) "PAPI learner portfolio informetion’.

3.28 integrity (data)

This subclause is informative and not normative.

A technical policy about information security that reduces inbound security threats to an ac-
ceptable level.

Note: Data integrity may include: controlling the creation of information, controlling changes
to information, or other techniques. The policy may be implemented by various security tech-
niques, security technologies, security procedures, practices, etc..

See Also: |IEEE 1484.2.3 "PAPI Learner Information Security Notes', for more details on data
integrity.

3.29 interpret (data)

To process data to discover its meaning, to the extent required by this Standard.

Other Forms:. interpret data, data interpreter, data interpretation.

See Also: generate (data); consume (data).

Note: Datais consumed before it is interpreted.

Example 1: In the following character stream:

<R>
<A>123. 45</ A>
PQR</ B>

Copyright © 2000 |EEE. All rights reserved.
Thisisan unapproved | EEE Standards Draft, subject to change. 20

2000-11-28 P1484.2D7

<C X="VY">Z</ C
</ R>
<R>
<D>JKL</ D>
<BE>
<F>XXX</ F>
<GYYY</ &
</ B>
</ R>

a data consumer might recognize:

there are two records, both with tags "R"
the first "R" record contains three records with tags "A", 'B", "C"
the second 'R" record contains two records with tags "D" and "E"

Because only these tags are recognized, only these tags are candidates for data interpretation.
Assumingtag " E" represents an extended data element, a data interpreter might only recog-
nizethe sandardized tags" A" ,"B"," C',and" D' .

Based on (1) the separation of the "consume” and "interpret” phases of trandation, and (2) a
particular standards binding (XML-like in this case), an gpplication might only interpret the
dandardized festures A, B, C, and D.

As described above, an gpplication that combines data consumption and data interpretation,
but only interprets standardized data elements, might be strictly conforming data reader.

3.30 lear ner
An individud engaged in acquiring knowledge or skills with a learning technology system.

See Also: learner entity.
3.31 learner entity

An entity that represents a collective learner, such asteam learning.

Note: The |IEEE 1484.1 LTSA digtinguishes between "learner” and "learner entity”. For PAPI
learner information, there is no distinction between "learner™ and "learner entity” — both are
referred to as "learner”.

3.32 learner identifier

A sign associated with alearner.

Note 1. A learner may have more than one learner identifier — a non-singular identifier. The
policy of singularity or non-singularity of identifiersis outside the scope of this Standard.

Note 2: The term "moniker” is believed to come from Shelta via thieves dang. "Shedlta" is de-
fined as: "an esoteric jargon based in part on the systematic dteration of Irish and Gadlic and
gtill spoken in some parts of England and Ireland by tinkers, vagrants, etc.".

Copyright © 2000 |EEE. All rights reserved.
Thisisan unapproved | EEE Standards Draft, subject to change. 21

2000-11-28 P1484.2D7

Examples: IEEE 1484.13 Smple Human |dentifiers, passport numbers, E-mail addresses, so-
cia security numbers.

3.33 learner information

The intersection of generad learning technology information and human information for learn-
ersor learner entities.

3.34 learner performance granularity
The relative size, scope, or detail of alearner performance information.

Note: Learner performance records may have different granularities.

Example: recording key clicks (e.g., seconds of learning); minute-by-minute data samples of
learner progress (e.g., minutes of learning); lesson scores (e.g., days of learning); semester
grades (e.g., months of learning); professiona certifications (e.g., years of learning).

3.35 learner profile

This subclause is informative and not normative.

Information about a learner used by specific learning technology components, learning tech-
nology applications, and learner adminigtration. A subset of learner information, in generd.

Example 1: A learner profile includes information such as persona, relations, security, prefer-
ence, performance, portfolio, and, possbly, other types of information.

Example 2: PAPI learner information is an example of alearner profile.

3.36 lear ning management system

A system that (1) schedules learning resources; (2) assists, controls, and/or guides the learning
process, and (3) anayzes and reports learner performance.

3.37 locale-specific behavior

Behavior that depends on local conventions of nationdlity, culture, language, ingtitution, etc.,
which is documented by each implementation.

3.38 longevity (data element)

An attribute of a data element specification that indicates intention for incorporation into past,
present, or future editions of a standard.

See Also: obligation (data ement); obsolete data el ement; reserved data el ement.
Note: Longevity attributes are independent of obligation attributes.

Example 1. An obsolete data element might have been intended for inclusion in past editions
of this Standard, but isintended to be excluded in future editions of this Standard.

Copyright © 2000 |EEE. All rights reserved.
Thisisan unapproved | EEE Standards Draft, subject to change. 22

2000-11-28 P1484.2D7

Example 2: A reserved data element might not have been included in past editions of this
Standard, and might be intended for inclusion in future editions of this Standard.
3.39 mandatory data element

Within the appropriate context, an eement of a data structure that is defined and required
within an instance of the data structure.

The "mandatory” nature of a data eement is an obligation attribute.

See Also: conditiond data element; extended data element; obligation (data element); optiona
data e ement.

3.40 nomadic (access, system)

(1) The appearance of continuity of service across separate communication sessons and geo-
graphic locations.

(2) Sometimes-disconnected from the networks used for communication among its subsys-
tems and related systems.

Note: Also known as "sometimes-connectivity" and/or "sometimes-roaming”.

3.41 obligation (data element)

The requirements and permissibility of data eements that determine the vdidity of a data
dructure.

See Also: longevity (data eement); conditiona data element; extended data € ement; manda-
tory data eement; optional data eement.

Note: Obligation attributes are independent of longevity attributes.

Example: A data structure X, has four eements: A and B are mandatory, C is optiona, and D is
conditiond if B hasthe value t rue. The following are sample valid and invaid data struc-
tures:

A=123) /1 invalid: mssing mandatory el enent B
A=123, B=fal se) /1 valid
A=123, B=true) /1 invalid: missing conditional element D

A=123, B=true, D=17) // valid

A=123, B=false, D=17) // valid: allowable because the exanple
/1 "conditional" wording above only
/'l makes requirenments and makes no
/1 prohibitions

(A=123, B=nil, C=345) [/ valid

3.42 obsolete data element

Within the appropriate context, an element of a data Structure that is defined but should not be
used within an instance of the data structure.

AN AN AN S~

The "obsolete” nature of a data element is alongevity attribute.

Copyright © 2000 |EEE. All rights reserved.
Thisisan unapproved | EEE Standards Draft, subject to change. 23

2000-11-28 P1484.2D7
See Also: longevity (data eement); reserved data dement.

Note: The use of obsolete data e ements is deprecated and their specification may be removed
from future revisons of a standard.
3.43 optional data element

Within the gppropriate context, an element of a data structure that is defined and permitted, but
not required within an instance of the data structure.

The"optiond" nature of a data element is an obligation attribute.

See Also: conditional data element; extended data element; mandatory data e ement; obliga-
tion (data element).

3.44 outbound security threat

The theft or unauthorized duplication of information such that the information becomes avail-
able outsde the security perimeter or no longer remainsinside the security perimeter.

Examples: Snooping network packets; taking information.
See Also: |IEEE 1484.2.3 "PAPI Learner Information Security Notes', for related information.

3.45 PAPI Learner
An abbreviated name for this Standard.

Note: The term "PAPI Learner” (with an upper case "L") is used when the sentence could be
rewritten by replacing "PAPI Learner” with "IEEE 1484.2", yet the sentence retains its mean-
ing.

Examples. When referring to this Standard or its preliminary documents, the following con-
structions are appropriate: "PAPI Learner Standard” and "PAP! Learner, draft X" (both refer to

drafts of this document); "PAPI Learner implementation” (an implementation of this Stan-
dard); and "PAPI Learner data interchange” (data interchange facilitated by this Standard).

3.46 PAPI learner

A subset of public and private information (human information) about learners as defined by
this Standard.

Note 1. The term "profile information” is a generic name and this Standard is one description
of this "profile informetion’.

Note 2: The term "PAP learner” (with a lower case "L") is the term defined in this Clause
(Definitions), is used as a prefix of aterm in this Clause, or is used when a sentence does not
retain its meaning by replacing "PAPI learner” with "IEEE 1484.2".

Example 1. "PAPI learner API" is dready defined in this Clause, thus "PAPI Learner AP" is
an gppropriate term.

Copyright © 2000 |EEE. All rights reserved.
Thisisan unapproved | EEE Standards Draft, subject to change. 24

2000-11-28 P1484.2D7

Example 2: "PAPI learner gpplication” has a meaning that is different than smply connecting
the "|EEE 1484.2" adjective with the term "application”. The term "PAP! learner application”
has a definition that is different than just al "agpplications’ of "IEEE 1484.2" (i.e., the term
"PAP Learner agpplications'). Typicaly, the context of a term's usage avoids these kind of
ambiguities.

3.47 PAPI learner application

An information technology application that uses codings, APIs, and/or protocols that conform
to this Standard.

3.48 PAPI learner data application
A datarepository, data reader, or data writer, as specified in this Standard.

3.49 PAPI learner extensions

Extended data e ements and/or data services extensons.

Note: Strictly conforming implementations do not use extensions. Conforming implementa-
tions may use extensions.

3.50 PAPI learner information
See"PAPI learner”.

3.51 PAPI learner record
A collection of learner information represented as defined by this Standard.

3.52 PAPI learner record reference
An identifier that points to a PAPI learner record.

3.53 PAPI learner system
See: PAPI learner gpplication.

3.54 PAPI server

See: PAPI learner server.

3.55 privacy (data)
This subclause is informative and not normative.

A technical policy about information security that reduces outbound security thregts to an ec-
ceptable level. Privacy may include: controlling the copying of information, controlling trans-
fer of information, or other techniques. The policy may be implemented by various security
techniques, security technologies, security procedures, practices, etc..

Copyright © 2000 |EEE. All rights reserved.
Thisisan unapproved | EEE Standards Draft, subject to change. 25

2000-11-28 P1484.2D7

See Also: IEEE 1484.2.3 "PAPI Learner Information Security Notes', for more details on data
privacy.

3.56 produce (data)

To process data to the extent that lexica or coding boundaries are defined and then write the
resultant data

Other Forms:. produce data, data producer, data production.
See Also: generate (data); consume (data).

Note: Datais generated before it is produced.

3.57 public and private information

Human-related information, of varying degrees of public and private accessibility, exchanged
and administered within information technology systems and communication networks.

3.58 repository

A collection of data sets and data access methods for storing, indexing, searching, and e
trieving information.

3.59 reserved data element

Within the appropriate context, an element of a data structure that is not defined and not per-
mitted to be used within an instance of the data structure.

The "reserved” nature of a data eement is alongevity attribute.

See Also: longevity (data e ement); obsolete data € ement.

3.60 role-based access control

A security technique for authentication that authorizes operations or allows access to resources
based upon the user'sidentity and his’her relationship to other users.

Example 1. A teacher has read/write access to the grades for higher sudents (role: "the
teacher of the student), but no accessto other students grades.

Example 2: A principa has read-only access to the grades of al of hisher teachers students
(role: "the principd of the teachers of the students'), but the principa is not permitted to
change any grades.

3.61 security administrator

A person who is responsible for security management within a security perimeter.

Note: A security administrator may be concerned about several types of security, including
information security, physica security, financia security, and persond security.

Copyright © 2000 |EEE. All rights reserved.
Thisisan unapproved | EEE Standards Draft, subject to change. 26

2000-11-28 P1484.2D7

3.62 security information

This subclause is informative and not normative.
Information that supports a security policy.
Note 1: The term "security information” has a variety of meanings in various contexts.

Note 2: This Standard only describes learner security information, and only describes security
information to the extent that a variety of security implementations are possible. This Stan+
dard makes no requirements for specific security policies, procedures, techniques, or tech-
nologies.

3.63 security perimeter

A continuous, closed partition that separates the "insde" from the "outside’. The "insde" of
the security perimeter isintended to be secure. The "outside" of the security perimeter may
not be secure.

3.64 security perimeter integrity

A levd of security protection such that inbound security threats and outbound security thrests
are maintained at an acceptable level of risk.

Example 1: The loss of security perimeter integrity implies that (1) the level of security pro-
tection is less than an acceptable leve; (2) the inbound security threats have increased to more
than an acceptable level; or (3) the outbound security threats have increased to more than an
acceptable leve.

Example 2: User permissions and administration are aspects of security perimeter integrity.
See Also: |EEE 1484.2.3 "PAPI Learner Information Security Notes', for related information.

3.65 security strength
The degree of security that characterizes the implementation of a security perimeter.

Note: The following festures may characterize security strength:

Quality Level: What level of security is provided? Examples of security levels:
minimal security, auditing-capable, provable design.

Contingencies: What happens when the system is violated? What falbacks are
available? What is the extent of the damage?

Penalties:. What happens to violators of the security mechanism?

Example: Security strength might concern the number of bits used in encryption keys.

3.66 ssimple human identifier
A human identifier specified by IEEE 1484.13 Simple Human Identifiers.

See also; human identifier.

Copyright © 2000 |EEE. All rights reserved.
Thisisan unapproved | EEE Standards Draft, subject to change. 27

2000-11-28 P1484.2D7

3.67 smallest per mitted maximum
For implementation-defined values, the smallest permitted maximum vaue.

Example: "The smadlest permitted maximum string length of element X shall be 17."

3.68 undefined behavior/value

Implementation behavior or an implementation value(s) for which a standard imposes no re-
quirements.

See Also: implementation behavior; implementation vaue; implementation-defined behav-
ior/value; unspecified behavior/vaue.

Example 1. Possible undefined behaviors include, but are not limited to:

ignoring the situation completely

unpredictable results

behaving in a documented manner characteristic of the environment
terminating processing

Example 2: Possible undefined values include infinities, null values, and "Not A Number".

3.69 unspecified behavior /value

Implementation behavior or an implementation vaue(s) for which a standard provides two or
more possibilities and imposes no further requirements on which possibility is chosen in any
instance.

See Also: implementation behavior; implementation vaue; implementation-defined behav-
ior/value; undefined behavior/value.

Example 1: An application’s choice of agorithm for creating object identifiers.

Example 2: The order in which procedure cal parameters are pushed on acaling stack.

3.70 user
A human, his/her agent, or a surrogate that interacts with information technology systems.

Note: For PAPI Learner, auser istypicaly concerned about the proper cregtion, correction, or
destruction of records, the potential use of records; the security of records, and the usefulness
of records within information technology systems. Users may be learners, teachers, employ-
ers, administrators, etc..

3 71 Acronyms and abbreviations
ANSI: American National Standards Institute
API: Application Programming Interface
ASN.1: Abstract Syntax Notation One; also known as | SO/IEC 8824 and 8825
DCTP: Data and Control Transfer Protocol
HTTP: Hypertext Transfer Protocol

Copyright © 2000 |EEE. All rights reserved.
Thisisan unapproved | EEE Standards Draft, subject to change. 28

2000-11-28 P1484.2D7

I18N: internationalization; the internationalized spelling of "internationaization" (the
letter "1™, followed by 18 letters, then the letter "N")

ICS: Implementation Conformance Statement

IEC: International Electrotechnical Commission

|EEE: Institute of Electrical and Electronic Engineers

IETF: Internet Engineering Task Force

|SO: International Organization for Standardization

L1ON: localization; the internationalized spelling of "localization” (the letter "L",
followed by 10 letters, then the letter "N™)

LID: Language Independent Datatypes; also known as |SO/IEC 11404

LMS: learning management system

LTSA: Learning Technology Systems Architecture

LTSC: Learning Technology Standards Committee

MDAS API: Metadata Access Service AP

PAPI: Public and Private Information specification

RFC: Request for Comments; a citation prefix for specifications developed by the
Internet Engineering Task Force

SPM: smallest permitted maximum

W3C: World Wide Web Consortium

XML: Extensible Markup Language

Copyright © 2000 |EEE. All rights reserved.
Thisisan unapproved | EEE Standards Draft, subject to change. 29

2000-11-28 P1484.2D7

4 Conformance

In this Standard, "shal" is to be interpreted as a requirement on an implementation; "shal not"
is to be interpreted as a prohibition. If a"shal" requirement or "shal not" prohibition is vio-
lated, the behavior is undefined. Undefined behavior is otherwise indicated in this Standard
by the words "undefined behavior" or by the omission of any explicit definition of behavior.
There is no difference in emphasis among these three; they all describe "behavior that is unde-
fined".

Note: Implementations claim conformance to particular features of this Standard in their im-
plementation conformance statement.

Rationale

The first sentence in the above paragraph might appear to be unnecessary because the mean-
ing and usage of "shdl" is well understood in standards, but once the remaining sentences are
added, the first sentence becomes necessary.

Conformance partly concerns the structure of data sets and partly concerns the behavior of
gystems. In other words, conformance has both a non-behaviora and a behaviora dimension,
and both are important. The term "behavior” is used in agenera sense, e.g., a data set doesn't
exhibit "behavior", but implementations that store, retrieve, generate, and interpret data sets all
exhibit "behavior" — the notions of "undefined”, "implementation-defined”, and "unspeci-
fied" behaviors are defined, even in the context of a data set.

4.1 Conformance level

The following subclauses define dtrictly conforming implementations and conforming imple-
mentations. In the context of conformance, the terms "support”, "use", "test”, "access’, and
"probe" are defined in subclause 4.3, Coding Conformance, subclause 4.4 APl Conformance,
subclause 4.5, Protocol Conformance, and subclause 4.6, Data Application Conformance.

Rationale

The distinction between "gtrictly conforming” and "conforming” implementations is necessary
to address the smultaneous needs for interoperability and extensons. This Standard describes
specifications that promote interoperability. Extensions are motivated by needs of users, ven
dors, ingtitutions, and industries (1) that are not directly specified by this Standard, (2) that are
specified and agreed to outside this Standard, and (3) that may serve as trial usage for future
editions of this Standard.

4.1.1 Subsets

An implementation shall support at least one PAPI learner information type (persond, rela
tions, security, preference, performance, portfolio). Implementations that do not support al
PAP! learner information types shal indicate which subset is supported in the implementation

Copyright © 2000 |EEE. All rights reserved.
Thisisan unapproved | EEE Standards Draft, subject to change. 30

2000-11-28 P1484.2D7

conformance statement and in the conformance label(s). See subclause 4.2, Conformance La-
bels.

Note: Implementations should use automated techniques to convey subset information o that
interoperability problems can be avoided.

4.1.2 Strictly confor ming implementations

A drictly conforming implementation shall be at least one of: a strictly conforming coding, a
grictly conforming AP, a strictly conforming protocol, or a strictly conforming data applica-
tion.

A drictly conforming implementation:

1. shall support al mandatory and optional data elements;

2. shal not use, test, access, or probe for any extension features or extended data ele-
ments,

3. shall not exceed limits or smallest permitted maximum values specified by this Stan-
dard; and

4. shadl not interpret or generate data elements that are dependent on any unspecified,
undefined, implementation-defined, or |ocale-specific behavior.

Note: The use of extension features or extended data € ements is undefined behavior.

4.1.3 Conforming implementations

A conforming implementation shall be at least one of: a conforming coding, a conforming
AP, aconforming protocol, or a conforming data application.

A conforming implementation:

1. shall support al mandatory and optional data elements;

2. may use, test, access, or probe for extension features or extended data elements, as
permitted by the implementation and data interchange participants, as long as the
meaning and behavior of strictly conforming implementations is unchanged,

3. shall not support or use extension features or extended data elements that change the
meaning or behavior of strictly conforming implementations;

4. may exceed limits or smallest permitted maximum values specified by this Standard,
and to the extent permitted by the implementation; and

5. may interpret or generate data elements that are dependent on implementation-
defined, locale-specific, or unspecified behavior.

Note 1: The use of extension features or extended data e ements is undefined behavior.
Note 2: All strictly conforming implementations are also conforming implementations.

Note 3: An implementation does not conform to this Standard if it redefines Standard festures
via extenson methods, and these features change the meaning or behavior of drictly con-
forming implementations.

Copyright © 2000 |EEE. All rights reserved.
Thisisan unapproved | EEE Standards Draft, subject to change. 31

2000-11-28 P1484.2D7

4.1.4 Non-confor ming implementations
This subclause is informative and not normative.

An implementation that does not conform to this Standard (either grictly conforming or
merely conforming), is a non-conforming implementation.

4.1.5 Obligation of data elements
This subclause is informative and not normative.

There are four types of obligation attributes for data elements. mandatory, optiond, condi-
tional, and extended. The obligation attribute concerns the validity of the data structure.

4.1.5.1 Mandatory data elements

Mandatory data elements are dways required for the data structure to be vdid. All data sets
(and data instances) are required to include these elements. All data applications are required
to support these elements.

An implementation that does not support or include one or more mandatory data elementsis a
non-conforming implementation.

4.1.5.2 Optional data elements

Optiona data elements are permitted, but not required, for the data Structure to be vaid. A
data set (and data ingtance) is permitted, but not required, to include these data elements. Be-
cause dl data repostories and data readers are required to support al vaid data sets, effec-
tively, data repositories and data readers are required to support al optiona data eements.
This might be confusing because "optiond™ is not optiona for data repositories and data read-
ers— the obligation attribute "optiona" gpplies to the validity of the data structure (" optional”
is optional for instances of the data structure). A data writer is required to generate and pro-
duce the optional elements of each data instance that is generated and produced.

An implementation that does not support one or more optiond data eements is a non-
conforming implementation.

If an implementation includes or supports these data elements, their use is specified by this
Standard.

An implementation that includes or supports an optiona data e ement, but includes or supports
it in ways that are inconsistent with this Standard, is a non-conforming implementation. The
attribute "optiona" does nat imply that the implementation has license to implement the data
element in any way ("at the option of the implementor"); if the data eement is implemented,
its requirements are specified in this Standard.

Copyright © 2000 |EEE. All rights reserved.
Thisisan unapproved | EEE Standards Draft, subject to change. 32

2000-11-28 P1484.2D7
4.1.5.3 Conditional data e ements

Conditiona data €lements are required, but their requirement is dependent upon certain condi-
tions (as defined elsawhere in this Standard). Each conditiona data eement may individudly
have a set of conditions. |If the conditions are met, the data eement is required to be included
for the data structure to be valid. Thus, a data set (and data instance) is required to include
these elements if, individualy, each condition is met. By the same reasoning as for optiona
data elements (above), al data repositories and data readers are required to support al condi-
tiona data eements. By the same reasoning above, a data writer is required to support all the
conditiona elements for each and every data instance generated and produced.

An implementation that does not support one or more conditional data elements is a non-
conforming implementation.

An implementation that includes or supports a conditional data eement, but includes or sup-
portsit in ways that are inconsstent with this Standard, is a non-conforming implementation.

4.1.5.4 Extended data elements
Extended data e ements are not permitted within strictly conforming implementations.

Extended data elements are permitted within conforming implementations to the extent that
the implementation individually supports each extended data element, i.e,, (1) the implemen-
tation alows and uses specified extended data elements, (2) the data interchange participants
alow and use specific data dements, and (3) other extended data €l ements are not used.

For conforming implementations that support extended elements, these dements individually
may have their own obligation attributes, e.g., it is possible to have mandatory extended data
elements, optiona extended data elements, and conditional extended data elements. These
obligation attributes determine the vdidity of the data structure in the context of extended data
elements, e.g., an optional extended data eement (1) permits but does not require the data
element for the data structure to be valid, (2) for conforming implementations that support this
extended data element.

Note: Mandatory extended data e ements can cause interoperability problems because a man-
datory extended data element (1) requires the data element to exist for the data structure to be
vaid, (2) for conforming implementations that support this extended data element. In other
words, (1) only implementations that support this extended data eement are interoperable; and
(2) no grictly conforming implementations will interoperate because extended features are
required for interoperability.

There are no generic techniques or methods for both supporting extended data elements or
extension features and supporting full semantic interoperability; there are only specific tech-
niques and methods for supporting extended data elements (e.g., supported to the extent d-
lowed, as above).

The use of extended data €lements outside these circumstances (unsupported environments)
causes undefined behavior, which might be:
appropriate, e.g., ignoring an offending data element if it is an unimportant feature

Copyright © 2000 |EEE. All rights reserved.
Thisisan unapproved | EEE Standards Draft, subject to change. 33

2000-11-28 P1484.2D7

inappropriate, e.g., ignoring an offending data element if it is an important feature,
such as a security classification

innocuous, e.g., error messages

disruptive, e.g., error messages

predictable, e.g., a program aborting, exiting ungracefully, exiting unexpectedly, or
"hanging" indefinitely

unpredictable, e.g., a program aborting, exiting ungracefully, exiting unexpectedly, or
"hanging" indefinitely

There is no correct generdized method for handling undefined behavior. Any particular
method for handling undefined behavior can be desirable, undesirable, or both.

Some bindings "relax" the processing of unrecognized extended data elements. Normally,
extended data elements create undefined behavior but certain bindings "relax” these require-
ments to implementation-defined behavior or even ignoring unrecognized extended data ele-
ments — both of these "relaxed” processing requirements (implementation-defined behavior;
ignoring unrecognized or extended data eements) can be less disruptive. |EEE 1484.14.x
"Extensions Techniques', contains informative wording on the relationship among data mod-
eling, conformance leves, interoperability, industry concerns, and the standards process.

Extended data eements are both an obligation (data modeling) feature and a conformance
level feature (dtrictly conforming vs. conforming).

4.1.6 Longevity of data elements
This subclause is informative and not normative.

The following longevity attributes indicate intentions for incorporation into past, present, or
future editions of this Standard.

Longevity attributes are independent of obligation attributes.

4.1.6.1 Obsolete data elements

Obsolete data e ements are defined in the current edition of this Standard and may be defined
in prior editions. The "obsolete” feature indicates that the definition of the data dement is n-
tended to be removed from future editions of this Standard.

Implementations should not use obsolete data eements. Implementations that do use obsolete
data el ements should plan accordingly for future editions of this Standard.

An implementation’s use of an obsolete data element does not imply that the implementation
is non-conforming. Strictly conforming implementations and conforming implementations
may ill use obsolete data elements for this edition of the Standard.

The "obsolete" feature is independent of the obligation attribute, so there might be obsolete
mandatory data € ements, obsolete optiona data €l ements, obsolete conditiona data € ements,
and obsolete extended data elements.

Copyright © 2000 |EEE. All rights reserved.
Thisisan unapproved | EEE Standards Draft, subject to change. 4

2000-11-28 P1484.2D7
4.1.6.2 Reserved data elements

Reserved data elements are not defined in this edition of the Standard. Data el ements may be
reserved because (1) they were defined in previous edition(s) of this Standard, or (2) they will
be defined in some future edition(s) of this Standard.

A reserved data eement is not permitted in a strictly conforming implementation.

A "reserved data dement” might be used in a conforming implementation if (1) the reserved
data element were defined, (2) it were defined as an extended data element, and (3) the ex-
tended data element were "supported” by implementations and data interchange participants
(see below). In other words, a particular implementation extends or overrides (the non-
definition of) the "reserved data eement” by defining implementation extensions.

Although the "reserved” feature is independent of the obligation attribute, a reserved data ele-
ment has no definition. Therefore, there are no reserved mandatory data eements, no reserved
optional data eements, no reserved conditional data elements, and no reserved extended data
€lements because mandatory data €lements, optional data €lements, conditional data elements,
and extended data dements dl imply a definition of a data element, which conflicts with the
undefined nature of "reserved".

Data e ements that are defined, but are to be incorporated into future editions of this Standard,
are extended data elements (i.e., they are not reserved data elements). As these extended data
elements become incorporated into a future edition, they will become mandatory data ele-
ments, optional data elements, or conditional data elements.

Extended data el ements may be defined (1) in an informative Annex in this Standard, (2) in a
conditionally normative Annex in this Standard, or (3) in a specification outside this Standard.

Extended data elements are not required for this edition of the Standard, i.e., (1) extended data
elements are prohibited for grictly conforming systems; (2) extended data elements are not
required for conforming systems, and (3) extended data elements, if defined, are not in the
Clauses of this Standard.

Some bindings "relax" the processing of unrecognized data ements, such as reserved data
elements. Normaly, reserved data elements create undefined behavior but certain bindings
"relax" these requirements to implementation-defined behavior or even ignoring unrecognized
or reserved data elements — both of these "relaxed” processing requirements (implementa-
tion-defined behavior; ignoring unrecognized or reserved data elements) can be less disrup-
tive. |EEE 1484.14.x "Extensons Techniques’, contains informative wording on the relation-
ship among data modeling, conformance levels, interoperability, industry concerns, and the
standards process.

Conforming implementations may use extended data elements to the extent permitted by the
implementation and data interchange participants. See subclause 4.1.4.4, Extended Data Ele-
ments, above, for further details.

Resarving a data dement so that it cannot be overridden by extended data eements is
achieved by defining an optiona data element with 1SO/IEC 11404 datatype voi d.

Copyright © 2000 |EEE. All rights reserved.
Thisisan unapproved | EEE Standards Draft, subject to change. 35

2000-11-28 P1484.2D7

4.1.7 Recursive/contextual nature of obligation/longevity

This subclause is informative and not normative.

An obligation attribute or alongevity attribute of an aggregate data eement gpplies to the ag-
gregate itsdlf, but only indirectly to its components. In the context of the existence of an ag-
gregate and its components, each component individually has its own obligation and longevity
atributes (among other attributes). This determination of context and obligation/longevity
attributes is applied recursively for al aggregate data elements.

Example: A data dement X is optiond, and X has two subelements. Y is mandatory and Z is
optional. Letting the notation P. Q represent the subelement Qof P, then

if X does not exist, then X. Y and X. Z cannot exist; stated differently, if X. Yor X. Z
exists, then X exists

if X exigts, then X. Y isrequired to exist for al conforming implementations

if X exists, then X. Z is permitted to exist for al conforming implementations

if X existsand X. Y does not exist, then the implementation is non-conforming

Thus, Y only becomes mandatory if X exists.

4.2 Conformance labels

A conformance labels may summarize implementation conformance statements (ICSs). Con-
formance labels should be used to convey ICS information via manua, semi-automated, and
automated methods. The methods and techniques for associating or affixing a conforming
label are outside the scope of this Standard.

If an implementation does not support al information types, the conformance labd shdl indi-
cate which subset is supported using the notation " Subset one-letter-subset-list”, where the one
abbreviations are defined in subclause 6.1, Learner Information. Example: An implementa-
tion that only supports PAPI learner preference information (M) and PAPI learner perform:
ance information (G) would indicate this subset with "Subset MG".

For bindings descriptions in conformance labels, bindings shall be listed in the order of cod-
ings, APIs, and protocols. For the codings, APIs, and protocols listed, each coding binding
shal operate with each API binding, each API binding shall operate with each protocol bind-
ing, and each coding binding shall operate with each protocol binding. Note: If al combina-
tions of the listed codings, APIs, and protocols do not interoperate, then multiple conformance
labels may be used to indicate claims of conformance. Example 1. "XML and DNV P coding/
Java and JavaScript API" implies that the implementation conformance to al four combina
tions: XML-Java, DNV P-Java, XML-JavaScript, DNV P-JavaScript. Example 2: In the previ-
ous example, if the implementation did not support the XML-JavaScript combination, then
two conformance labels "XML and DNVP coding/ Java API" and "DNVP coding/ JavaScript
API" might describe implementation conformance claim.

The following is a summary of the possible implementation varieties used in implementation
conformance statements (1CS) and their conformance labdls.

Copyright © 2000 |EEE. All rights reserved.
Thisisan unapproved | EEE Standards Draft, subject to change. 36

2000-11-28 P1484.2D7

Strictly Conforming PAPI Leaner [Subset] Data Set: binding-independent; all
mandatory data elements shall exist; some optional data elements may exist; extended
data elements shall not exist.

Conforming PAPI Learner [Subset] Data Set: binding-independent; all mandatory
data elements shall exist; some optional data elements may exist; some extended data
elements may exist.

Strictly Conforming PAPI Learner [Subset] binding Data Instance: a binding
shall be specified; all mandatory data elements shall exist; some optiona data ele-
ments may exist; extended data elements shall not exist. Example: The file
"papi . xm " isa Strictly Conforming PAPI Learner XML Data Instance.
Conforming PAPI Learner [Subset] binding Data Instance: a binding shall be
specified; all mandatory data elements shall exist; some optiona data elements may
exist; some extended data elements may exist. Example: The file "papi . txt" isa
Conforming PAPI Leaner DNV P Data Instance.

Strictly Conforming PAPI Learner [Subset] binding(s) Data Repository: bind-
ing(s) shal be specified; shall support storing/retrieving all mandatory data element
attributes, shall support storing/retrieving all optional data elements; data interchange
applications shall not attempt to store/retrieve extended data elements. Example: The
server XYZ is a Strictly Conforming PAPI Learner XML-coding/ SOAP-protocol
Data Repository.

Conforming PAPI Learner [Subset] binding(s) Data Repository: binding(s) shall
be specified; shall support storing/retrieving al mandatory data elements, shall sup-
port storing/retrieving all optional data el ements; may support storing/retrieving some
extended data elements. The server XYZ is a Conforming PAPI Learner DNV P-
coding/ DCTP-protocol Data Repository.

Strictly Conforming PAPI Learner [Subset] binding(s) Data Reader: binding(s)
shall be specified; only mandatory and optional data elements are interpreted, but no
extended data elements are interpreted. Example: The import tool XYZ is a Strictly
Conforming PAPI Learner XML-coding/ Java-API Data Reader.

Conforming PAPI Learner [Subset] binding(s) Data Reader: binding(s) shall be
specified; mandatory and optional data elements are interpreted and some extended
data elements may be interpreted. Example: The import tool XYZ is a Conforming
PAPI Learner DNV P-coding/ HTTP tunneling-protocol Data Reader.

Strictly Conforming PAPI Learner [Subset] binding(s) Data Writer: binding(s)
shall be specified; shall generate all mandatory data elements; may generate optional
data elements; shall not generate extended data elements. Example: The export tool
XYZ is a Strictly Conforming PAPI Learner DNVP-coding/ JavaScript-APl Data
Writer.

Conforming PAPI Learner [Subset] binding(s) Data Writer: binding(s) shal be
specified; shall generate al mandatory data elements; may generate optional data
elements; may generate extended data elements. Example: The export tool XYZ is a
Conforming PAPI Learner XML-coding/ SOAP-protocol Data Writer.

Strictly Conforming PAPI Learner [Subset] binding(s) API Environment: bind-
ing(s) shall be specified; shall support all mandatory and optional data elements; ex-
tended data elements and extended services shall not be probed by applications of the
API binding. Example: The software development kit XY Z is a Strictly Conforming
PAPI Learner Java APl environment.

Copyright © 2000 |EEE. All rights reserved.
Thisisan unapproved | EEE Standards Draft, subject to change. 37

2000-11-28 P1484.2D7

Conforming PAPI Learner [Subset] binding(s) API Environment: binding(s) shall
be specified; shall support all mandatory and optional data elements. Example: The
software development kit XYZ is a Conforming PAPI Learner JavaScript APl envi-
ronment.

Strictly Conforming PAPI Learner [Subset] binding(s) API Application: bind-
ing(s) shall be specified (in order: codings, APIs, protocols); shall support al man-
datory and optiona data elements; extended data elements and extended services
shall not be probed. Example: The application XYZ is a Strictly Conforming PAPI
Learner C++-API Application.

Conforming PAPI Learner [Subset] binding(s) APl Application: binding(s) shall
be specified; shall support all mandatory and optional data elements; extended data
elements and extended services may be used to the extent permitted by data inter-
change participants and to the extent permitted by specifications externa to this Stan-
dard. Example: The application XYZ is a Conforming PAPI Learner Perl Applica
tion.

Strictly Conforming PAPI Learner [Subset] binding(s) Protocol: binding(s) shall
be specified; shall support all mandatory and optional data elements; extended data
elements and extended services shall not be probed by applications of the protocol
binding. Example: The back office gateway XYZ is a Strictly Conforming PAPI
Learner XML-coding/ SOAP Protocol.

Conforming PAPI Learner [Subset] binding(s) Protocol: binding(s) shall be speci-
fied; shall support all mandatory and optional data elements; extended data elements
and extended services may be used to the extent permitted by data interchange par-
ticipants and to the extent permitted by specifications externa to this Standard. Ex-
ample: The back office gateway XYZ is a Conforming PAPI Learner DNV P-coding/
C++-API/ DCTP protocol.

Note: An implementation may claim more than one type of conformance in its implementa
tion conformance statement (1CS).

4.3 Coding confor mance

A grictly conforming PAPI learner coding shdl be at least one of: a trictly conforming data
s, or adrictly conforming data instance.

A conforming PAPI learner coding shall be a least one of: a conforming data set, or a con
forming datainstance.

A PAPI learner coding shdl conform to Clause 5, Functionality; conform to Clause 6 Con-
ceptud Moddl; and, conform to the datatypes specified in Clause 7, Semantics.

4.3.1 Data set conformance
Data set conformance is independent of binding.

A grictly conforming data set shdl be a set of data that: (1) is structured independent of bind-
ing, (2) drictly conforms to the functionality, conceptua model, and semantics of this Stan-

Copyright © 2000 |EEE. All rights reserved.
Thisisan unapproved | EEE Standards Draft, subject to change. 38

2000-11-28 P1484.2D7

dard, (3) shdl include al mandatory data eements, (4) may include optiona data e ements,
and (5) shdl not include extended data elements.

A conforming data set shall be a set of data that: (1) is structured independent of binding, (2)
conforms to the functionality, conceptua model, and semantics of this Standard (3) shal n-
clude dl mandatory data eements, (4) may include optional data eements, and (5) may i
clude extended data elements.

Conformity assessment of data sets shal be performed by (1) rendering the data set in
ISO/IEC 11404 notation, and (2) verifying the requirements described by this Standard.

4.3.2 Data instance confor mance

A drictly conforming data instance shall (1) be a strictly conforming data set, and (2) strictly
conform to at least one PAPI learner coding.

A conforming data instance shall (1) be a conforming data set, and (2) conform to at least one
PAP! learner coding.

Note 1: The term "PAPI learner coding” is used in the two paragraphs above and its require-
ments are specified in the third paragraph of subclause 4.3, Coding Conformance.

Note 2: The difference between a strictly conforming/conforming data set, a strictly conform-
ing/conforming coding, and a strictly conforming/conforming data instance is: (1) adata set is
an ingtance of data that is independent of binding, (2) a coding can refer to an ingtance of data,
a st of ingances of data, or a syntax of instances of data, and (3) a drictly conform-
ing/conforming data instance is associated with a specific binding.

Definitions: support, use

In the context of conformance, the terms "support” and "use" are defined individualy in each
PAPI leaner coding binding.

Definitions: test, access, probe

In the context of conformance, the terms "test", "access’, and "probe" are defined as the null
operation, i.e, for data instance conformance, the operations "test", "access', and "probe” per-
form no operations and have no effect.

Rationale

In addition to the three application conformance perspectives (data repository, data reader,
data writer), there is a fourth perspective on conformance: the data instance. Users will want
to claim conformance for particular datainstances ("My PAPI learner information conforms to
the Standard").

Copyright © 2000 |EEE. All rights reserved.
Thisisan unapproved | EEE Standards Draft, subject to change. 39

2000-11-28 P1484.2D7

4.4 APl conformance

A dtrictly conforming PAPI learner API shall strictly conform to at least one PAPI learner API
binding.

A conforming PAPI learner AP shdl conform to at least one PAPI learner API binding.

A PAPI learner API shall conform to Clause 5, Functionaity; conform to Clause 6 Conceptual
Modd; and, conform to the operations and datatypes specified in Clause 7.

Definitions. support, use, test, access, probe

In reference to PAPI Learner conformance, the following terms are defined in the context of
AP conformance: a "supported” feature is one that may be used by any application of the
PAPI learner API; afeature is "used” if it is read, written, or operated upon by an application
of the PAPI learner AFI; afeatureis "tested” if an gpplication of the PAPI learner APl inquires
about the existence of said feature; a feature is "accessed” if an application of PAPI learner
API attempts to read or write data associated with the feature; afegtureis "probed” if an appli-
cation implicitly tests the existence of a feature by attempting to use the feature (see "use"
above) within a"safe" environment that does not cause undefined behavior.

Note: API conformance makes requirements on both the API binding and on applications that
use the AP binding, i.e., conformity assessment of a PAPI implementation based on APl con
formance is determined by proper definition of the APl and proper use of the API.

4.5 Protocol confor mance

A grictly conforming PAPI learner protocol shdl gtrictly conform to at least one PAPI learner
protocol binding.

A conforming PAPI learner protocol shall conform to at least one PAP learner protocol
binding.

A PAPI learner protocol shal conform to Clause 5, Functiondity; conform to Clause 6 Con
ceptua Modd; conform to the operations and datatypes specified in Clause 7, Semantics;, and
define methods for setup and knockdown of supporting communication networks.

Definitions. support, use, test, access, probe

In reference to PAPI Learner conformance, the following terms are defined in the context of
protocol conformance: a "supported” feature is one that may be used by any application of the
PAPI learner protocol; afeatureis"used” if it is read, written, or operated upon by an applica-
tion of the PAPI learner protocol; a feature is "tested" if an application of the PAP learner
protocol inquires about the existence of said feature; afeature is "accessed” if an gpplication of
PAPI learner protocol attempts to read or write data associated with the feature; a festure is
"probed" if an application of the PAP learner protocol implicitly tests the existence of afea
ture by attempting to use the feature (see "use' above) within a "safe" environment that does
not cause undefined behavior.

Copyright © 2000 |EEE. All rights reserved.
Thisisan unapproved | EEE Standards Draft, subject to change. 40

2000-11-28 P1484.2D7

Note: Protocol conformance makes requirements on both the protocol binding and on applica
tions that use the protocol binding, i.e, conformity assessment of a PAPI implementation
based on protocol conformance is determined by proper definition of the protocol and proper
use of the protocol.

4.6 Data Application confor mance

Data application conformance is measured by how well the data application behaves accord-
ing to this Standard.

There are two types of data gpplication conformance: strictly conforming and conforming.

4.6.1 Strictly conforming data application

For dl grictly conforming data applications,

Mandatory features shall exist (or shall be available) and shall conform to this Stan-
dard.

Optional features may exist (or may be available) and, if they exist (or are available),
shall conform to this Standard.

Extended features shall not be directly used and shall not be tested for existence or
availability. Note: A strictly conforming application might indirectly use an extended
feature because that feature is hidden within an implementation; see definition of
"consume” in Clause 3, Definitions, for this special case.

Note: A drictly conforming data application may be minimally conforming but is maximally
interoperable with respect to this Sandard. Strict conformance concerns (1) the assessment,
measurement, and/or availability of a minimal set of features, (2) the data application's non-
use of feature-probing; and (3) the data application’'s non-use of extended feature sets.

4.6.2 Conforming data application

For dl conforming data applications,

Mandatory features shall exist (or shall be available) and shall conform to this Stan-
dard.

Optional features may exist (or may be available) and, if they exist (or are available),
shall conform to this Standard.

Extended features may exist (or may be available), may be tested for existence (or
availability), and their use and behavior shall be implementation-defined.

Note: A conforming data application may be more useful, but may be less interoperable with
respect to this Sandard. Conformance concerns (1) the assessment, measurement, and/or
availability of aminimal set of features; (2) festure-probing for and/or prior agreement to the
existence (or availability) of extended features, as permitted by the implementation; and (3)
extended features specified externa to this Standard.

Copyright © 2000 |EEE. All rights reserved.
Thisisan unapproved | EEE Standards Draft, subject to change. 41

2000-11-28 P1484.2D7

4.6.3 Both strictly conforming and confor ming data applications

This subclause is informative and not normative.

4.6.3.1 Confor mity assessment

Although dl strictly conforming data applications are also conforming data applications, the
conformity assessment of drictly conforming data applications may differ from the conformity
assessment of conforming gpplications. The requirement that a data application must be both
"a grictly conforming data application” and "a conforming data application”, is a stronger re-
quirement than the individua requirements of "a grictly conforming data gpplication” and "a
conforming data application”, i.e., from the perspective of conformity assessment, an applica
tion may be "srictly conforming”, "conforming”, both, or neither.

4.6.3.2 lllustrations

It is possible for a conforming data application to be smultaneoudy (1) a strictly conforming
datarepository, (2) a conforming data repository, and (3) a generator and/or interpreter of data
extensions — which appears to be in conflict with the nature of grictly conforming imple-
mentations. The following examples show two difference implementation Strategies. These
examples use data repositories for illustration, but the illustration applies adso to data readers
and data writers.

Example 1: Data repository P uses an implementation strategy that allows an arbitrary set of
data element identifiers to be stored and retrieved (in additiona to those described in this stan
dard). When datais stored into and retrieved from P, P uses a particular binding data that data
extensions are permitted to be ignored, e.g., as a coding binding that uses "extension prefixes’,
an API binding that "hides implementation details’, or a protocol that uses "fallback negotia-
tion and out-of-band messages’. P will consume and interpret al strictly conforming data. P
generates and produces gtrictly conforming data because the particular binding chosen "hides’
the extensions; thus, dl srictly conforming data readers can consume and interpret data from
P. P can store extensions (dthough no claims are made about the specification and validity of
extensons). Thus, (1) P is a grictly conforming data repository, (2) P is a conforming data
repository that can store and retrieve extensions, (3) P can generate and interpret data exten-
sons, (4) Pisboth adrictly conforming and a conforming data repository.

Example 2: Data repository Q uses an implementation strategy (1) that closdy paralels this
Standard, and (2) would be described as "minimaigt”. Q uses the same techniques as P does
for consuming, interpreting, generating, and producing data. However, Q uses a "bucket” to
dore dl data extensons. The "bucket" approach may have strengths (e.g., smplicity) and
weaknesses (e.g., Sorefretrieve performance are poor) when compared to other implementa
tions. Q aso satidfies the same three requirements as P does (Q is a gtrictly conforming data
repository; Q is a conforming data repository that can store and retrieve extensions, Q can
generated and interpret data extensions) and has the same conclusion: Q is both a strictly con-
forming and a conforming data repository.

Copyright © 2000 |EEE. All rights reserved.
Thisisan unapproved | EEE Standards Draft, subject to change. 12

2000-11-28 P1484.2D7

4.6.4 Data application varieties

There are three types of drictly conforming/conforming data applications. data repository,
data reader, data writer.

Rationale

There are three separate application conformance perspectives. data repository, data reader,
data writer. Vendors and administrators or data repositories will want to claim conformance
("My PAP! learner repository conforms to the Standard”). Vendors will want to claim con-
formance for their tools (data readers. "My application imports data and is a conforming PAPI
learner data reader”, data writers: "My application exports data and is a conforming PAM
learner data writer", or both). See 4.4, Data Instance Conformance, above, for additiona per-
gpectives on conformance.

4.6.5 Data repository
A datarepository is adata application that stores and retrieves data objects.

A drictly conforming data repository shall:

receive data sets for subsequent retrieval;

use strictly conforming data interpretation for receiving data sets;

store data sets in persistent storage so that data extensions may not persist;

send, on request, previoudly stored data sets;

use strictly conforming data generation for sending data sets; and

strictly conform to at least one PAPI learner coding binding and at least one PAPI
learner API or PAPI learner protocol binding.

SuhkhwbdpE

Note 1. A grictly conforming data repository does not require "preservation” of extended data
elements, i.e, data interchange should not be dependent upon expecting extended data ele-
ments to perdst in a grictly conforming data repository but does not prohibit it either. See
subclause 4.6.3, Both Strictly Conforming and Conforming Data Applications, for more n-
formation on the storage of extensionsin gtrictly conforming data repositories.

A conforming data repository shall:

receive data objects for subsequent retrieval;

use conforming data interpretation for receiving data sets;

store data sets in persistent storage so that data extensions may persist;

send, on request, previously stored data objects;

use conforming data generation for sending data sets;

conform to at least one PAPI learner coding binding and at least one PAPI learner
API or PAPI learner protocol binding.

o hhowbdE

Note 2: A conforming data repository may, upon storage, add, delete, or change extended data
elements for subsequent retrieva.

Note 3: A conforming data repository may store some data extensions, but it is not required to
store and retrieve all data extensons.

Copyright © 2000 |EEE. All rights reserved.
Thisisan unapproved | EEE Standards Draft, subject to change. 43

2000-11-28 P1484.2D7

Note 4: A conforming data repository may store and retrieve data objects that are not data sets.

4.6.6 Data reader

A data reader is a data application that operates as if it (1) consumes data, and (2) interprets
data which results in data sets.

Note 1: The "asif" rule implies that, conceptudly, the data reader processes the information in
two phases (consumption and interpretation), but the design of implementations are not con-
gtrained and implementations may use any number of phases of processing.

A dgtrictly conforming data reader shdll interpret data that strictly conformsto (1) this Standard,
and (2) a least one binding of this Standard.

Note 2: A grictly conforming data reader does not interpret extended data elements.

Note 3: Depending upon the binding of this Standard, a strictly conforming data reader may
"ignore” data extensons, e.g., a strictly conforming data reader may consume data extensions
but the data reader is able to ignore (not interpret) these extensions.

A conforming data reader shal interpret data that conforms to (1) this Standard, and (2) at
least one binding of this Standard.

Note 4: A conforming data reader may interpret extended data e ements.

4.6.7 Data writer

A data writer is a data application that operates as if it (1) generates data from data sets, and
(2) produces data.

Note 1: The "asif" rule implies that, conceptually, the data writer processes the information in
two phases (generation and production), but the design of implementations is not constrained
and implementations may use any humber of phases of processing.

A drictly conforming data writer shdl generate data that strictly conformsto (1) this Standard,
and (2) at least one binding of this Standard.

Note 2: A drictly conforming data writer does not generate extended data eements.

A conforming data writer shall generate data that conformsto (1) this Standard, and (2) at least
one binding of this Standard.

Note 3: A conforming data writer may generate extended data elements.

Copyright © 2000 |EEE. All rights reserved.
Thisisan unapproved | EEE Standards Draft, subject to change. 44

2000-11-28 P1484.2D7

5 Functionality

Note : This Clause refers to "applications’, which refer to information technology systems or
components that use or incorporate PAPI Learner. The term "data application” is a specidized
term whose requirements are specified within Clause 4, Conformance.

5.1 System functional requirements

A PAP learner implementation shall (1) represent human information for use by learning
technology systems; or (2) communicate this information among PAPI learner gpplications.

This Standard describes interfaces and a framework of human information repositories that
are, conceptually, partitioned according to their gpplications use and their adminigtration.

PAPI learner implementations may affect the transfer of datavia:

PAPI learner application programming interfaces (APIs);
PAPI learner protocols; or
methods outside this Standard.

PAPI learner codings and data formats may be used to encode the data for any of the above
methods.

Note: Implementations need not support

5.2 Application requirements synopsis
This subclause is informative and not normative.

The following applications are both representative and prototypica — they illustrate the re-
quired functiondity of PAPI Learner.

Note 1. These gpplications are useful for validating the PAPI learner functiondity and are not
required by this Standard.

Note 2: The following single-letter abbreviations are used for PAP learner information types:
N = persond, R = relaions, S = security, M = preference, G = performance, W = portfalio.

Note 3: A "v" symbol means that this information type is most likely used in the application
or requirements synopsis. A "?' symbol means that this information type might be used in the
gpplication or regquirements synopss.

Application/Requirements Synopsis N|IRIS|IM|G|W

Copyright © 2000 |EEE. All rights reserved.
Thisisan unapproved | EEE Standards Draft, subject to change. 45

2000-11-28 P1484.2D7
Application/Requirements Synopsis SIM|G|W
A web-based, local area network, standalone, or nomadic application that accesses the 21 v
learner's history to determine the most productive learning experience.
A web-based, loca area network, standalone, or nomadic application that records 2| V| ?
bookmarks, lesson grades, and commentary.
A learning technology application that combines the components of content delivery, ?21v| v|?
management, and recordkeeping into asingle application.
A learning technology application that separates the components of content delivery, 2 v V| ?
management, and recordkeeping into individual, separate applications.
A learning technology application that uses learner histories from more than one e 21?2 v
pository (distributed repositories of learner information).
A learning technology application that useslearner information from multiple reposito- 21?1 v
rieswith separate, independent security administration systems.
A learning technology application on a remote campus that uses learner history from 21?2 v|?
the home campus.
A learning technology application on a remote campus that records learner history at 21 v
the home campus.
A learning technology application that adapts to a learner's physical limitations, e.g., rAR4R"4
blindness, deafness.
A learning technology application that adapts to the learner's culture, e.g., language, v
conventions, units of measurement, currency.
A back office system that transfers information between the registrar and the profile vV v v|?
repositories.
An application that transfers grades from one ingtitution to another institution in a se- ?2 v ?
cure environment (confidential, tamper-proof).
An employment system that offers employees resumes, works, and accomplishments v
to prospectiveemployers.
An employment system that searchesfor learnerswith appropriate skills. v
Aninformation structure that supports grouping of individual leamers. v|?
A learning content development application that correlates learner performance to ?2 v
learner content effectiveness.
An application that collectsinformation on the effectiv eness of courses. 21?2 v|?
An gpplication that determinesif alearner is enrolled in an ingtitution and/or has paid ?
the required monies.
An application that printsreport cards. v
Copyright © 2000 |EEE. All rights reserved.
Thisisan unapproved | EEE Standards Draft, subject to change. 46

2000-11-28 P1484.2D7

Z
Py
”
<
0]
=

Application/Requirements Synopsis

An application that prints mailing labelsfor all learnersin an institution.

An applicationthat providesacampusdirectory.

An application that provides emergency contact information.

NI NI RN
)

Integration of applications in various environments. personal computer, workstation,
scripting languages, compiled languages, operating systems, content delivery systems,
database systems, network systems, nomadic systems, security systems, learner identi-
fication systems, administration systems.

5.3 Technical requirements synopsis

This subclause is informative and not normative.

The following are technical requirements for PAPI Learner.
5.3.1 Controlling accessto information

Much human information is coded, stored, sorted, sdlected, and findly, distributed to com+
puter programs, learners, parents, teachers, administrators, and ingtitutions. For privacy, regu-
latory, technical, and other reasons.

Some information is kept private. Example: learner personal information.

Some information hasrestricted access. Example: learner performance information,
learner relations information, learner portfolio information.

Some information has varying degrees of public accessibility. Example: learner
preference information, learner relations information, learner security information.
Some information must be available to certain application components. Example:
learner performance information, learner relations information, learner security n-
formation, learner preference information.

Some information is available to administration and management components.
Example: learner personal information, learner relations information, learner security,
learner performance information.

Some information is primarily useful for humans. Example: learner portfolio in-
formation.

Applications may have further congtraints:

Applications may have access to too much information. An application that only
needs access to learner performance information (e.g., tutoring and training systems)
doesn't need access to persona information, such as home phone numbers, parent
names, and ethnicity information. In fact, some regulations and business practices re-
quirethat all records be completely de-identified (no name, institution, age, etc.) with

Copyright © 2000 |EEE. All rights reserved.
Thisisan unapproved | EEE Standards Draft, subject to change. 47

2000-11-28 P1484.2D7

only an employee number (student number, patient number, etc.) to track progress.

Example: A learner uses courseware over the internet at some distance learning cen-

ter; the courseware might need access to a learner's history to determine the best les-

son plan, but why does this courseware need to know private information, such as the
names of the learner's parents? Note: Other industries, such as, telemedicine (medi-

cal) and electronic commerce (financial) applications, may have access to too much
information or may have potential business conflicts in jointly developed applications
(e.g., in a given application, if there is only one combined repository for learner and
patient preferences, does a learning technology application have access to patient

information for this application?).

Applications may want to storetheir information in their repository. Some appli-

cations prefer to store their information in their own repositories. For example, a
learner purchases a distance learning course from an institution, but the institution
doesn't permit the transfer of records until the learner has completed hisher final tui-

tion payments. Note: In other industries, doctors, hospitals, and financial institutions
will each want to maintain their own copy of certain information.

While information may be kept in separate repositories, there aso exists the need to access
human information as if it were in a sngle, consolidated, combined repository (or singular
database).

Example: An application that only wishes to access the learner performance information (or
medica clinica information) of a combined repository may specify different "views', which
imply different subsets. In this example, views are organized hierarchicaly: each user has a
view; this view has education, hedthcare, and financia sub-views, the education view has
persond, preference, performance, and portfolio sub-views. Each view

per sonal . edu. j ohn. doe

rel ati ons. edu. j ohn. doe

security. edu.john. doe

pref erence. edu. j ohn. doe

per f or mance. edu. j ohn. doe
portfolio.edu.john. doe
personal . medi cal . j ohn. doe

denogr aphi c. nedi cal . j ohn. doe
clinical.nedical.john.doe
financi al -ai d. fi nanci al . j ohn. doe
credit-history.financial.john.doe

has its own security, access, and permissions, but these logica views access a combined re-
pository (a single, common database). These separately controlled views give the appearance
of separate repositories, yet might actualy refer to the same repository.

Note: The naming of views may use adifferent hierarchica ordering, such as the following:

/ doe/ j ohn/ edu/ per sona

/ doe/ j ohn/ edu/rel ati ons

/ doe/ j ohn/ edu/ security

/ doe/ j ohn/ edu/ pr ef erence

/ doe/ j ohn/ edu/ per f or mance

/ doe/ j ohn/ edu/ portfolio

/ doe/ j ohn/ medi cal / per sona

/ doe/ j ohn/ medi cal / denogr aphi c
/ doe/j ohn/ medi cal /clinica

Copyright © 2000 |EEE. All rights reserved.
Thisisan unapproved | EEE Standards Draft, subject to change. 48

2000-11-28 P1484.2D7

/ doe/john/financial/financial-aid
/ doe/john/financial/credit-history

The choices of designing repositories as combined or separate, distributed or centraized, on-
line or nomadic, etc., are implementation details outside the scope of PAPI Learner.

5.3.2 Cultural and institutional conventions

PAPI learner information must support:

Cultural dependencies. Some cultural conventions may afford automated
trandation (e.g., feet to meters, Fahrenheit to Celsius), while some cultura
conventions may be automated but time-dependent (e.g., US dollars to Euros). Some
data, such as instructor or physician comments written in English, may be useful in
certain cultures and might not afford automated trandation. An engineering goal in
PAPI Learner is to maximize the internationalization (118N) capabilities (i.e.,
implementations that are interoperable and not culturally dependent) while supporting
localization (L10N) mappings to local, and cultural conventions, i.e., adaptation to
local and regiona cultural conventions.. Example: Date and time are stored in UTC
(Coordinated Universal Time), but may be converted to the local time via common
library functions (e.g., | ocal ti ne() in C). Thus, an engineering goal of PAPI
Learner is to support cultural conventions in the general sense, e.g., including
linguistic conventions.

Institutional conventions. Some data might not afford automatic translation among
ingtitutions, e.g., for grades, what is the mapping of numeric grades to letter grades or
vice versa?. It is impractical to build cross-institutional consensus around a simple,
singular coding scheme. Thus, engineering goals in PAPI Learner include (1) to sup-
porting ingtitutional conventions, e.g., coding schemes such as "US- NY- K12-
LETTER- GRADE" for New York State public schools letter grades; (2) supporting
naming conventions to minimize conflicts, e.g., XYZ University that has the domain
"xyz. edu" uses the coding conventions prefix/suffix kyz. edu”; (3) trusting insti-
tutions to reduce the number of coding schemes as they benefit from higher
interoperability. Similarly, medical and financial information have similar institu-
tional conventions. An engineering goal of PAPI Learner isto "let the market solve
the problem" of choosing/reducing the number of coding schemesto the "right” level.

5.3.3 Connectivity to information

Applications may require both on-line and off-line access to resources.

Applications may be disconnected from centralized resources. Distance learning
does not imply continuous on-line access. For example, the learner may connect
briefly each morning to exchange information but is otherwise disconnected from the
internet or other centralized resources. These nomadic users are "sometimes-
connected” and/or "sometimes-roaming”. Nomadic use is required when the learner
istraveling, on-line access is impractical, or continuous access is expensive.

Copyright © 2000 |EEE. All rights reserved.
Thisisan unapproved | EEE Standards Draft, subject to change. 49

2000-11-28 P1484.2D7
5.3.4 Partitioning information

This Standard organizes and partitions information according to overal:

Application Use: Compare learner relations information to learner performance n-
formation.

Administration: Compare single-copy, private learner persona information to mul-
tiple-copy, semi-public learner preference information.

Note: It is expected that this Standard will be widely adopted for interchange and access of
public and private information. To promote adoption, an important PAPI engineering re-
quirement is supporting smple application paradigms In other words, it should require
minimal effort to incorporate PAPI learner codings, APIs, and protocols into existing applica-
tions.

5.3.5 Summary of engineering goals

The following is asummary of PAPI Learner engineering requirements and goals:

Controlling access to information to the extent necessary.
Maximizing performance of accessing data.

Supporting varying data and information structures.

Supporting varying cultural conventions.

Supporting varying institutional conventions.

Supporting varying industry conventions.

Supporting varying coding and extension mechanisms.
Supporting varying information partitioning schemes.

L etting the market choose the best coding scheme(s).
Supporting varying types of on-line, "sometimes', and off-line connectivity.
Supporting varying geographic (nomadic) access to information.

Copyright © 2000 |EEE. All rights reserved.
Thisisan unapproved | EEE Standards Draft, subject to change. 50

2000-11-28 P1484.2D7

6 Conceptual model

This section defines the conceptual model of conforming PAPI Learner implementations.

6.1 Learner information, learner profiles, PAPI Learner

General Learning Technology Information

Learner Information

PAPI Learner Information
Learner Personal Info Learner Relations Info Learner Security Info
PAPI Learner Personal Ir —l PAPI Learner Relations | Ir —l PAPI Learner Security '
Extensions : | Extensions N Extensions h
Learner Preference Info Learner Performance Info Learner Portfolio Info
Ir -IPAPI Lez:rner Preference. Ir PAPI Learner Performance Il' 1 PAPI Learner Portfolio l
I___ _Extensions | _ __, 1___ _Extensions_ __ _, I___ .Extensions____,

Figurel. Relationshipsamong general lear ning technology infor mation, PAPI lear ner information
(this Standard), and PAPI learner extensions.

Learner information, aso known genericaly as a "learner profile’, is a subset of generd
learning technology information. Learner information includes persond, preference, perform:
ance, portfolio, and, possibly, other types of information. This Standard describes a particular
subset of learner information. The term "learner profile’ is the generic name; PAPI learner
information is one specific description of this "learner profile'.

Note: For each of the six information types, this Standard describes a subset that is useful and
can be widdly implemented. This Standard does not describe all possible learner information,
but includes only the minimum information necessary to satisfy the functiona requirements
and to be maximally portable, and the ability to extend this informetion.

The following is a brief description of the six information types of PAPI Learner:

Learner personal information is not directly related to the measurement and re-
cording of learner performance and is primarily related to administration. Note:
Typically, this type of information is private and secure.

Learner relations information is about the learner's relationship to other users of
learning technology systems, such as teachers, proctors, and other learners.

Learner security information is about the learner's security credentials, such as.
passwords, challenge/responses, private keys, public keys, biometrics.

Learner preference information describes preferences that may improve human-
computer interactions.

Copyright © 2000 |EEE. All rights reserved.
Thisisan unapproved | EEE Standards Draft, subject to change. 51

2000-11-28 P1484.2D7

Learner performance information relates to the learner's history, current work, or
future objectives and is created and used by learning technology components to pro-
vide improved or optimized learning experiences.

Leaner portfolio information is a representative collection of a learner's works or
references to them that is intended for illustration and justification of higher abilities
and achievements.

Note 1: Implementations may extend or combine these six information types. Implementa
tions may link separate data repositories of information types via, say, database keys.

Example: A data repository of learner persond information is linked to a data repository of
learner performance informetion by the use of alearner identifier.

Note 2: This Standard does not require these six information types to be separated, but many
implementations maintain separate repositories to satisfy security, administration, regulatory,
and system performance needs.

Throughout this Standard, one-letter mnemonics and colors are used as a shorthand for types
of PAPI learner information:

N = PAPI learner personal information. The mnemonic is 'Name". The color is
red or rose.

R = PAPI learner relationsinformation. The mnemonic is 'Relations”. The color
isviolet or light violet.

S =PAPI learner security information. The mnemonic is "Security”. The color is
sky blue or light sky blue.

M = PAPI learner preferenceinformation. The mnemonic is'My configuration”.
The color is deep blue or pastel blue.

G = PAPI learner performance information. The mnemonic is "Grades'. The
color is deep green or pastel green.

W = PAPI learner portfolio information. The mnemonic is"Works". The color is
goldenrod or light goldenrod.

Rationale overview for information types

The following requirements motivate the need for at least Sx types of learner information.
|EEE 1484.2.2, PAPI Learner Rationae, provides more information.

Each of the following topics represents a continuum of perspectives, e.g., there isn't only "lo-
cd" and "remote" information, but many gradations and variations.

Local vs. Remote. Learner information can vary in "distance" from the learner. Lo-
cal information, typicaly, is characterized by on-line availability, higher performance
access, and fewer security restrictions. Remote information, typicaly, is character-
ized by sometimes-availability, lower performance access, and significant security re-
strictions. Example: Compare a home campus PAPI server to a remote campus PAPI
server.

Private vs. Public. Learner information has varying degrees of privacy and public
availability. This Standard is largely motivated by privacy issues for users, institu-
tions, and the internet. A primary concern is. what information is available and to

Copyright © 2000 |EEE. All rights reserved.
Thisisan unapproved | EEE Standards Draft, subject to change. 52

2000-11-28 P1484.2D7

whom? The PAPI Learner security paradigm is directed by a "need to know". Com-
pare PAPI learner personal information (typically, private) to PAPI learner preference
information (often, public); or, compare both (restricted) public and (restricted) pri-
vate performance information.

Learning Experiences vs. Other Uses. Learner information can be separated into
information that is mostly useful or required for learning technology systems to give
improved or optimized learning experiences (e.g., the learner's history), and al other
information. Improved or optimized content sequencing is one technique for m-
proving the learning experience. Compare learner performance information (useful
or required for better learning experiences) to learner personal information (typically
not required to improve learning experiences).

Content-Generated vs. Learner-Generated. Learner information can be generated
by the learning technology systems, generated by the learner, generated by both, or
generated by others, or some combination. Compare learner performance information
(generated by using learning content) to learner portfolio information (typicaly cre-
ated and maintained by the learner).

6.2 Infor mation types vs. data repositories

A data repository may hold one or more information types. A data set may hold one or more
information types.

Example 1. Separate Data Repositories: A conforming implementation might have one data
repository for each information type: a learner persona information repository, a learner rela-
tions information repostory, a learner security information repository, a learner preference
information repository, a learner performance information repository, a learner portfolio n-
formation repostory.

Example 2: Combined Data Repository: A conforming implementation might have one re-
pository for al types of learner information. In this example, the security administrator might
alow unrestricted access to "learner preference fieds' (i.e., learner preference information),
while redtricting access to "learner persond fidds' (i.e, learner persond information); thus
learner persona information is "private’ and learner preference information is "public”, yet
they are both accessed via the same repository. The gpplication or user might be unaware that
the same data repository is accessed for each information type.

6.3 Data access model

A PAPI learner data st is a collection of information about a learner in a learning technology
sysem. This information may include one or more types of learner information: persond,
relations, security, preference, performance, portfolio.

Datainterchange of PAPI learner data sets is affected by:

PAPI learner codings. A PAPI Learner data set may be coded in a PAPI Learner

coding binding. The data interchange is facilitated among data exchange participants
by mutual agreement via methods external to the PAPI Learner coding specification.

Copyright © 2000 |EEE. All rights reserved.
Thisisan unapproved | EEE Standards Draft, subject to change. 53

2000-11-28 P1484.2D7

PAPI learner application programming interfaces (APIs). The API binding is a
control transfer mechanism (control is transferred from caller to callee) that affects
data interchange.

PAPI learner protocols. The protocol binding is both a control transfer mechanism
and a data transfer mechanism.

Collectively, these bindings are called "PAPI learner codings, APIs, and protocols’.

Note: PAPI learner data gpplications may use one or more PAPI learner codings, APIs, and
protocols.

The following is the conceptual model of data access.

Data Object Model. A data object shall be at least one of: a data element, or an im-
plementation-defined object.

Data Storage Model. Data, including data sets, may be stored in a data object, as
referenced by an identifier.

Data Retrieval Model. Data, including data sets, may be retrieved from a data db-
ject, as referenced by an identifier.

Data Typing Model. Data objects that are data elements shall have a datatype.
Datatypes may prescribe certain vaue spaces (e.g., domains), representation, encod-
ing, storage, layout, conversion to other types, methods, and operations. The datatype
of PAPI Learner data elements is defined by this Standard, which uses the semantics
and notation of ISO/IEC 11404.

Data Attribute Model. A data attribute shall be an implementation-defined object
associated with a data object. These attributes themselves may be accessed as data
objects. Note: Attributes are also known as "properties’.

Data Repository Access Model. PAPI Learner bindings define access, if any, to
datarepositories.

Data Repository Security Model. See subclause 6.8, Security Model, below.

Data Persistence Model. The lifetime of data objects shall be implementation-
defined.

Data Navigation Model. The techniques for navigating data structures are defined in
PAPI Learner bindings.

Data Identification Model. The identification, labeling, namespace, and their asso-
ciated techniques shall be implementation-defined.

Data Referencing Model. A data repository may create a reference to a data object
for the purpose of subsequent dereference. The naming conventions, lifetime, and
scoping of areference shall be implementation-defined.

Data Dereferencing Model. A data repository may access a data object based upon
supplying a reference, i.e., dereferencing a reference. The dereferencing methods
shall be implementation-defined.

Data Indexing Model. The indexing methods for data repositories shall be imple-
mentation-defined. Note: The term "indexing” is used in the context of database sys-
tems, i.e., methods for organizing database records.

Data Searching Model. The searching methods for data repositories shall be imple-
mentati on-defined.

Copyright © 2000 |EEE. All rights reserved.
Thisisan unapproved | EEE Standards Draft, subject to change. %]

2000-11-28 P1484.2D7

6.4 Extending PAPI within an application area

The specification of extended festures is outside the scope of this Standard.

Note: Even though information technology components may support a wide variety of imple-
mentations, data repository administrators may choose to include and/or limit certain exten-
sons. See|EEE 1484.14.x "Extensions Techniques', for more information.

6.5 Limiting PAPI extensions

The specification or limitation of these extended features is outsde the scope of this Standard.

Note: Even though information technology components may support a wide variety of imple-
mentations, data repository administrators may choose to limit the availability or use of exten-
sons. See |EEE 1484.14.x "Extensions Techniques', for more information.

6.6 Distance, distributed, and nomadic systems

Distance features are supported by permitting globa namespaces and the infrastructure to
search, store, and retrieve information within a global namespace. The namespace conven-
tions and resolution methods shal be implementation-defined.

Digtributed features are permitted by a single repository storing one or more information
types, and by one ore more repogitories acting as a single repository. The synchronization,
replication, commit, rollback, and fallback methods shal be implementation-defined.

Nomadic features are permitted by roaming users within a sometimes-connected infrastruc-
ture. The methods of dynamic quality of service and continuity of connection shal be imple-
mentation-defined.

6.7 Correlation of granularity levels

The correlation of various levels of granularity for learner performance information shal be
implementation-defined.

Example: If ateacher changes a course grade (smaller granularity), when does the grade point
average (larger granularity) automatically change?

6.8 Security model

Security is defined and bounded by a security perimeter. The following features shall be im+
plementation-defined:

The boundary of security perimeter(s).
The nature, type, and acceptable level of risk of inbound security threats.

Copyright © 2000 |EEE. All rights reserved.
Thisisan unapproved | EEE Standards Draft, subject to change. 55

2000-11-28 P1484.2D7

The nature, type, and acceptable level of risk of outbound security threats.
The security strength.

The parameterization, setup, negotiation, and knockdown of security features.
The administration of the security perimeter integrity.

The interoperability agreements are defined externdly to this Standard.

Note: The Security Modd is harmonized with ISO/IEC 17799-1 "Code of Practice for Infor-
mation Security Management”.

The following security features are defined in the conceptual mode!:

Session-View-Based Security Model. Security features are provided on a per-
session, per-view basis. Each security session is initiated by an accessor (a user or
agent that requests access). The accessor provides security credentials that authenti-
cate the accessor, authorize the accessor, or both. A view represents a portion of
PAPI learner information; a "view" is similar to the notion of a database "view".
Each view established represents a session, i.e., the "session” represents the duration
of access and the "view" represents the scope of access.

Security Parameter Negotiation Model. Data interchange participants negotiate
security parameters prior to, during, and after each session. The security parameters
are defined in the PAPI Learner bindings.

Security Extension Model. Additional security features may be used that were not
foreseen. The method of incorporating security extensions is defined in the PAPI
Learner bindings.

Access Control Model. Accessors may attempt read access upon data elements, may
attempt write access upon data elements, may attempt to create new data elements
(separately or within aggregates), may attempt to destroy data elements (separately or
within aggregates), and/or may attempt to change attributes of data elements. Other
access methods, if any, shall be implementation-defined.

I dentification Model. The methods for identifying learners shall be implementation-
defined. Note: |IEEE 1484.13, Simple Human Identifiers, define the datatype associ-
ated with alearner identifier.

Authentication Model. The methods of authenticating users are outside the scope of
this Standard.

De-identification Model. All information, except learner persona information,
should be de-identified. The methods of de-identifying learners and their information
are outside the scope of this Standard. Note: Administrators and, possibly, learners
are responsible for choosing appropriate learner identifiers that do not revea the
learner's identity. Example: Choosing a learner's name as hig’her identifier is a poor
choice from the perspective of de-identification. A variety of better de-identification
techniques are possible, including the use of random numbers with short "lifetimes”.
Authorization Model. The methods of authorizing operations shall be implementa-
tion-defined.

Delegation Model. The methods of delegating administration, authority, or creden
tials shall be implementation-defined.

Non-Repudiation Model. The methods of non-repudiation shall be implementation-
defined.

Copyright © 2000 |EEE. All rights reserved.
Thisisan unapproved | EEE Standards Draft, subject to change. 56

2000-11-28 P1484.2D7

Repudiation Model. The methods of repudiating data, users, or credentials shall be
implementation-defined.

Privacy Model. Note: This Standard specifies neither a privacy model nor privacy
requirements, but supports security frameworks and approaches that permit the m-
plementation of awide variety of privacy frameworks.

Confidentiality Model. This Standard specifies neither a confidentiality model nor
confidentiality requirements, but supports access controls and the partitioning of in-
formation types that permit the implementation of a wide variety of confidentiality
frameworks.

Encryption Model. This Standard specifies neither an encryption model nor encryp-
tion requirements, but supports several security frameworks and techniques that per-
mit the integration of various encryption models and technologies.

Data Integrity Model. This Standard specifies neither a data integrity model nor
data quality requirements, but supports information assurance frameworks and g-
proaches that permit the implementation of a wide variety of data integrity frame-
works

Validation of Certificates. This Standard does not require validation of learner per-
formance information or learner portfolio information, but supports the parameteriza-
tion of automated validation of either type of learner information.

Digital Signature Model. This Standard specifies neither a digital signature model
nor digital signature requirements, but supports several signing frameworks and tech-
niques permit the integration of various digital signature models, policies, and tech-
nologies. This Digital Signature Model is harmonized with ISO/IEC 15945 " Specifi-
cation of Trusted Third Party Services to Support the Application of Digital Signa-
tures’.

|EEE 1484.2.3, PAPI Learner Information Security Notes, contains information about apply-
ing security techniques and technologies to PAPI Learner implementations.

Copyright © 2000 |EEE. All rights reserved.
Thisisan unapproved | EEE Standards Draft, subject to change. 57

2000-11-28 P1484.2D7

7 Semantics

The meaning of PAPI learner information shall be the same regardless of which PAPI Learner
binding and PAPI Learner encoding is chosen.

Note 1. The choice of PAPI Learner bindings and/or PAPI Learner encodings is for the con-
venience of the data interchange participants.

Note 2: PAPI learner coding bindings define a mapping for each datatype defined in this
Clause.

Note 3: PAP learner API bindings define a mapping for each operation and datatype defined
in this Clause.

Note 4: PAP! learner protocol bindings define a mapping for each operation and datatype de-
fined in this Clause, and define methods for setup and knockdown of supporting communica-
tion networks.

Note 5: Throughout this Clause, the abbreviate SPM is used, which means "smallest permissi-
ble maximum". The SPM vaue isintended to give implementers alower limit on conforming
implementations. Applications should not assume that implementations support capabilities
beyond the SPM value unless prior arrangements have been made.

7.1 General data operations

PAPI learner information shall support the following data management operations on data
sets:

Create Operation. Creating a new instance of some information type, such as per-
sona information.

Destroy Operation. Discarding an instance of an information type in the context of
its storage. Note: Compare destroying a record in application memory, in temporary
storage, and in a database.

Copy Operation. Creating a new instance of an information type with identical
contents.

Move Operation. Changing a label associated with an instance of an information
type by changing the storage of the information (implicit label change) or changing
the labd itsalf (explicit label change). Example: An implicit label change might be
affected by creating new "hard links' to a new label, then deleting "hard links' to the
old label. An explicit label change might be affected by changing the label in some
"directory" of information.

Label Operation. Creating (or removing) a name, specified by the "caler", to be
associated with an instance of information.

Navigate Operation. Using a naming method (absolute, relative, complete, progres-
sive) to locate an instance of an information type.

Copyright © 2000 |EEE. All rights reserved.
Thisisan unapproved | EEE Standards Draft, subject to change. 58

2000-11-28 P1484.2D7

Search Operation. Finding instances of an information type that match search crite-
ria and returning the found information via references, labels, or copies.

Reference Operation. Creating a handle to an instance of an information type.
Note: The difference between alabel and areferenceis: the "caller" chooses the name
for alabel, while the "callee" chooses the name for a reference.

Dereference Operation. Using a handle, created through reference, to access an in-
stance of an information type.

Aggregation Operation. Combining several instances of one or more information
types into a single container.

Decomposition Operation. Extracting instances of information types from a con
tainer.

The PAPI Learner binding defines the methods for accessing data management operations and
the availability of said operations.

7.2 Application-specific data operations

PAPI learner information shal support the following application-specific data operations on
data sets:

Accumulation Operation. PAPI learner records may be accumulated, aggregated, or
analyzed. Examples. "what it the average score among third graders?’, "what is the
grade point average for a particular learner?"

Time Compression and Expansion Operations. PAPI learner records may be re-
corded at various levels of granularity. Time compression reduces the set of records
to larger granularity. Time expansion creates records of finer granularity by interpo-
lation. Example: quarterly grades and a final exam are rolled up into a final grade;
after compression, the data set is reduced because only the final grade remains.

Sort Operation. PAPI records may be ordered, based upon sort criteria. Example:
users may be ordered alphabetically by name.

The PAPI Learner binding defines the methods for accessing application-specific data opera
tions and the availability of said operations.

7.3 Data compatibility

PAP! learner information may support the following data compatibility operations on data
sets.

Promotion of Data Types. Transforming a value from lesser capabilities to greater
capabilities. Example: Converting an integer to areal; converting a character array of
length 10 to a character array of length 20; converting a record of elements { Nane,
Addr ess} to arecord of asuperset of elements{ Name, Address, Tel ephone}.
Demotion of Data Types. Transforming a value from greater capabilities to lesser
capabilities. Example: Converting areal to an integer; converting a character array of
length 20 to a character array of length 10; converting a record of elements { Nane,
Addr ess, Tel ephone} to arecord of a subset of elements{ Narmre, Address}.

Copyright © 2000 |EEE. All rights reserved.
Thisisan unapproved | EEE Standards Draft, subject to change. 59

2000-11-28 P1484.2D7

Conversion To/From Data Types. Transforming a value from one data type to an
other data type. Example: Converting an integer to a string; converting the pair
{Primary-Name, Secondary-Name} tO{Sort- Nane}.

Text Formats. Transforming values to/from textual representations.

The PAPI Learner binding defines the methods for accessing data compatibility operations
and the availability of said operations.

7.4 Foundational datatypes

The following datatypes are used by more than one PAPI |earner information type.

In this subclause and the remaining subclauses of this Clause, the ISO/IEC 11404 summary
provides additiond information, such as size and smallest permitted maximum vaues, if not
aready provided in the Description wording.

7.4.1 PAPI learner_context_label type

| SO/IEC 11404 summary

type PAPI | earner_context | abel type =
characterstring(iso-10646-1), // SPM 500

Description
All szesor limits are smallest permitted maximum values.

A characterstring of sze 500. The meaning of the vaues shal be implementation-
defined.

Example
Thevdue"! (j apan) " might be "not within the context of Japan" — whatever that means
for the implementation.

7.4.2 arraylist

| SO/IEC 11404 summary

type arraylist(type_spec, size) =
array (0..size-1) of (type_spec),

Description

A shorthand for multiple array elements. This type declaration is only a "synonym" (in the
ISO/IEC 11404 sense of a" new" type) for an exigting type.

Copyright © 2000 |EEE. All rights reserved.
Thisisan unapproved | EEE Standards Draft, subject to change. 60

2000-11-28 P1484.2D7
7.4.3 mlstring_type

| SO/TEC 11404 summary
type mstring type =

record
(.
string:
characterstring(iso-10646-1), // SPM 1000
| ocal e:
characterstring(i so-646), // SPM 255
),
Description

A multilingua string. The following components define this data eement. All components
areoptiond. All sizesor limits are smallest permitted maximum values.

string: Thelocdized string.

| ocal e: The locaization (L10N) mapping, known as the "local€".

Example

The following are sample ISO/IEC 11404 (data set) values:

/1 1SO|EC 11404 data set
(

string
| ocal e

"hello worl d",
"en- US",

)' =
7.4.4 mlstring_array

| SO/IEC 11404 summary

type mstring_array_type(limt) =
array (0..limt-1) of (mstring_type),

Description

An array of multilingua strings, also known as a "message catalog features'. This type decla-
ration isonly a"synonym" (in the ISO/IEC 11404 sense of a" new" type) for an existing type.

7.4.5 PAPI _learner_bucket_type

| SO/IEC 11404 summary

type PAPI _| earner_bucket _type =
record
(
name:
characterstring(iso-10646-1), [/ SPM 200
val ue:
octetstring, // SPM 4096

Copyright © 2000 |EEE. All rights reserved.
Thisisan unapproved | EEE Standards Draft, subject to change. 61

2000-11-28 P1484.2D7
Description

A "bucket” for adding name-value pairs to a PAPI Learner information type. The following
components define this data element. All components are optional. All sizes or limits are
smallest permitted maximum va ues.

nane: The name portion of the name-value pair.

val ue: The vaue portion of the name-value pair.

Note: This feature permits a limited extension capability that works on al rictly conforming
systems.

Example

The following are sample ISO/IEC 11404 (data set), XML (data instance), and DNV P (data
instance) values.

/1 1SO|EC 11404 data set
(

name = "special _paranmeter_1",

val ue = "xyz",
) y
<l-- XML data instance ("..." is replaced by outer tags) -->
<...>

<name>speci al _paramt er _1</ nane>
<val ue>xyz</val ue>
</[...>

DNVP data instance ("..." is replaced by outer context)
....nane: special _paranmeter_1
....value: xyz

7.4.6 PAPI _learner_identifier _type

| SO/IEC 11404 summary

type PAPI | earner_identifier_type =
record

(

cont ext _| abe

PAPI | ear ner _context | abel _type,
i dentifier_type

PAPI | earner _identifier_type_type,
i dentifier_val ue

octetstring, // SPM 1024

)
Description

An interna identifier that is used to link across databases. The meaning , namespace, scoping,
and resolution of this feature shall be implementation-defined.

The following components define this data eement. All components are optiond. All sizes
or limits are smallest permitted maximum values.

Copyright © 2000 |EEE. All rights reserved.
Thisisan unapproved | EEE Standards Draft, subject to change. 62

2000-11-28 P1484.2D7

cont ext _| abel : The context for use of this data element.
identifier_type: Thetype of theidentifier.
i dentifier_val ue: Thevaue of theidentifier.

Example

The following are sample ISO/IEC 11404 (data set), XML (data instance), and DNVP (data
instance) values.

/1 1SO1EC 11404 data set

(
context | abel = "database_pool 4",
identifier_type = "pointer",
i dentifier_value = "0x12345678"
)1
<l-- XM. data instance ("..." is replaced by outer tags) -->
<...>
<cont ext _| abel >dat abase_pool _4</cont ext _I abel >
<identifier_type>pointer</identifier_type>
<identifier_val ue>0x12345678</identifier_val ue>
</[...>
DNVP data instance ("..." is replaced by outer context)

....context | abel: database_pool 4
....identifier_type: pointer
....identifier_value: 0x12345678

7.4.7 PAPI _learner_hid_type

| SO/IEC 11404 summary

type PAPI | earner_hid_type =
record

(
cont ext _| abe
PAPI | earner _context | abel _type,
identifier_type
PAPI | earner _identifier_type_type,
i dentifier_val ue
octetstring, // SPM 1024

)1
Description

An external identifier that is used to corrdlate PAPI learner information across repositories.
The meaning , namespace, scoping, and resolution of this feature shal be implementation-
defined.

The following components define this data dement. All components are optiond. All sizes
or limits are smallest permitted maximum values.

cont ext | abel : The context for use of this data e ement.
identifier_type: Thetype of theidentifier.
i dentifier_val ue: Thevaue of theidentifier.

Copyright © 2000 |EEE. All rights reserved.
Thisisan unapproved | EEE Standards Draft, subject to change. 63

2000-11-28 P1484.2D7
Example

The following are sample ISO/IEC 11404 (data set), XML (data instance), and DNVP (data
instance) values.

/1 1SOIEC 11404 data set

(
context | abel = "home",
identifier _type = "I EEE _1484. 13"
i dentifier_value = "00112233",
)1
<l-- XML data instance ("..." is replaced by outer tags) -->
<...>
<cont ext _| abel >home</ cont ext _| abel >
<identifier_type>l EEE 1484. 13</identifier_type>
<identifier_val ue>00112233</identifier_val ue>
</[...>
DNVP data instance ("..." is replaced by outer context)

....context_| abel: hone
....identifier_type: |EEE_1484.13
....identifier_value: 00112233

7.4.8 PAPI learner_identifier_type type

| SO/ITEC 11404 summary

/1 This datatype describes the identifier type (URL, key,
/] pattern, etc.).
type PAPI | earner_identifier_type_ type =

octetstring, // SPM 256

Description

The varieties of PAPI learner identifiers are describe by this datatype. The useful values are
specified externd to this Standard.

7.4.9 PAPI _learner_data certification_type

| SO/IEC 11404 summary

type PAPI | earner_data_ certification_type =
record
(/'l note: all conponents are optional; all sizes are SPM
certification_source : // who certified the record
octetstring, // SPM 2048
certification_nethod : // how it was certified
octetstring, // SPM 1024
certification_paraneter_li st
octetstring, // SPM 16384
certification_subset : // which data elenments were certified
octetstring, // SPM 1024
certification_identifier : // 1D associated with cert. event
octetstring, // SPM 2048
certification_bucket : // other information
arrayl i st (PAPI _I earner_bucket _type, 100),

Copyright © 2000 |EEE. All rights reserved.
Thisisan unapproved | EEE Standards Draft, subject to change. 64

2000-11-28 P1484.2D7

).

Description

PAPI learner data certification information is defined by this datatype. This datatype is used
by the PAPI learner performance and PAPI learner portfolio information types.

The following components define this data dement. All components are optiond. All sizes
or limits are smallest permitted maximum values.

certification_source: Who certified this record.

certification_method: What certification method was used.
certification_paraneter |ist: The options and parameters necessary to
validate the certification. Notes. With the certification _source,
certification_nmethod,andcertification_paraneter_list, itispossble
tovaidatethecertification_identifier.

certification_subset: A list of which elements in this record are certified.
Note: Thisis necessary for generating automatic validation.
certification_identifier: The identifier that is passed to the certification
validator, i.e, the certificate ID.

certificate_bucket: A "bucket" for adding name-value pairs that provides lim-
ited extension capabilities to PAPI learner data certificate information.

7.5 PAPI learner personal information datatypes

The following datatypes are used by the PAPI learner personad information type.

7.5.1 PAPI learner_personal_info_type

| SO/IEC 11404 summary

type PAPI | earner_personal _info_type =
record

(

/1 Note: Al conponents are optional; all sizes are SPM
my_personal _identifier_list : // database |inking (key)
arraylist(PAPI | earner_identifier_type, 200),
personal _hid_list : // HIDIlinking (cross-repository)
arrayl i st (PAPI _| earner_hi d_type, 200),
name_list :
arrayl i st (PAPI _| earner_nane_type, 40),
t el ephone_li st
arrayl i st(PAPI _| earner_tel ephone_type, 15),
emai | _contact _|i st
arraylist(PAPI _| earner_enmni |l _address_type, 25),
postal _address_|Ii st
arraylist(PAPI _| earner_postal _address_type, 10),
per sonal _bucket
arrayl i st (PAPI _| earner _bucket _type, 100),

Copyright © 2000 |EEE. All rights reserved.
Thisisan unapproved | EEE Standards Draft, subject to change. 65

2000-11-28 P1484.2D7
Description
PAP! learner persond information is defined by this datatype.

The following components define this data element. All components are optional. All sizes
or limits are smallest permitted maximum values.

ny_personal _identifier_list: Aninternal database key for linking informa
tion.

personal _hid_list: An external human identifier for correlating information
across data repositories.

nane_| i st: The name of the learner.

t el ephone_l i st: Telephone numbers associated with the learner.

emai | _contact |ist: E-mail addresses associated with the learner.

post al _address_|i st: Posta addresses associated with the learner.

per sonal _bucket: A "bucket" for adding name-value pairs that provides limited
extension capabilities to PAPI learner persona information.

Example

The following are sample ISO/IEC 11404 (data set), XML (data instance), and DNV P (data
instance) values.

/1 1SOIEC 11404 data set
(

nmy_personal _identifier_list =
(
(
identifier_type = "pointer",
identifier value = "0x12345678"

),
).

personal _hid_list =

(
(
identifier_type = "I EEE_1484. 13",
i dentifier_value = "00112233"
),
),
name_|ist =
(
(
of ficial _name =
(
primary = "Public",
secondary = "Joseph Q ",
),
sort_name =

"Public, Joseph Q",
short _informal _nane =
"Joe",

)
)1
tel ephone_list =

(

Copyright © 2000 |EEE. All rights reserved.
Thisisan unapproved | EEE Standards Draft, subject to change. 66

2000-11-28

).

(

).

context | abel = "home",
identifier_type = "voice"
phone _number = "+1 212 555 1212"

context | abel = "work",
identifier _type = "voice"
phone_nunber = "+1 212 555 1313"

context | abel = "work",
identifier_type = "fax",
phone_number = "+1 212 555 1414"

context | abel = "energency",
identifier_type = "voice"
phone_nunber = "+1 212 555 1515"

emai |l _contact _|ist =

(

).

(

).

context | abel = "hone",

emai | _address_type = "rfc822",
emai | _address = "foobar @mil . cont
context | abel = "work",

emai | _address_type = "rfc822"
emai | _address = "foo@ar.cont

postal address |ist =

(

).

persona

(

(

).

(

).

context | abel = "school ",

addr essee_nane_gi ven = "Joseph Q ",
addressee_nane_family = "Public",
delivery street_type = "Street",
delivery_street_name = "Min",
delivery street _id _nunmber = "123"

delivery city = "New York",
delivery territory = "NY",
delivery_routing = "10001",
delivery_country = "USA",

_bucket =

name = "social _security_nunber",
val ue = "123-45-6789",

nanme = "paynent _met hod",

val ue = "371234567890123/ 200212/ John Q Public",

Copyright © 2000 |EEE. All rights reserved.
Thisisan unapproved | EEE Standards Draft, subject to change.

P1484.2D7

67

2000-11-28 P1484.2D7

).

<I--
<..

).
),

XML data instance ("..." is replaced by outer tags) -->

. >

<nmy_personal _identifier_list>
<personal _identifier>
<identifier_type>pointer</identifier_type>
<identifier_value>0x12345678</identifier_val ue>
</ personal _identifier>
</ my_personal _identifier_list>
<my_personal _hid_Ilist>
<| ear ner _hi d>
<identifier_type> EEE_1484.13</identifier_type>
<identifier_value>00112233</identifier_val ue>
</l earner_hid>
</ my_personal _hid_|ist>
<nane_li st >
<name>
<of ficial _name>
<primary>Public</primry>
<secondary>Joseph Q </secondary>
</of ficial _nanme>
<sort_nanme>Public, Joseph Q </sort_nanme>
<short _i nf or mal _name>Joe</short _i nf or mal _nanme>
</ nanme>
</name_|ist>
<t el ephone_list>
<t el ephone>
<cont ext _| abel >hone</ cont ext _| abel >
<identifier_type>voice</identifier_type>
<phone_nunber>+1 212 555 1212</phone_nunber >
</tel ephone>
<t el ephone>
<cont ext _| abel >wor k</ cont ext _| abel >
<identifier_type>voice</identifier_type>
<phone_nunber>+1 212 555 1313</phone_nunber >
</tel ephone>
<t el ephone>
<cont ext _I| abel >wor k</ cont ext _| abel >
<identifier_type>fax</identifier_type>
<phone_nunber>+1 212 555 1414</phone_numnber >
</tel ephone>
<t el ephone>
<cont ext _| abel >ener gency</ cont ext _I| abel >
<identifier_type>voice</identifier_type>
<phone_nunber>+1 212 555 1515</phone_nunber >
</tel ephone>
</tel ephone_list>
<emmi | _contact_Ilist>
<emai | _cont act >
<cont ext _| abel >hone</ cont ext _| abel >
<enmi | _address_type>rfc822</enuni|l _address_type>
<enmi | _address>f oobar @mi | . conx/ enmi | _address>
</ emai |l _contact>
<emmi | _cont act >
<cont ext _I| abel >wor k</ cont ext _| abel >

Copyright © 2000 |EEE. All rights reserved.
Thisisan unapproved | EEE Standards Draft, subject to change. 68

2000-11-28

P1484.2D7

<enmi | _address_type>rfc822</enuni|l _address_type>
<enmi | _address>f oo@ar.conx/enuni |l _address>
</ emai |l _contact>
</email _contact _|ist>
<postal _address_list>
<post al _address>
<cont ext _I| abel >school </ cont ext _| abel >
<addr essee_name_gi ven>Joseph Q </ addressee_nane_gi ven>
<addressee_nane_fam | y>Publ i c</ addressee_nane_fani | y>
<delivery_street _id_nunber>123</delivery_street_id_nunber>
<del i very_street_name>Mi n</del ivery_street_nanme>
<delivery_street_type>Street</delivery_street_type>
<delivery_city>New York</delivery_city>
<delivery_territory>NY</delivery_ territory>
<del i very_routing>10001</delivery_routing>
<del i very_country>USA</ del i very_country>
</ post al _address>
</ postal _address_|ist>
<personal _bucket >
<bucket >
<nane>soci al _security_nunber </ nane>
<val ue>123- 45- 6789</ val ue>
</ bucket >
<bucket >
<name>payment _net hod</ name>
<val ue>371234567890123/ 200212/ John Q Publ i c</val ue>

</ bucket >
</ per sonal _bucket >
</...>
DNVP data instance ("..." is replaced by outer context)
....ny_personal _identifier.__begin:
.. nmy_personal _identifier.identifier_type: pointer
.nmy_personal _identifier.identifier_value: 0x12345678
..ny_personal _identifier.__end:
.. ny_personal _hid.__begin:
..ny_personal _hid.identifier_type: |EEE 1484.13
.my_personal _hid.identifier_value: 00112233

.ny_personal _hid.__end:
.. hame. __begin:
.name. of ficial _nanme.primry: Public

.. hane. of ficial _name. secondary: Joseph Q
.. nanme.sort_name: Public, Joseph Q

. nane. short _i nformal _nane: Joe
.. hane. __end:
..tel ephone. __begin:

.tel ephone. cont ext _| abel : hone

.tel ephone.identifier_type: voice
.. tel ephone. phone_nunber: +1 212 555 1212
.. tel ephone. __end:

.. tel ephone. __begin:

..tel ephone. context | abel : work
..telephone.identifier_type: voice

.. tel ephone. phone_nunber: +1 212 555 1313
.tel ephone. __end:

..tel ephone. __begin:

.. tel ephone. context _| abel: work

.tel ephone.identifier_type: fax

Copyright © 2000 |EEE. All rights reserved.

Thisisan unapproved | EEE Standards Draft, subject to change. 69

2000-11-28

.emai |l _contact.
.emai |l _contact.
..emuil _contact.
.email _contact.

.email _contact.
..emni | _contact.
.emai | _contact.
.emai |l _cont act

.. postal _address.
. post al _address.
. post al _address.

.. personal _bucket.
. personal _bucket .

.. personal _bucket.

.. personal _bucket.
. personal _bucket .

.. personal _bucket.
. personal _bucket.
. personal _bucket.

cont ext _| abel

emai | _address_

emai | _address:
__end:
__begin:
cont ext _| abel

emai | _address__
. .emai | _address:
.email _contact.
. post al _address.
.. postal _address.
. post al _address.
. post al _address.
.. post al _address.
. post al _address.
.. post al _address.
.. post al _address.
. post al _address.

_end:
__begin:
cont ext _| abe

addr essee_nane_gi ven:
addressee_nane_fam ly: Public
delivery_street_id_nunber:
delivery_street_nanme: Min
delivery_street_type
delivery city: New York
delivery territory: NY

P1484.2D7

.t el ephone. phone_nunber: +1 212 555 1414
.tel ephone. __end:

..tel ephone. __begin:

.tel ephone. cont ext _| abel : energency
..tel ephone.identifier_type: voice

.. tel ephone. phone_nunber: +1 212 555 1515
.tel ephone. __end:

.email _contact.__begin:

hone
type: rfc822
f oobar @mi | . com

wor k
type: rfc822
f oo@ar.com

. school
Joseph Q
123

Street

delivery_routing: 10001

delivery_country: USA

__end:

__begin:

name: social _security_nunber

val ue: 123-45-6789

__end:

__begin:

nanme: paynent_net hod

val ue: 371234567890123/ 200212/ John Q Public
end:

7.5.2 PAPI_learner_name type

| SO/IEC 11404 summary

type PAPI | earner_nanme_type =

record
(/1l note: all conponents are optional; all sizes are SPM val ues
cont ext _| abel /1l e.g., "I(japan)”
PAPI _| ear ner _cont ext _I| abel _type,
official _name : // e.g., { "Public" } { "Joseph” "Quincy" } - lega

arrayl i st (PAPI _| earner _forml _nane_type,5),

full _formal _nanme : // e.g., "M. Joseph Q Public, PhD' nane/titles
arraylist(PAPI _| earner _full_name_type, 5),

nrns_formal _nanme @ // e.g., "M. Joseph Q Public" M./ M. nane
arraylist(PAPI _| earner _full _nanme_type, 5),

short _formal _name : // e.g., "M. Public" within formal group

arraylist(PAPI _| earner_full _nanme_type, 5),
full _name : // e.g., "Joseph Q Public" - in print
arraylist(PAPI_l earner_full _nane_type,5),
sort_name : // e.g., "Public, Joseph Q"

Copyright © 2000 |EEE. All rights reserved.
Thisisan unapproved | EEE Standards Draft, subject to change. 70

2000-11-28 P1484.2D7

arraylist(PAPI | earner_full _name_type, 5),

full _informal _nane : // e.g., "Joe Public" - within a group
arraylist(PAPI _| earner_full _nanme_type, 5),
short _informal _name : // e.g., "Joe" - directly to person

arraylist(PAPI _| earner_full _nanme_type, 5),

}

Description

The following components define this data dement. All components are optiond. All sizes
or limits are smallest permitted maximum values.

ny_personal _identifier: Aninternal database key for linking information.
cont ext _| abel : The context for use of this data e ement.

of fi cal _nanme: The lega name of the learner. Example: The learner's name on
his/her passport.

full _formal nane: Thefull, forma name that includes titles.

nr ns_f or mal _nane: A formal name that includes Mr., Ms,, or equivalent titles.
short _formal _name: A formal name that, typicaly, includes Mr., Ms, or
equivalent titles, and the family name.

full _nanme: The full name, asit would appear in public announcements.

sort _nane: The learner's name rearranged so that lexical ordering corresponds to
name ordering. Example: "Last, First".

full _i nfornmal _nane: A full name within an informal setting.

short _i nfornal _name: A short informal name within an informal setting.

7.5.3 PAPI _learner_formal_name_type

| SO/IEC 11404 summary

type PAPI | earner _formal name_type =
record

(
primary : /] Family nanme(s).
characterstring(i so-10646-1), // SPM 70
secondary : // G ven nane(s).
characterstring(i so-10646-1), // SPM 70

).

Description

A forma name is defined as a "primary identifier” and a "secondary identifier”. The terms
"primary” and "secondary” are defined in ICAO, IATA, UN, and ATA standards for auto-
mated passport information. The following components define this data eement. All compo-
nents are optiona. All sizesor limits are smallest permitted maximum values.

primary: Theprimary legal name(s) of aperson.
secondary: The secondary legal name(s) of a person.

Copyright © 2000 |EEE. All rights reserved.
Thisisan unapproved | EEE Standards Draft, subject to change. 71

2000-11-28 P1484.2D7
7.5.4 PAPI_learner_full _name type

| SO/TEC 11404 summary

type PAPI | earner full _name_type =
characterstring(iso-10646-1), // SPM 140

Description
A locdized name representation. All sizes or limits are smallest permitted maximum values.

Examples: "Mr. Smith", "Smith-san”, "Mr. Nakabayashi", "Nakabayashi-san".
7.5.5 PAPI _learner _telephone type

| SO/IEC 11404 summary

type PAPI _| earner _tel ephone_type =
record

(

cont ext _| abe

PAPI | earner _context | abel _type,
identifier_type

PAPI | earner identifier_type_ type,
phone_nunber :

octetstring, // SPM 50

)1
Description

A telephone number, as defined by ITU-T [Editor's Note: Need ITU-T reference]. The fol-
lowing components define this data element. All components are optional. All Sizes or limits
are smalest permitted maximum va ues.

cont ext _| abel : The context for use of this data element.
identifier_type: Thetype of phone number.
phone_nunber : The phone number.

7.5.6 PAPI_learner_email contact_type

| SO/IEC 11404 summary

type PAPI | earner_email _contact_type =
record
(
cont ext _| abe
PAPI | earner _context | abel _type,
emai | _address_type
PAPI | earner _identifier_type_type,
emai | _address :
octetstring, // SPM 255

Copyright © 2000 |EEE. All rights reserved.
Thisisan unapproved | EEE Standards Draft, subject to change. 72

2000-11-28 P1484.2D7
Description

An E-mail address, as defined by IETF RFC xxx [Editor's Note: Need IETF RFC reference].
The following components define this data eement. All components are optiona. All sizes
or limits are smallest permitted maximum values.

cont ext | abel : The context for use of this data element.
enai | _address_t ype: Thetype of E-mail address.
emai | _addr ess: The E-mail address.

7.5.7 PAPI _learner_postal address type

| SO/IEC 11404 summary

type PAPI | earner_postal _address_type =
record
(/'l note: all conponents are optional; all sizes are SPM
cont ext _| abe
PAPI | ear ner _context | abel _type,

/1 The addressee. Note: An application should harnonize
/1l the values of postal addressee nane, title, etc., with
/1 | earner nanme conponents.
addressee title :
characterstring(i so-10646-1), // SPM 35
addr essee_nanme_gi ven :
characterstring(i so-10646-1), // SPM 70
addressee_nane_fanmly :
characterstring(iso-10646-1), // SPM 70
addr essee_nane_suffix :
characterstring(i so-10646-1), // SPM 35
addr essee_occupati on :
characterstring(i so-10646-1), // SPM 70
addressee_function :
characterstring(iso-10646-1), // SPM 70
addr essee_care_of _address :
characterstring(iso-10646-1), // SPM 70

/1 The organi zati on.
organi zati on_nane :

characterstring(i so-10646-1), // SPM 70
organi zation_activity :

characterstring(i so-10646-1), // SPM 70
organi zati on_di vi si on :

characterstring(i so-10646-1), // SPM 70

/1 The delivery address.
delivery_street _type :
characterstring(iso-10646-1), // SPM 35
delivery_street_nane :
characterstring(i so-10646-1), // SPM 70
delivery_street_id_number
characterstring(iso-10646-1), // SPM 20
del i very_suppl enentary_address :
characterstring(iso-10646-1), // SPM 70
delivery city :
characterstring(iso-10646-1), // SPM 35
Copyright © 2000 |EEE. All rights reserved.
Thisisan unapproved | EEE Standards Draft, subject to change. 73

2000-11-28 P1484.2D7

del i very_po_box :

characterstring(iso-10646-1), // SPM 20
del i very_postcode :

characterstring(iso-10646-1), // SPM 20
delivery_routing :

characterstring(i so-10646-1), // SPM 20
delivery office :

characterstring(i so-10646-1), // SPM 35
delivery_ territory :

characterstring(iso-10646-1), // SPM 35
delivery_country :

characterstring(i so-10646-1), // SPM 35

)1
Description

A pogtal address, as defined by 1SO/IEC 11180. The following components define this data
element. All components are optiond. All sizes or limits are smalest permitted maximum
vaues.

cont ext _| abel : The context for use of this data e ement.

addr essee_*: Theindividual addressee of the postal address.

organi zati on_*: The organization associated with the postal address.
devliery_*: Thedeivery address.

Note: An gpplication should harmonize the vaues of postal addressee name, title, etc., with
the learner name components.

7.6 PAPI learner relations information datatypes

The following datatypes are used by the PAPI learner relations information type.

7.6.1 PAPI learner_relations info_type

| SO/IEC 11404 summary

type PAPI | earner_relations_info_type =
record
(/1l note: all conponents are optional; all sizes are SPM
ny_relations_identifier_list : // database |inking (key)
arrayl i st (PAPI | earner_identifier_type, 200),
relations_hid list : // HDIlinking (cross-repository)
arraylist(PAPI _| earner_hid_type, 200),
relationship_list : // List of individual relationships
arraylist(PAPI _| earner_rel ationship_type, 200),
rel ati ons_bucket : // Oher information
arrayl i st (PAPI _I earner_bucket _type, 200),

)1
Description

PAPI learner relations information is defined by this datatype.

Copyright © 2000 |EEE. All rights reserved.
Thisisan unapproved | EEE Standards Draft, subject to change. 74

2000-11-28

P1484.2D7

The following components define this data element. All components are optional. All sizes
or limits are smallest permitted maximum values.

ny _relations_identifier_list: An interna database key for linking infor-

mation.

relations_hid_list: An externa human identifier for correlating information
across data repositories.

rel ationsship_list: Alistof individual relationshipsto this learner.

rel ati ons_bucket list: A "bucket" for adding name-value pairs that provides

limited extension capabilities to PAPI learner relations information.

Example

The following are sample ISO/IEC 11404 (data set), XML (data instance), and DNVP (data
instance) values.

/1 1SOIEC 11404 data set

(

my relations_identifier_list =

(
(

),
),

identifier_type = "pointer",
i dentifier_value = "0x12345678"

relations_hid_list =

(
(

),
).

identifier type = "I EEE_1484. 13",
i dentifier_value = "44556677"

relationship_list =

(
(

others_identifier_list =

(
(
identifier _type = "I EEE_1484. 13",
i dentifier_value = "44556688"
)1
(
identifier_type = "l EEE_1484. 13",
identifier_value = "44556699"
),
)y
relations_| abel list =
(
(
string = "history_101_section_3",
| ocale = "en-US",

)
),
relation_to_them =
"classmate",

Copyright © 2000 |EEE. All rights reserved.
Thisisan unapproved | EEE Standards Draft, subject to change.

75

2000-11-28 P1484.2D7

).

<I--
<..

</...

).

XML data instance ("..." is replaced by outer tags) -->

. >

<ny_relations_identifier_list>
<relations_identifier>
<identifier_type>pointer</identifier_type>
<identifier_val ue>0x12345678</identifier_val ue>
</relations_identifier>
</my_relations_identifer_list>
<ny_relations_hid_list>
<l ear ner _hi d>
<identifier_type> EEE_1484. 13</identifier_type>
<identifier_val ue>44556677</identifier_val ue>
</l ear ner _hi d>
</ny _relations_hid_|list>
<relationship_list>
<rel ati onshi p>
<others_identifier_list>
<ot hers_identifier>
<identifier_type> EEE 1484. 13</identifier_type>
<identifier_val ue>44556688</i dentifier_val ue>
</others_identifier>
<ot hers_identifier>
<identifier_type> EEE 1484.13</identifier_type>
<identifier_val ue>44556699</i dentifier_val ue>
</others_identifier>
</others_identifier_list>
<rel ationship_l abel |ist>
<rel ati onshi p_| abel LANG="en-US">
hi story_101_section_3
</rel ationship_| abel >
</relationship_label list>
<rel ationship_to_thenr
cl assmat e
</relationship_to_thenr
<rel ati onshi p>
>

DNVP data instance ("..." is replaced by outer context)

.my_relations_identifier.__begin:
..Mmy_relations_identifier.identifier_type: pointer

.my_relations_identifier.identifier_value: 0x12345678
..ny_relations_identifier._ _end:

..ny_relations_hid.__begin:
..ny_relations_hid.identifier_type: |EEE 1484.13

.nmy_relations_hid.identifier_value: 44556677
..nmy_relations_hid.__end:

.relationship.__begin:
..relationship.others_identifier.__begin:
..relationship.others_identifier.identifier_type: |IEEE _1484.13

.relationship.others_identifier.identifier_value: 44556688

.relationship.others_identifier._ _end:
..relationship.others_identifier.__begin:
..relationship.others_identifier.identifier_type: |EEE 1484.13
..relationship.others_identifier.identifier_value: 44556699

.relationship.others_identifier._ _end:

Copyright © 2000 |EEE. All rights reserved.
Thisisan unapproved | EEE Standards Draft, subject to change. 76

2000-11-28 P1484.2D7

.relationship.relationship_| abel.__begin:
..relationship.relationship.string: history_ 101 section_3
..relationship.relationship.locale: en-US
..relationship.relationship_|label._ _end:
..relationship.others_identifier.__end:

.relationship.relationship_to_them classmate

7.6.2 PAPI _learner_relationship_type type

| SO/TEC 11404 summary

type PAPI _| earner_rel ationship_type_type =
enunerated // open vocabul ary
(

"cl assmat e",

"teacher _is",

"t eacher _of ",

"instructor_is",

"instructor_of",

"bel ongs_t o",

"bel ongs_with",

).

Description

The relationship type is an open vocabulary with the following enumerated list:

"cl assmat e": Anindividual who shares learning experiences with this learner.
"bel ongs_wi t h": A group that has arelationship to this learner.

"t eacher _i s": Anindividua who actsin the role of teacher to this learner.

"t eacher of ": Anindividua who actsin the role of learner to this teacher.

7.6.3 PAPI _learner_relationship_type

| SO/IEC 11404 summary

type PAPI | earner_relationship_type =
record
(/'l note: all conponents are optional; all sizes are SPM
others_identifier_list : // ldentifiers of others related to ne
arraylist(PAPI | earner_identifier_type, 200),
relations_label list : // Nane of relationship
arraylist(mstring_type, 200),
relation_to_themlist : // My relationship to them
arrayli st (PAPI | earner_rel ationshi p_type_type, 200),
relation_to me_list : // Their relationship to ne
arraylist(PAPI | earner_relationship_type_type, 200),

)1
Description

A single PAPI learner relationship is defined by this datatype.

The following components define this data element. All components are optiond. All sizes
or limits are smallest permitted maximum values.

Copyright © 2000 |EEE. All rights reserved.
Thisisan unapproved | EEE Standards Draft, subject to change. 7

2000-11-28 P1484.2D7

others_identifier list: Alistof identifiers of others who are related to "me".
rel ations_| abel |ist: Labelsthat describe the nature of the relationship.
relation_to themlist: How"I" amrelated to "them".
relation_to_nme_I|ist: How "they" arerdated to "me".

7.7 PAPI learner security information datatypes

The following datatypes are used by the PAPI security persond information type.

7.7.1 PAPI learner_security info_type

| SO/IEC 11404 summary

type PAPI | earner_security_info_type =
record
(/'l note: all conponents are optional; all sizes are SPM
my_security identifier_list : // database |inking (key)
arraylist(PAPI | earner_identifier_type, 200),
security_hid_list : // HDIlinking (cross-repository)
arrayl i st(PAPI _| earner_hid_type, 200),
credential list : // Security credentials
arraylist(PAPI _| earner_security_credential _type, 500),
security_bucket
arrayl i st (PAPI _I earner_bucket _type, 300),

).

Description
PAPI learner security information is defined by this datatype.

The following components define this data element. All components are optiond. All sizes
or limits are smallest permitted maximum values.

ny_security identifier_list: Aninternal database key for linking informa
tion.

security _hid_list: An externa human identifier for correlating information
across data repositories.

credential _|ist: Alistof security credentials.

security_bucket: A "bucket" for adding name-value pairs that provides limited
extension capabilities to PAPI learner security information.

Example

The following are sample ISO/IEC 11404 (data set), XML (data instance), and DNV P (data
instance) values.

/1 1SOIEC 11404 data set
(

my_security identifier_list =
(
(
identifier_type = "pointer",
identifier_value = "0x12345678"

Copyright © 2000 |EEE. All rights reserved.
Thisisan unapproved | EEE Standards Draft, subject to change. 78

2000-11-28 P1484.2D7

),
),
security_hid_list =
(
(
identifier_type = "|EEE_1484. 13"
identifier_value = "88990011"
),
),
credential _list =
(
(
(
context | abel = "hone",
credential _type = "password”
credential value = "swordfish”
),
(
cont ext _| abel = "wor k",
credential _type = "bionetric_type_1",
credential _value = "120398123b10931203123"
),
),
),
),
<l-- XM. data instance ("..." is replaced by outer tags) -->
<...>
<ny_security_ identifier_list>
<security_identifier>
<identifier_type>pointer</security_type>
<identifier_val ue>0x12345678</security_val ue>
</security_identifier>
</ny_security_identifer_list>
<ny_security _hid_|list>
<| ear ner _hi d>
<identifier_type> EEE 1484.13</identifier_type>
<identifier_val ue>88990011</identifier_val ue>
</l earner_hid>
</my_security_hid_list>
<credential list>
<credential >
<cont ext _I| abel >home</ cont ext _| abel >
<credenti al _type>passwor d</credential _type>
<credential _val ue>swordfi sh</credential _val ue>
</credential >
<credenti al >
<cont ext _| abel >wor k</ cont ext _| abel >
<credential _type>bionetric_type_1</credential _type>
<credential val ue>120398123bh10931203123</credenti al _val ue>
</credenti al >
</credential _|list>
</[...>
DNVP data instance ("..." is replaced by outer context)

....ny_security_identifier.__begin:
....Mmy_security_identifier.identifier_type: pointer
....Mmy_security_identifier.identifier_value: 0x12345678

Copyright © 2000 |EEE. All rights reserved.
Thisisan unapproved | EEE Standards Draft, subject to change. 79

2000-11-28 P1484.2D7

..ny_security_ identifier.__end:
..ny_security_hid.__begin:

..ny_security hid.identifier_type: |EEE 1484.13
..nmy_security_hid.identifier_value: 88990011
..ny_security_hid.__end:

..credential.__begin:

.credential.context_I|abel: home
..credential.credential _type: password

.credential.credential _value: swordfish

.credential.__end:

..credential.__begin:

.credential.context_|abel: work
..credential.credential _type: bionetric_type_1
..credential.credential _value: 120398123b10931203123

.credential.__end:

7.7.2 PAPI learner_security crendential type

| SO/IEC 11404 summary

type PAPI | earner_security_credential _type =
record

(
cont ext _| abe
PAPI | earner _context | abel _type,
credential _type
PAPI | earner _identifier_type_type,
credenti al _val ue
octetstring, // SPM 8192

).

Description

An individua security credential. The meaning , namespace, scoping, and resolution of this
feature shall be implementation-defined. The following components define this data e ement.
All components are optiona. All sizes or limits are smallest permitted maximum values.

cont ext | abel : The context for use of this data e ement.

credential _type: Thetype of credential.

credential val ue: Thevaue of the credential.

7.8 PAPI learner preference information datatypes

The following datatypes are used by the PAPI preference persona information type.

7.8.1 PAPI learner preference info_type

| SO/ITEC 11404 summary

type PAPI _| earner_preference_info_type =
record
(/'l note: all conponents are optional; all sizes are SPM
ny_preference_identifier_list : // database |inking (key)
arraylist(PAPI | earner_identifier_type, 200),

Copyright © 2000 |EEE. All rights reserved.
Thisisan unapproved | EEE Standards Draft, subject to change. 80

2000-11-28 P1484.2D7

).

preference_hid list : // HDIlinking (cross-repository)
arrayl i st(PAPI _| earner_hid_type, 200),

pre_i nclude_preference_hid list : // include before this |ist
arraylist(PAPI _| earner_hid_type, 100),

post _include_preference_hid_list : // include after this |ist
arrayl i st (PAPI _| earner_hid_type, 100),

device_preference_list : // Device preferences
arrayl i st(PAPI _| earner_devi ce_preference_type, 50),

pref erence_bucket
arrayl i st (PAPI _| earner_bucket _type, 100),

Description

PAPI learner preference information is defined by this datatype.

This data dement describes preferences that allow information technology systems and
learning technology systems to accommodate the needs of learners and optimize learning ex-
periences. The following components define this data element. All components are optional.
All szesor limits are smallest permitted maximum values.

ny_preference_identifier_list: Aninternal database key for linking infor-
mation.

preference_hid_|list: An externa human identifier for correlating information
across data repositories.

pre_include preference_hid_|ist: Preferences that are include before this
preference set.

post i nclude_preference_hid _|ist: Preferences that are include after this
preference set.

devi ce_preference_list: Device preferences for individua types of 1/0 de-
Vices.

pref erence_bucket: A "bucket" for adding name-value pairs that provides lim-
ited extension capabilities to PAPI learner preference information.

Example

The following are sample ISO/IEC 11404 (data set), XML (data instance), and DNVP (data
instance) values.

11

| SO | EC 11404 data set

/'l Exanple for a deaf, but not nute person

(

ny_preference_identifier_ list =
(
(
identifier_type = "pointer",
identifier_value = "0x12345678"

),
),
preference_hid list =
(
(
identifier_type = "|EEE_1484. 13"
i dentifier_value = "22334455"

) y
Copyright © 2000 |EEE. All rights reserved.
Thisisan unapproved | EEE Standards Draft, subject to change. 81

2000-11-28 P1484.2D7
),
pre_i nclude_preference_hid |list =
(
(
identifier_type = "|EEE_1484. 13"
i dentifier_value = "school _preferences”
),
),
post _include_preference_hid |ist =
(
(
identifier _type = "I EEE_1484. 13"
i dentifier_value = "deaf _preferences”
),
(
identifier_type = "I EEE _1484. 13"
i dentifier_value = "not_nute_preferences"
),
),
devi ce_preference_list =
(
audio_list =
(
(
out put =
(
context | abel = "all",
preference_rating = -10000,
preference_priority = 10000,
),
),
),
),
),
<l-- XM. data instance ("..." is replaced by outer tags) -->
<l-- Exanple for a deaf, but not nute person -->
<...>

<ny_preference_identifier_list>
<preference_identifier>

<identifier_type>pointer</security_type>
<identifier_val ue>0x12345678</security_val ue>

</preference_identifier>
</nmy_preference_identifer |ist>
<ny_preference_hid_list>

<| ear ner _hi d>

<identifier_type> EEE 1484.13</identifier_type>
<identifier_val ue>22334455</identifier_val ue>

</l earner_hid>
</my_preference_hid_list>
<pre_include_preference_hid_|ist>
<| ear ner _hi d>

<identifier_type> EEE 1484.13</identifier_type>
<identifier_value>school preferences</identifier_value>

</l ear ner _hi d>
</pre_include_preference_hid_list>
<post _include_preference_hid_list>
<| ear ner _hi d>

Copyright © 2000 |EEE. All rights reserved.
Thisisan unapproved | EEE Standards Draft, subject to change. 82

2000-11-28

P1484.2D7

<identifier_type> EEE 1484.13</identifier_type>
<identifier_value>deaf_preferences</identifier_value>

</l ear ner _hi d>
<l ear ner _hi d>

<identifier_type> EEE_1484.13</identifier_type>

<identifier_val ue>not

</l ear ner _hi d>

</ post

<devi ce_reference_list>
<audio_list>
<out put >

<cont ext

</ out put >
</audio_list>

</ device_reference_l|ist>

</...>

DNVP data instance ("...

Exanple for a deaf, but

..nmy_preference_ |dent|f|er.

.nmy_preference_identifier.

..nmy_preference_identifier.
.nmy_preference_identifier. _

..ny_preference_hid.__beg
..ny_preference_hid.ident
.. ny_preference_hid.ident
.my_preference_hid.__end:

.pre_include_preference. _

. pre_include_preference.
. pre_include_preference.

.pre_include_preference. _

. post _
.. post _i
. post _i
. post _i
i

i

i

ncl ude_preference.
ncl ude_preference.
ncl ude_preference.

.. post _

. post _
.. post _
.. post _

.device_preference. __
.. devi ce_preference.

. devi ce_preference.

. devi ce_preference.
.. devi ce_preference.

. devi ce_preference.

.device_preference. __

ncl ude_preference.
ncl ude_preference.

begi
audi o.
audi o
audi o.

end:

_l abel >al | </ cont ext
<preference_
<preference_

ncl ude_preference. __
ncl ude_preference. __

ncl ude_preference. __

audi 0. __

audi o. __

_mute_preferences</identifier_val ue>

_include_preference_hid_|ist>

_| abel >
rati ng>-10000</ preference_rating>
priority>10000</preference_priority>

" is replaced by outer context)
not mute person

__begin:

identifier_type: pointer

i dentifier_value: 0x12345678

end:

n
fier_type: |EEE 1484.13
fier_value: 22334455

begi n:
dentifier_type: |EEE 1484.13

dentifier_value: school _preferences
end:
__begin:
identifier _type: |EEE 1484.13
i dentifier_value: deaf _preferences
end:
begi n:
identifier_type: |EEE_1484.13
i dentifier_value: not_nute_preferences
end:
n
begi n:
out put. context | abel: al
.out put.preference_rating: -10000
out put. preference_priority: 10000
end:

7.8.2 PAPI learner _device preference type

| SO/IEC 11404 summary

type PAPI _| earner
record
(/1 note: all conponents

security_list /1l Secur
arrayl i st (PAP

_devi ce_preference_type

_l earner

are optional; all sizes are SPM
ity devices

_device_io_preference_type, 20),

Copyright © 2000 |EEE. All rights reserved.

Thisisan unapproved | EEE Standards Draft, subject to change.

2000-11-28 P1484.2D7

text _list : // Text devices
arraylist(PAPI _| earner_device_i o_preference_type, 20),
speech_list : // Speech devices
arrayli st (PAPI _I earner_device_i o_preference_type, 20),
graphics_list : // Graphical devices
arraylist(PAPI _| earner_device_i o_preference_type, 20),
audio_list : // Audio devices
arraylist(PAPI | earner_device_io_preference_type, 20),
video_ list : // Video devices
arraylist(PAPI _| earner_device_i o_preference_type, 20),

tactile_ list : [/ Tactile devices
arraylist(PAPI _| earner_device_i o_preference_type, 20),
session_choosing : [// Session choosing devices

arraylist(PAPI _| earner_device_i o_preference_type, 20),
other : // Oher devices
arrayl i st (PAPI _| earner_device_i o_preference_type, 100),

).

Description
PAPI learner device preference information is defined by this datatype.

This data eement describes device preferences that alow information technology systems and
learning technology systems to accommodate the needs of learners and optimize learning ex-
periences. The following components define this data element. All components are optional.
All sizesor limits are smallest permitted maximum values.

security, text, speech, graphics, audio, video, tactile,
sessi on_choosing |ists: Device preferences and parameters for individual
types of 1/0 devices.

ot her _l i sts: Other preferences that are not specified by this Standard.

7.8.3 PAPI _learner_device io_preference

| SO/IEC 11404 summary
PAPI _| earner _device_i o_preference =

«
i nput
PAPI _| ear ner _devi ce_par aneter _type,
out put
PAPI | ear ner _devi ce_paraneter _type,
),
Description

This data element describes preferences for a pair of input/output devices. The following
components define this data element. All components are optiond.

i nput : The corresponding input device.
out put : The corresponding output device.

Copyright © 2000 |EEE. All rights reserved.
Thisisan unapproved | EEE Standards Draft, subject to change. &4

2000-11-28 P1484.2D7

7.8.4 PAPI _learner_device parameter type

| SO/TEC 11404 summary

type PAPI | earner_device_paraneter_type =

(

).

context : // Wen the device is appropriate.
PAPI _| ear ner _cont ext | abel _type,

preference_nane : // internationalized nane
characterstring(iso-10646-1),

preference_rating : // Useful ness of device
i nteger,

preference_priority : // Priority anong devices
i nt eger,

device_nane : // The nane of the device
characterstring(iso-10646-1),

device_type : // Generic type
characterstring(iso-10646-1),

method : // Method of access
characterstring(iso-10646-1),

protocol : // Protocol stack for access
characterstring(iso-10646-1),

coding : // Coding method for access
characterstring(iso-10646-1),

encoding : // Encoding nethod for access
characterstring(iso-10646-1),

other : // Oher information
characterstring(iso-10646-1),

Description

The following components define this data dement. All components are optiond. All sizes
or limits are smallest permitted maximum values.

cont ext | abel : The context for use of this data e ement.

pr ef erence_nane: Theinternationalized (118N) name of the preference.

pref erence_rating: Theusefulness of the device.

preference_priority: Thepriority (importance) of this preference among simi-
lar devices.

devi ce_nane: The machine-interpretable name of the device.

devi ce_type: A machine-interpretable description of device type. The specifica-
tion of appropriate valuesis externa to this Standard.

met hod: The method of access. The specification of appropriate values is external
to this Standard.

pr ot ocol : The protocol used to access the device. The specification of appropriate
values is external to this Standard.

codi ng: The coding technique(s) used. The specification of appropriate values is
external to this Standard.

encodi ng: The encoding technique(s) used. The specification of appropriate values
is external to this Standard.

ot her: Other information. The specification of appropriate values is external to this
Standard.

Copyright © 2000 |EEE. All rights reserved.
Thisisan unapproved | EEE Standards Draft, subject to change. 85

2000-11-28 P1484.2D7

7.9 PAPI learner performance information datatypes

The following datatypes are used by the PAP! learner performance information type.

7.9.1 PAPI learner_performance _info_type

| SO/TEC 11404 summary

type PAPI | earner_performance_info_type =
record
(/1 note: all conponents are optional; all sizes are SPM
nmy_performance_identifier_list : // database |inking (key)
arraylist(PAPI | earner_identifier_type, 200),
performance_hid_list : // HDIinking (cross-repository)
arraylist(PAPI _I earner_hid_type, 200),
owner _identifier : // owner of record, not necessarily |earner
characterstring(i so-10646-1), // SPM 1024
recording_date tinme : // when record was recorded
ti me(second, 10,0), // yyyymddThhnmss
valid date_tinme_begin : // when record becones valid
ti me(second, 10,0), // yyyymmddThhnmss
valid date_time_end : // when record expires
ti me(second, 10,0), // yyyymmddThhnmss
i ssue_from.identifier : // who issued record
characterstring(iso-10646-1), // SPM 1024
i ssue_date_tine : // when record was issued
ti me(second, 10,0), // yyyymuddThhmrss
issue_to_ identifier : // who issued to, not necessarily |earner
characterstring(iso-10646-1), // SPM 1024
| earni ng_experience_identifier : // experience/content ID
characterstring(iso-10646-1), // SPM 1024
conpetency_identifier : // conpentency associ ated with performance
characterstring(iso-10646-1), // SPM 1024
granularity : // granularity of performance record
characterstring(iso-10646-1), // SPM 300
performance_coding : // performance codi ng schene
characterstring(iso-10646-1), // SPM 1024
performance_netric : // how performance is nmeasured
characterstring(iso-10646-1), // SPM 300
pef ormance_value : // the value of performance for this record
characterstring(iso-10646-1), // SPM 2048
certificate_list : // data certification information
arraylist(PAPI _| earner_data_certification_type, 200)
per formance_bucket : // other information
arrayl i st (PAPI _| earner _bucket _type, 100),

),

Description

PAPI learner performance information is defined by this datatype.

The following components define this data element. All components are optiond. All sizes
or limits are smallest permitted maximum values.

ny_performance_identifier_list: An internal database key for linking in-
formation.

Copyright © 2000 |EEE. All rights reserved.
Thisisan unapproved | EEE Standards Draft, subject to change. 86

2000-11-28 P1484.2D7

per formance_hi d_list: An externa human identifier for correlating information
across data repositories.

owner _i dentifier: Thelearner's identifier. Note: This ID is likely to correlate to
one of the learner's IDs used for other PAPI |earner information.
recording_date_tine: The datetime when the record was recorded, i.e, a
unique timestamp for this record.

valid_date_tinme_begin: The first valid date-time of the learner performance
record. Note: The performance record may only be valid for a certain period of time,
e.g., its "certification" expires.

valid _date_tinme_end: The first invalid (expired) date-time of the learner per-
formance record.

i ssue_from.identifier: Theissuing authority of the learner performance rec-
ord.

i ssue_date_tinme: When the PAPI learner performance record was issued. Thisis
not the same as the recor di ng_dat e_t i me (when the record was recorded in the
data repository).

i ssue_to_identifier: The entity to which the learner performance record was
issued. Note: This may be the learner's ID, or it may be a team/group learning ID if
the team received the learner performance record.

| ear ni ng_experience_identifier: The identifier associated with the "con
tent". Note: This might be a URL, the name of a tool, etc.. The standardization of
these names is outside the scope of this Standard.

granul arity: Therelative "size" of the content. This data element isa string. The
meaningful values are unspecified.

per f or mance_codi ng_schene: The type of grading, coding, measuring, etc.,
system in use. Note: It is not possible to standardize on a common scheme (e.g., let-
ter grade, numeric grade), as it is expected that initially there will be many schemes.
Over time, these schemes will reduce to a smaller set as the "market” demands fewer
coding schemes to support more data interchange. Example: " US- NY- K12-
LETTER- GRADE" , " ATC- 610- SI MULATOR" .

per f ormance_netri c: Thevaue of permitted values.

per f or mance_val ue: The "grade’, etc., that is recorded. Examples. " A+", " 97",
"Pass".

certificate_ |ist: Data certification information associated with this PAPI
learner performance information.

per f or mance_bucket : A "bucket" for adding name-value pairs that provides lim-
ited extension capabilities to PAPI learner performance information.

Example

The following are sample ISO/IEC 11404 (data set), XML (data instance), and DNV P (data
instance) values.

/1 1SOIEC 11404 data set
(

ny_performance_identifier list =
(
(
Copyright © 2000 |EEE. All rights reserved.
Thisisan unapproved | EEE Standards Draft, subject to change. 87

2000-11-28 P1484.2D7

identifier_type = "pointer",
i dentifier_value = "0x12345678"

),
),
performance_hid_list =
(
(
identifier type = "I EEE _1484. 13"
i dentifier_value = "99887766"
),
),
recording_date_tine = 20001122T001122,
i ssue_fromidentifier = "regi strar@yz. edu",
i ssue_date tinme = 20001122T001122,
| earni ng_experience_identifier = "XYZ Col | ege/ Hi story 101"
granul arity = "course"
performance_codi ng = "us-nys-letter-grade"
performance_netric = "AB CDF",
pef ormance_val ue = "A"
certificate |ist =
(
(
certification_source = "certs.org",
certification_nmethod = "http://certs.org: 1234/ val i dat e"
certification_parameter_list = "$id $data $fiel ds"
certification_subset =
"issue_date_tine " +
"issue_from.identifier " +
"issue_to_identifier " +
"l earni ng_experience_identifier " +
"performance_coding " +
"peformance_netric " +
"performance_val ue",
certification_identifier = "123abchdlkl 2j dl sj ew43i 5",
)
)
perfor mance_bucket =
(
(
name = "time_on_task",
val ue = "1h25n82s",
),
),
),
<l-- XM. data instance ("..." is replaced by outer tags) -->
<...>

<ny_performance_identifier_list>
<performance_i dentifier>
<identifier_type>pointer</security_type>
<identifier_val ue>0x12345678</security_val ue>
</ performance_i dentifier>
</ nmy_performance_identifer_list>
<ny_performance_hid_|ist>
<| ear ner _hi d>
<identifier_type> EEE 1484.13</identifier_type>
<identifier_val ue>99887766</identifier_val ue>
</l ear ner _hi d>

Copyright © 2000 |EEE. All rights reserved.
Thisisan unapproved | EEE Standards Draft, subject to change. 88

2000-11-28 P1484.2D7

</ ny_performance_hid_|ist>
<recordi ng_date_tinme>20001122T001122</recordi ng_date_ti ne>
<issue_from.identifier>registrar@yz.edu</issue_from.identifier>
<i ssue_date_tinme>20001122T001122,
<l ear ni ng_experience_i dentifier>
XYZ Col | ege/ Hi story 101
</ | ear ni ng_experience_identifier>
<granul arity>course</granul arity>
<per fornmance_codi ng>us- nys-1| etter-grade</performnce_codi ng>
<performance_netric>A B C D F</performance_netric>
<pef or mance_val ue>A</ pef or mance_val ue>
<certificate_list>
<certificate>
<certification_source>certs.org</certification_source>
<certification_method>
http://certs.org: 1234/ val i dat e"
<certification_nethod>
<certification_parameter_|ist>
$id $data $fiel ds"
</certification_paraneter _|ist>
<certification_subset>
i ssue_date_tine
i ssue_from.identifier
i ssue to_ identifier
| ear ni ng_experience_identifier
per f ormance_codi ng
pef ormance_netric
per f or mance_val ue
</certification_subset>
<certification_identifier>
123abchd1kl 2j dl sj ew43i 5
</certification_identifier>
</certificate>
</certificate_list>
<per f ormance_bucket >
<bucket >
<name>ti nme_on_t ask</ nane>
<val ue>1h25nm32s</ val ue>

</ bucket >
</ per f or mance_bucket >
</[...>
DNVP data instance ("..." is replaced by outer context)

..ny_performance_identifier.__begin:
.ny_performance_identifier.identifier_type: pointer
..my_performance_identifier.identifier_value: 0x12345678
.my_performance_identifier.__end:

.. ny_performance_hid. __begin:
..ny_performance_hid.identifier_type: |EEE 1484.13
.my_performance_hid.identifier_value: 99887766

.. ny_performance_hid. __end:

..recording_date_tine: 20001122T001122
..issue_fromidentifier: registrar@yz.edu
..issue_date_tinme: 20001122T001122

..l earning_experience_identifier: XYZ College/Hi story 101
.granularity: course

.. performance_codi ng: us-nys-letter-grade
.performance_netric: ABCDF

Copyright © 2000 |EEE. All rights reserved.
Thisisan unapproved | EEE Standards Draft, subject to change. 89

2000-11-28 P1484.2D7

. peformance_val ue: A
.certificate.__begin:

..certificate.certification_source: certs.org
.certificate.certification_nethod: http://certs.org: 1234/ val i date
.certificate.certification_paraneter_list: $id $data $fields
.certificate.certification_subset: issue_date time \

i ssue_fromidentifier \
issue_to_identifier \

| ear ni ng_experience_identifier \
per formance_codi ng \

pef ormance_netric \

per formance_val ue

..certificate.certification_identifier: 123abchdlkl 2jdl sjew43i 5
..certificate.__end:

. performance_bucket. __begin

.. performance_bucket. nane: tine_on_task

.. performance_bucket. val ue: 1h25n82s

. performance_bucket. _end:

7.10 PAPI learner portfolio information datatypes

The following datatypes are used by the PAP! learner portfolio information type.

7.10.1 PAPI learner_portfolio_info_type

| SO/ITEC 11404 summary

type PAPI | earner_portfolio_info_type =
record

(

).

/'l note: all conponents are optional; all sizes are SPM val ues
ny_portfolio_identifier : // database |inking (key)
arraylist(PAPI | earner_identifier_type, 200),
portfolio_hid : // HIDIinking (cross-repository)

arrayl i st(PAPI _| earner_hid_type, 200),

a_id type : // media type

arraylist(MME_type, 200),

media_id : // nmedia associated with works
arraylist(URI _type, 200),

media lomlist : // reference to LTSC LOM record
arraylist(LTSC LOM reference_type, 200),

med

medi a_papi _| earner_performance_|list : // associated performance
arraylist(LTSC_PAPI _| earner _perfornmance_reference_type, 200),
medi a_conpetency_definition_list : // associated conpetency

arraylist(LTSC conmpetency_definition_reference_type, 200),
certificate list : // data certification information

arraylist(PAPI _| earner_data_certification_type, 200)
portfolio_bucket : // other information

arrayl i st (PAPI _| earner _bucket _type, 100),

Description

PAPI learner portfolio information is defined by this datatype.

Copyright © 2000 |EEE. All rights reserved.
Thisisan unapproved | EEE Standards Draft, subject to change. 0

2000-11-28 P1484.2D7

The following components define this data element. All components are optional. All sizes
or limits are smallest permitted maximum values.

ny_portfolio_identifier_list: An interna database key for linking infor-
mation.

portfolio_hid_list: An externa human identifier for correlating information
across data repositories.

medi a_i d_type: The media associated with the learner's accomplishments or
works.

medi a_l om |ist: Alistof LTSC Learning Object Metadata (LOM) references that
relate to the learner's accomplishments or works.

nmedi a_papi _| earner _performance_|ist: A list of references to PAPI learner
performance information records that are related to the learner's accomplishments or
works.

medi a_conpetency_definition_list: A list of references to LTSC Compe-
tency Definitions that are related to the learner's accomplishments or works.
certificate |ist: Data certification information associated with this PAPI
learner performance information.

portfolio_bucket: A "bucket" for adding name-value pairs that provides limited
extension capabilities to PAPI learner portfolio information.

Example

The following are sample ISO/IEC 11404 (data set), XML (data instance), and DNVP (data
instance) values.

/1 1SOIEC 11404 data set
(
my_portfolio_identifier list =
(
(
i dentifier_type = "pointer",
i dentifier_value = "0x12345678"
),
),
portfolio_hid_list =
(
(
identifier type = "I EEE _1484. 13"
i dentifier_val ue "55443322"

),
),
nmedi a_i d_type = "video/ npeg",
media_id = "http://nystuff.org/ my_paintings/tour.npeg”,
certificate list =

(
(
certification_source = "certs.org"
certification_method = "http://certs.org: 1234/ val i date"
certification_parameter_list = "$id $data $fiel ds"

certification_subset =
"medi a_type " +
"media_id " +
"media_id/* "
Copyright © 2000 |EEE. All rights reserved.
Thisisan unapproved | EEE Standards Draft, subject to change. 91

2000-11-28

).

<l--
<..

</..

certification_identifier = "asdk12s782349238s43i 5x",

XML data instance ("..." is replaced by outer tags) -->

. >

<ny_portfolio_identifier_list>
<portfolio_identifier>
<identifier_type>pointer</security_ type>
<identifier_val ue>0x12345678</security_val ue>
</portfolio_identifier>
</my_portfolio_identifer_list>
<ny_portfolio_hid_list>
<| ear ner _hi d>
<identifier_type>l EEE 1484.13</identifier_type>
<identifier_val ue>55443322</identifier_val ue>
</l ear ner _hi d>
</nmy_portfolio_hid_list>
<nmedi a_i d_type>vi deo/ npeg</ nedi a_i d_t ype>
<nmedi a_i d>http://mystuff.org/ my_paintings/tour. npeg</<nedi a_i d>
<certificate_list>
<certificate>
<certification_source>certs.org</certification_source>
<certification_method>
http://certs.org: 1234/ val i date"
<certification_method>
<certification_parameter_|ist>
$id $data $fiel ds"”
</certification_paraneter _|ist>
<certification_subset>
medi a_t ype
media_id
medi a_i d/ *
</certification_subset>
<certification_identifier>
asdk12s782349238s43i 5x
</certification_identifier>
</certificate>
</certificate_ |list>
. >

DNVP data instance ("..." is replaced by outer context)
..ny_portfolio_identifier.__begin:
..ny_portfolio_identifier.identifier_type: pointer
..Mmy_portfolio_identifier.identifier_value: 0x12345678
..ny_portfolio_identifier._ _end:

..ny_portfolio_hid.__begin:
..ny_portfolio_hid.identifier_type: |EEE 1484.13
..ny_portfolio_hid.identifier_value: 99887766
..ny_portfolio_hid.__end:

..certificate.__begin:

.certificate.certification_source: certs.org
..certificate.certification_method: http://certs.org: 1234/ validate
..certificate.certification parameter list: $id $data $fields
..certificate.certification_subset: media type nedia id media_id/*
..certificate.certification_identifier: asdkl12s782349238s43i 5x

.certificate. __end:

Copyright © 2000 |EEE. All rights reserved.
Thisisan unapproved | EEE Standards Draft, subject to change.

P1484.2D7

92

2000-11-28 P1484.2D7

8 Bindings
PAPI learner information is bound to codings, APIs, and protocols.

Note 1: All PAPI Learner bindings (codings, APIs, protocols, etc.) are "conditionally norme-
tive"
An implementation conformance statement (ICS) describes which features of this
Standard the implementation claims conformance to.
The ICS describes or satisfies certain conditions, as defined elsewhere in this Stan-
dard.
Those portions of this Standard then become normative for that implementation.

Example: An implementation that claims it conformsto "PAPI Learner XML coding binding"
is required to satisfy Annex C, XML Coding Binding, but is not required to satisty Annex D,
DNVP (Dotted Name-Vaue Pair) Coding Binding. If an implementation clams it conforms
to both the XML and DNV P coding bindings, then it is required to satisfy both Annex C and
Annex D.

Note 2: It is intended to support several coding bindings (XML, ASN.1, C, LISP), API bind-
ings (C, C++, Java, ECMAsript, Perl, Tcl, Visud Basic, LISP), and protocol bindings (HTTP
tunneling, DCTP, CORBA) in this edition or in future editions of this Standard.

9 Encodings

PAPI learner information is encoded as data formats, calling conventions, and communication
layers.

Note 1: All PAPI Learner encodings are defined by their respective PAPI Learner bindings
(codings, APIs, protocols, etc.).

Note 2: All PAPI Learner bindings are "conditionally normetive’. See Clause 8, Bindings.

Note 3: It is intended to support severa data formats (ASCII, ISO/IEC 646, |SO/IEC 8859-1,
ISO/IEC 10646-1), cdling conventions (Unix, Linux, Win32), and communication layers
(HTTP,HTTPS, IIOP, SSL, FTP, TCP, IP) in this edition or afuture edition of this Standard.

Copyright © 2000 |EEE. All rights reserved.
Thisisan unapproved | EEE Standards Draft, subject to change. 93

2000-11-28

10 Annex A: Bibliography (infor mative)

This Annex is informative and not normative.

The following are related documents:

*** TO BE SUPPLIED ***

*** TO BE UPDATED ***

ISO JTC1 CAW (Cultural Adaptability Workshop)
ISO/IEC JTC1 SC22 WG11

ISO/IEC JTC1 SC22 WG20

ISO/IEC JTC1 SC32 WG2

ISO/IEC JTC1 SC35

ISO/IEC JTC1 SC36

NCITSLS8

NCITST2

IMS Profile Scope

Specification of K-12 student records for New Y ork State.

University of California, Project Leap Architecture, dated 1998-01-04.

Copyright © 2000 |EEE. All rights reserved.
Thisisan unapproved | EEE Standards Draft, subject to change.

P1484.2D7

2000-11-28 P1484.2D7

11 Annex B: | SO/IEC 11404 data model summary
(informative)

This Annex is infor mative and not normative.

The following information is a summary of datatype definitions described esewhere in this
Standard.

Note 1: ISO/IEC 11404 notation is Smilar to many structured programming languages. Each
datadement isdeclared asthe pair: "i dentifier : datatype". A datatype may bea
native |SO/IEC 11404 datatype, a generated datatype (e.g., "record","array"), or acre-
ated datatype (eg., "type X = octetstring" creaesatype "X',and"Y : X' then
declares Y with effective datatype " oct et st ri ng"). Statements are separated by commas,
grouping is by parentheses, and datatypes may nest.

Note 2: Unless specified otherwise, adl data eements are optional.

11.1 Foundational datatypes

The following is asummary of foundationa datatypes in ISO/IEC 11404 notation.

FEPTPETE T bbbt rrrirrnnd
/111 Foundation datatypes for other PAPI datatypes.
FHEEPEEPEr bbb bbb irrnd

/1 The context |abel associated with a data el enent.

/'l Exanple: "!(japan)" mght nmean "not within the context

/1 of Japan"; inplenentation-defined nmeaning

type PAPI | earner_context | abel _type =
characterstring(iso-10646-1), // SPM 500

/1 A shorthand for nmultiple array el enents
type arraylist(type_spec, size) =
array (0..size-1) of (type_spec),

/1 A multilingual string.

/1 string: The localized string.
/1 map: The localization (L10N) mappi ng, al so known
/1 as "local e".
type mstring type =
record
(|

string:

characterstring(i so-10646-1), // SPM 1000
| ocal e:

characterstring(iso-646), [/ SPM 255
)1

/1 An array of multilingual strings.

Copyright © 2000 |EEE. All rights reserved.
Thisisan unapproved | EEE Standards Draft, subject to change. 95

2000-11-28 P1484.2D7

/1 Al'so known as a "nessage catal oge" feature.
type mstring array_type(limt) =
array (0..limt-1) of (mstring_type),

/1 A bucket for adding nane-value pairs to a PAPI Learner

/1 information type. This feature gives some |inited extension
/'l capability that works on all strictly conform ng systens.
type PAPI | earner_bucket type =

record
(
nane:
characterstring(iso-10646-1), // SPM 200
val ue:
octetstring, // SPM 4096
),

/1 An internal identifier that is used to link across
/1 dat abases.
type PAPI | earner_identifier_type =
record
(
cont ext _| abe
PAPI _| ear ner _cont ext _I| abel _type,
identifier_type
PAPI | earner _identifier_type_type,
i dentifier_val ue
octetstring, // /1 SPM 1024

).

/1 An external identifier that is used to correlate
/1 PAPI |earner information across repositories.
type PAPI | earner_hid_type =
record
(
cont ext _| abe
PAPI | earner _context | abel _type,
i dentifier_type
PAPI | earner _identifier_type_type,
i dentifier_val ue
octetstring, // /1 SPM 1024

).

/'l This datatype describes the identifier type (URL, key,
/'l pattern, etc.).
type PAPI | earner_identifier_type type =

octetstring,

/1l This datatype describes the data certification informtion
type PAPI | earner_data_certification_type =
record
(/1l note: all conponents are optional; all sizes are SPM
certification_source : // who certified the record
octetstring, // SPM 2048
certification_nmethod : // howit was certified
octetstring, // SPM 1024
certification_paraneter |ist
octetstring, // SPM 16384
certification_subset : // which data elenents were certified

Copyright © 2000 |EEE. All rights reserved.
Thisisan unapproved | EEE Standards Draft, subject to change. 96

2000-11-28 P1484.2D7

octetstring, // SPM 1024

certification_identifier : // 1D associated with cert. event
octetstring, // SPM 2048

certification_bucket : // other information
arrayl i st (PAPI _I earner_bucket _type, 100),

).

11.2 PAPI learner personal information datatypes

The following is a summary of PAPI learner persond information datatypes in 1SO/IEC
11404 notation.

NNy
/111 PAPI |earner personal information
FHEEPEEPEr bbb irnnd

/'l PAPI | earner personal information type.
type PAPI | earner_personal _info_type =
record
(/1 Note: Al conponents are optional; all sizes are SPM
my_personal _identifier_list : // database |inking (key)
arraylist(PAPI | earner_identifier_type, 200),
personal _hid_list : // HIDIlinking (cross-repository)
arraylist(PAPI_I earner_hid_type, 200),
name_|li st
arrayl i st (PAPI _| earner _nane_t ype, 40),
t el ephone_li st
arraylist(PAPI _| earner_tel ephone_type, 15),
emai | _contact _|i st
arraylist(PAPI _| earner_enuni |l _address_type, 25),
postal _address_|Ii st
arraylist(PAPI _| earner_postal _address_type, 10),
per sonal _bucket
arrayl i st (PAPI _| earner _bucket _type, 100),

).

/1 The PAPI |earner nane. Several name varieties are necessary
/1 for different application scenarios.
type PAPI | earner_nanme_type =

record
(/1 note: all conponents are optional; all sizes are SPM val ues
context _label : // e.g., "!(japan)"

PAPI | earner _context | abel _type,

official _name : // e.g., { "Public" } { "Joseph" "Quincy" } - lega
arrayl i st(PAPI _| earner_fornmal _nanme_type, 5),

full _formal _nane : // e.g., "M. Joseph Q Public, PhD' nane/titles
arraylist(PAPI _| earner _full _nanme_type, 5),

nrns_formal _nanme @ // e.g., "M. Joseph Q Public" - M./M. nane
arraylist(PAPI _| earner _full _nanme_type, 5),

short _formal _name : // e.g., "M. Public" - within formal group
arraylist(PAPI _| earner_full _name_type, 5),

full _name : // e.g., "Joseph Q Public" - in print
arraylist(PAPI | earner_full_name_type, 5),

sort_name : // e.g., "Public, Joseph Q™"
arraylist(PAPI _| earner _full_name_type, 5),

full _informal _nane : // e.g., "Joe Public" - within a group

Copyright © 2000 |EEE. All rights reserved.
Thisisan unapproved | EEE Standards Draft, subject to change. 97

2000-11-28 P1484.2D7

arraylist(PAPI | earner_full _name_type, 5),
short _informal _nanme : // e.g., "Joe" - directly to person
arraylist(PAPI _| earner_full _nanme_type, 5),

}
/1 A formal name is defined as a "primary nane" and a
/'l "secondary name". The ternms "prinmary" and "secondary" cone

/1 from | CAQ, |ATA, UN, and ATA standards for autonmted
/1l passport information.
type PAPI | earner _formal _name_type =

(
primary : /] Family nanme(s).
characterstring(iso-10646-1), // SPM 70
secondary : // G ven nane(s).
characterstring(i so-10646-1), // SPM 70
),
/1 A localized nane representation, e.g., "M. Snmth" and

/1 "Smth-san".
type PAPI | earner_full _name_type =
characterstring(iso-10646-1), // SPM 140

/1 A tel ephone nunber.
type PAPI _| earner_tel ephone_type =
record
(
cont ext _| abe
PAPI | ear ner _cont ext | abel _type,
i dentifier_type
PAPI | earner _identifier_type_type,
phone_nunber
octetstring, // SPM 50

).

/1 An E-mail address.
type PAPI | earner_emnil _contact_type =
record
(
cont ext _| abe
PAPI _| ear ner _cont ext _| abel _type,
emai | _address_type
PAPI _| earner_identifier_type_type,
emai | _address :
octetstring, // SPM 255

).

/1 Postal addressing based on
/1 1SO 11180, Postal Addressing
type PAPI | earner_postal _address_type =
record
(/1l note: all conponents are optional; all sizes are SPM
context | abe
PAPI | ear ner _context | abel _type,

/1 The addressee. Note: An application should harnonize
/1 the values of postal addressee nane, title, etc., with
/1 | earner name conmponents.

addressee title :

Copyright © 2000 |EEE. All rights reserved.
Thisisan unapproved | EEE Standards Draft, subject to change. 98

2000-11-28 P1484.2D7

characterstring(iso-10646-1), // SPM 35
addr essee_nane_gi ven :

characterstring(iso-10646-1), // SPM 70
addressee_nane_famly :

characterstring(i so-10646-1), // SPM 70
addr essee_nane_suffix :

characterstring(iso-10646-1), // SPM 35
addr essee_occupation :

characterstring(i so-10646-1), // SPM 70
addr essee_function :

characterstring(iso-10646-1), // SPM 70
addressee_care_of _address :

characterstring(iso-10646-1), // SPM 70

/1 The organi zati on.
organi zati on_name :
characterstring(i so-10646-1), // SPM 70
organi zation_activity :
characterstring(iso-10646-1), // SPM 70
organi zati on_di vi sion :
characterstring(iso-10646-1), // SPM 70

/1 The delivery address.
delivery_street_type :

characterstring(iso-10646-1), // SPM 35
del i very_street _nane :

characterstring(iso-10646-1), // SPM 70
delivery_street _id_nunber

characterstring(iso-10646-1), // SPM 20
del i very_suppl enent ary_address :

characterstring(iso-10646-1), // SPM 70
delivery_city :

characterstring(i so-10646-1), // SPM 35
del i very_po_box :

characterstring(i so-10646-1), // SPM 20
del i very_postcode :

characterstring(iso-10646-1), // SPM 20
delivery routing :

characterstring(iso-10646-1), // SPM 20
delivery_office :

characterstring(i so-10646-1), // SPM 35
delivery_territory :

characterstring(iso-10646-1), // SPM 35
delivery country :

characterstring(i so-10646-1), // SPM 35

11.3 PAPI learner relations information datatypes

The following is a summary of PAP learner reations information datatypes in 1SO/IEC
11404 notation.

THLELLEEL i iiiriiiiiiiriiriirggi
/111 PAPI |earner relations information
THLLLTELI i iiiiiriirirriirirnsgi

Copyright © 2000 |EEE. All rights reserved.
Thisisan unapproved | EEE Standards Draft, subject to change. 99

2000-11-28 P1484.2D7

/1 PAPI |earner relations infornmation type.
type PAPI | earner_relations_info_type =
record
(/1l note: all conponents are optional; all sizes are SPM
ny_relations_identifier_list : // database |inking (key)
arrayl i st(PAPI _| earner_identifier_type, 200),
relations_hid list : // HDIlinking (cross-repository)
arraylist(PAPI _| earner_hid_type, 200),
relationship_list : // List of individual relationships
arraylist(PAPI _| earner_relationship_type, 200),
rel ati ons_bucket : // Oher information
arrayl i st (PAPI _I earner_bucket _type, 200),
),

/'l PAPI |earner relationship type.
type PAPI | earner_relationship_type =
record
(/'l note: all conponents are optional; all sizes are SPM
others_identifier_list : // ldentifiers of others related to ne
arraylist(PAPI | earner_identifier_type, 200),
relations_label list : // Nanme of relationship
arraylist(mstring_type, 200),
relation_to_themlist : // My relationship to them
arrayl i st (PAPI _| earner_rel ationshi p_type_type, 200),
relation_to me_list : // Their relationship to ne
arraylist(PAPI | earner_relationship_type_type, 200),

).

/1 The datatype for types of relationships.
type PAPI | earner_rel ationship_type_type =
enunerated // open vocabul ary

(
"classmate",
"teacher _is",
"t eacher _of",
"bel ongs_t o",
"bel ongs_with",
),

11.4 PAPI learner security information datatypes

The following is asummary of PAPI learner security information datatypes in 1ISO/IEC 11404
notation.

FHETIEEPEE bbb rrriirnd
/111 PAPl |earner security informtion
FEETPETE bbb rrriirnnd

/1 PAPI | earner security information type
type PAPI | earner_security_info_type =
record
(/'l note: all conponents are optional; all sizes are SPM
my_security identifier_list : // database |inking (key)
arraylist(PAPI _| earner_identifier_type, 200),

Copyright © 2000 |EEE. All rights reserved.
Thisisan unapproved | EEE Standards Draft, subject to change. 100

2000-11-28 P1484.2D7

security_hid_list : // HDIlinking (cross-repository)
arrayl i st(PAPI _| earner_hid_type, 200),

credential list : // Security credentials
arraylist(PAPI _| earner_security_credential _type, 500),

security_bucket
arrayl i st (PAPI _I earner_bucket _type, 300),

).

/1l A security credenti al
type PAPI | earner_security_credential type =
record
(
cont ext _| abe
PAPI _| ear ner _cont ext _I| abel _type,
credential _type
PAPI | earner _identifier_type_type,
credenti al _val ue
octetstring, // SPM 8192

11.5 PAPI learner preference information datatypes

The following is a summary of PAPI learner preference information datatypes in 1SO/IEC
11404 notation.

NNy
/111 PAPI |earner preference informtion
FHETITE i rrnd

/1 PAPI | earner preference information.
type PAPI _| earner_preference_info_type =
record
(/'l note: all conponents are optional; all sizes are SPM
my_preference_identifier_list : // database |inking (key)
arraylist(PAPI | earner_identifier_type, 200),
preference_hid list : // HDIlinking (cross-repository)
arrayl i st(PAPI _| earner_hid_type, 200),
pre_i nclude_preference_hid list : // include before this |ist
arraylist(PAPI _| earner_hid_type, 100),
post _include_preference_hid_list : // include after this |ist
arrayl i st (PAPI _| earner_hid_type, 100),
device_preference_list : // Device preferences
arrayl i st(PAPI _| earner_devi ce_preference_type, 50),
pr ef erence_bucket
arrayl i st (PAPI _| earner_bucket _type, 100),

).

/1 PAPI | earner device preferences.
type PAPI _| earner_device_preference_type =
record
(/'l note: all conponents are optional; all sizes are SPM
security list : // Security devices
arraylist(PAPI | earner_device_io_preference_type, 20),
text _list : // Text devices
arraylist(PAPI _| earner_device_i o_preference_type, 20),

Copyright © 2000 |EEE. All rights reserved.
Thisisan unapproved | EEE Standards Draft, subject to change. 101

2000-11-28 P1484.2D7

speech_list : // Speech devices
arraylist(PAPI _| earner_device_i o_preference_type, 20),
graphics_list : // Graphical devices
arrayli st (PAPI _I earner_device_i o_preference_type, 20),
audio _list : // Audio devices
arraylist(PAPI _| earner_device_i o_preference_type, 20),
video_list : // Video devices
arraylist(PAPI | earner_device_io_preference_type, 20),

tactile_ list : [// Tactile devices
arraylist(PAPI _| earner_device_i o_preference_type, 20),
session_choosing : [// Session choosing devices

arraylist(PAPI _| earner_device_i o_preference_type, 20),
other : // Oher devices
arraylist(PAPI _| earner_device_i o_preference_type, 100),

).

/1l Preferences for a pair of input/output devices.
PAPI | earner _device_io_preference =

(.
i nput
PAPI _| ear ner _devi ce_paraneter_type,
out put
PAPI _| ear ner _devi ce_par aneter _type,
),

/'l A set of device preferences for an individual device.
type PAPI _| earner_devi ce_paraneter_type =
(
context : // Wen the device is appropriate.
PAPI _| ear ner _context _| abel _type,
preference_nane : // internationalized nane
characterstring(iso-10646-1),
preference_rating : // Useful ness of device
i nt eger,
preference_priority : // Priority anong devices
i nt eger,
device_nane : // The nane of the device
characterstring(iso-10646-1),
device_type : // Generic type
characterstring(iso-10646-1),
method : // Method of access
characterstring(iso-10646-1),
protocol : // Protocol stack for access
characterstring(iso-10646-1),
coding : // Coding nmethod for access
characterstring(iso-10646-1),
encoding : // Encoding nethod for access
characterstring(iso-10646-1),
other : // Oher information
characterstring(iso-10646-1),

11.6 PAPI learner performance information datatypes

The following is a summary of PAPI learner performance information datatypes in 1SO/IEC
11404 notation.

Copyright © 2000 |EEE. All rights reserved.
Thisisan unapproved | EEE Standards Draft, subject to change. 102

2000-11-28 P1484.2D7

FHPTLTEE T rrrirrn
/111 PAPI |earner performance information
NNy

/1

/'l PAPI |earner performance information.
/1

type PAPI | earner_performance_info_type =
record

(/'l note: all conponents are optional; all sizes are SPM
my_performance_identifier_list : // database |inking (key)
arraylist(PAPI | earner_identifier_type, 200),
performance_hid_list : // HDIlinking (cross-repository)
arraylist(PAPI_I earner_hid_type, 200),
owner identifier : // owner of record, not necessarily | earner
characterstring(iso-10646-1), // SPM 1024
recording_date_tine : // when record was recorded
ti me(second, 10,0), // yyyymmddThhnmss
valid date_tinme_begin : // when record becones valid
ti me(second, 10,0), // yyyymmddThhnmss
valid_date_tinme_end : // when record expires
ti me(second, 10,0), // yyyymddThhnmss
i ssue_fromidentifier : // who issued record
characterstring(iso-10646-1), // SPM 1024
i ssue_date_ tinme : // when record was issued
ti me(second, 10,0), // yyyymmddThhnmss
issue_to_identifier : // who issued to, not necessarily |earner
characterstring(iso-10646-1), // SPM 1024
| earni ng_experience_identifier : // experience/content ID
characterstring(iso-10646-1), // SPM 1024
conpetency_identifier : // conpentency associated with performance
characterstring(iso-10646-1), // SPM 1024
granularity : // granularity of performance record
characterstring(iso-10646-1), // SPM 300
performance_coding : // performance codi ng schene
characterstring(iso-10646-1), // SPM 1024
performance_netric : // how performance is nmeasured
characterstring(iso-10646-1), // SPM 300
pef ormance_value : // the value of performance for this record
characterstring(iso-10646-1), // SPM 2048
certificate list : // data certification information
arrayl i st (PAPI | earner_data_certification_type, 200)
performance_bucket : // other information
arrayl i st (PAPI _| earner_bucket type, 100),

11.7 PAPI learner portfolio information datatypes

The following is a summary of PAPI learner portfolio information datatypes in ISO/IEC
11404 notation.

FEELLTEE T bbb rrn
/111 PAPlI |earner portfolio information
FHETIEEPEE bbb rrriirnd

Copyright © 2000 |EEE. All rights reserved.
Thisisan unapproved | EEE Standards Draft, subject to change. 103

2000-11-28 P1484.2D7

/1 PAPI |earner portfolio information.
type PAPI | earner_portfolio_info_type =
record

(

/1 note: all conponents are optional; all sizes are SPM val ues
ny_portfolio_identifier : // database |inking (key)
arrayl i st(PAPI _| earner_identifier_type, 200),
portfolio_hid : // HIDIinking (cross-repository)

arraylist(PAPI _| earner_hid_type, 200),

a_id type : // media type

arraylist(M ME_type, 200),

media_id : // media associated with works
arraylist(URI _type, 200),

media lomlist : // reference to LTSC LOM record
arraylist(LTSC LOM reference_type, 200),

med

medi a_papi _| earner _performance_list : // associated perfornmance
arrayl i st (LTSC _PAPI | earner _performance_reference_type, 200),
medi a_conpetency_definition_list : // associated conpetency

arraylist(LTSC conmpetency_definition_reference_type, 200),
certificate_ list : // data certification information

arraylist(PAPI _| earner_data certification_type, 200)
portfolio_bucket : // other information

arrayl i st (PAPI _I earner_bucket _type, 100),

Copyright © 2000 |EEE. All rights reserved.
Thisisan unapproved | EEE Standards Draft, subject to change. 104

2000-11-28 P1484.2D7

12 Annex C: XML coding binding (conditionally
normative)

If a PAPI Learner gpplication includes the statement "PAPI Learner XML coding [imple-
mentation variety] " in its implementation conformance statement, then that application shall
conform to the requirements of this Annex.

Note: The implementation varieties are defined in Clause 4, Conformance, and summarized in
subclause 4.2, Conformance Labels.

12.1 Generating and producing XML

The following rules describe the transformation of PAPI Learner data elements, as described
by this Standard and by 1SO/IEC 11404 notation, to XML records.

Rule 1: For each data element in ISO/IEC 11404 notation, map all identifiersto XML
tags, except as noted in Rule 2 below. Balanced XML tags delimit the boundary of
the value associated with the data element. The nesting of the XML tags represents
the structure of data elements, as described by its "aggregate datatype generator”
(ISO/EC 11404 terminology). For array and sequence aggregates, (1) an XML tag
of the same name as the identifier of the aggregate represents the group of aggregates,
(2) the individual data elements are represented by repeated XML tags based on the
identifier of the aggregate minus the suffix " _I'i st" or" _bucket ", not the index of
the element.
Rule2: Map al mi string_t ype datatypes to:

Rule2A: Thel ocal e element of ni st ri ng_t ype Setsthe LANG attribute in parent

XML element.

Rule 2B: Thest ri ng element sets content of parent tag (i.e., the current target).

Map al PAPI learner personal information to ...[editor's note: "vCard" mapping to be
added here]

Rule 3: Transform the following XML tags (wildcard notation):
PAPI _| ear ner _*

to the following XML tags (wildcard notation):
| EEE_LTSC PAPI _| earner _*

All data produced shdl be well-formed XML.

Rationale

The following is a rationde for these three rules for this specific transformation of the PAPI
Learner datatypes.

Note: This XML binding (PAPI Learner ® XML) requires 3 transformation rules. Other

standards and different XML bindings may require more, fewer, or different transforma-
tion rules.

Copyright © 2000 |EEE. All rights reserved.
Thisisan unapproved | EEE Standards Draft, subject to change. 105

2000-11-28 P1484.2D7
Rationalefor Rule 1

Rule 1 is the main transformation from 1SO/IEC 11404 datatypes to XML tagging conven-
tions. The following examples use the following definition to illustrate the transformations:

A: record

(
B: integer,
C. record

(
D: integer,
E: characterstring(iso-10646-1),

),
- list: array (O0..limt) of (integer),
G sanple_mstring_list_type,
)
The first sentence, "for each data eement in ISO/IEC 11404 notation, map al identifiers to
XML tags', trandforms identifiers, e.g., "X: "P "<X>".

The second sentence, "balanced XML tags delimit the boundary of the value associated with
the data element”, requires that (1) the tags are baanced, and (2) the vaue of the data element
isbetweenthetags eg., "X: 17"P "<X>17</ X>".

The third sentence, "the nesting of the XML tags represents the structure of data eements, as
described by its aggregate datatype generator”, requires that the nesting implied in aggregates
(records, arrays, sequences/lists) results in smilar nesting of the XML tags. Using the defini-
tion of A above, the following nesting isimplied for ements B, C, D, and E:

<A>
...</ B>
<C
<D>...</ D>
<BE>...</ B>
</ C
</ A>

The fourth sentence, "for array and sequence aggregates, data elements are represented by re-
peated XML tags based on the identifier of the aggregate, not the index of the element”, re-

quires arrays and sequences (lists) to be represented as multiple tags with the same name — a
typicad XML style convention. For example, the data element F would be represented as:

<l-- correct XML binding of F list -->
<A>
<F _list>
<F>...</F>

<F>...</F>
<F>...</F>

</F_list>
</ A>
but not as:
<l-- incorrect XML binding of F list -->
<A>

Copyright © 2000 |EEE. All rights reserved.
Thisisan unapproved | EEE Standards Draft, subject to change. 106

2000-11-28 P1484.2D7

<F _list>
<0>...</0>
<l1>...</1>
<2>...</ 2>

</F_list>

</ A>. N
Rationalefor Rule 2

PAPI Learner records use several specialized datatypes, such as multilingual datatypes for de-
scribing certain char act er st ri ng-type data elements that must be represented in a multilin-
gual and multicultura context — commonly called internationdization (118N) and localiza-
tion (L10N) features. Below, is a sample verson of a multilingual data type thet is not n-
tended to clash with definitions of other multilingua datatypes defined elsewhere in this Stan-
dard. In thisillugtration, the datatype sanpl e_m stri ng_t ype represents a single pair: a
locdized dring and a locde specification (L1ON mapping). The datatype
sanpl e_m string_array_type represents an array of these string pars. In this exam+
ple, the array exanpl e_r emar ks contains three eements, each eement is a pair of srings.
Presumably, an application would choose the appropriate dring from use
exanpl e_r emar ks based on the country (locale) that the gpplication was operating in. The
following are sample type definitions and va ue definitions.

type sample_m string_type =

record

(
L10N string: characterstring(iso-10646-1),

L10N | ocal e: string_type,
)1

type sanmple_m string_array_type =
array (0..limt) of (sanple_nlstring_type),

val ue exanpl e_remarKks:
sanple_mstring _array_type =
(

(
L10N string: "abc abc abc",

L10N_| ocal e: "en-UuUs",

L10ON_string: "def def def”
L1ON_map: "fr-CA",

L10N string: "ghi ghi ghi"
L1ON_map: "de-DE",

Rule 2, dong with array handling of Rule 1, transforms these data €l ements into the following
XML:

<exanpl e_remar ks LANG="en- US">abc abc abc</exanpl e_r emar ks>

<exanpl e_remar ks LANG="fr-CA">def def def</exanpl e_remarks>

Copyright © 2000 |EEE. All rights reserved.
Thisisan unapproved | EEE Standards Draft, subject to change. 107

2000-11-28 P1484.2D7

<exanpl e_renmar ks LANG="de- DE">ghi ghi ghi </ exanpl e_remarks>

[Editor's Note: Rule 2, will include "vCard" mapping which transforms PAP! |learner personal
information to/from "vCard" structures)]

Rationalefor Rule 3

This rule is used for rewriting tags to use certain namespace conventions. This rule could
have specified XML namespaces by choosing a different namespace convention (prefixes).

After Rule 3, the implementation is required to assure that the result of these transformations
iswell-formed XML.

12.2 Consuming and interpreting XML

The following rules describe the transformation of XML records to PAPI Learner data ele-
ments, as described by this Standard and by 1SO/IEC 11404 notation.

All data consumed shdl be wdl-formed XML.

Rule 1: Transform the following XML tags (wildcard notation):
| EEE_LTSC PAPI _| earner _*

to the following XML tags (wildcard notation):
PAPI | ear ner _*

Rule 2: Transform the following:
Rule 2A: The LANG attribute of the XML element sets the | ocal e element of the
corresponding m st ri ng_t ype data element.
Rule 2B: The contents of the tagged element sets the st ri ng element of the cor-
responding m st ri ng_t ype data element.
Rule 3: For each XML tag, that is associated with an identifier defined by a PAPI
Learner data element in this Standard, its corresponding opening and closing balanced
XML tags are matched. For each XML tag, except as modified in Rule 2 above, map
each XML tag to the corresponding data element identifier. The nesting of the XML
tags represents the nesting of the data elements, i.e., the reverse of the operation in
Rule #1 of subclause 12.1, Generating and Interpreting XML, above. The contents of
each tagged element is converted to the value of the corresponding data element.

Rationale

Rationalefor Rule 1

Before processing, the implementation is assured that it is consuming and interpreting well-
formed XML.

This rule grips the XML namespace prefixes and suffixes as necessary. In this illugtration,
XML namespaces were not used, but a namespace prefix ("I EEE_LTSC ") was used to reduce
the possibility of namespace collisions.

Copyright © 2000 |EEE. All rights reserved.
Thisisan unapproved | EEE Standards Draft, subject to change. 108

2000-11-28 P1484.2D7
Rationalefor Rule 2

This rule does the reverse mapping from the LANG attribute to the ml st ri ng_t ype datatype.
Thisruleis careful to transform only known mi st ri ng_t ype data eements because al other
XML LANG attributes do not correspond to mi st ri ng_t ype datadementsin this Standard.

[Editor's Note: In the next draft, Rule 2, will include "vCard" mapping which transforms PAPI
learner persond information to/from "vCard" Structures)

Rationalefor Rule 3
This rule handles the main transformation of XML tags and their contents to data elements.

The first sentence, "for each XML tag, that is associated with an identifier defined by a PAPI
Learner data element in this Standard, its corresponding opening and closing balanced XML
tags are matched”, (1) ignores dl identifiers that are unknown to this Standard, and (2) prop-
erly parsthem.

The second sentence, "for each XML tag, except as modified in Rule 2 above, map each XML
tag to the corresponding data element identifier”, creates the association with data eements,
but does not assign the values of the data elements..

The third sentence, "the nesting of the XML tags represents the nesting of the data e ements,
i.e., the reverse of the operation in Rule #1 of subclause 19.1", assures that the interna struc-
ture of the XML tags, to the extent required by this Standard, agree with the interna structure
of the data eements.

The fourth sentence, "the contents of each tagged dement is converted to the vaue of the cor-
responding data eement”, transforms the contents within the XML tags to values of the data
elements, i.e,, it "populates’ the data elements.

12.3 Representation of basic data types

The following subclauses describe the transformation of data € ement values to/from character
representations for information interchange for use within an XML binding.

12.3.1 Characters and character strings
Data dements that are of type char act er shall be represented as per the XML specification.

Note 1. Specid characters, such as "&" "<" ">" ";" reqguire trandation methods and,
possibly, losdess trandation.

Note 2: Some encodings, such as ISO-8859-1 and UTF-8 permit the direct encoding of the
representation of characters such as ©" (the copyright symbol). Other encodings, such as
ASCII, require encoding extensions, such as'© ", to represent these symbols.

Copyright © 2000 |EEE. All rights reserved.
Thisisan unapproved | EEE Standards Draft, subject to change. 109

2000-11-28 P1484.2D7

12.3.2 Integers

Data dements that are of type i nt eger shall be represented as per ISO/IEC 9899:1999, C
Programming Language, subclause 6.4.4.1, Integer Constants, excluding U", "L", and 'LL"
auffixes and their lowercase variants, and may include an optiona leading sign, ether plus
("+") or minus ("- "), but not both.

Examples:
0 /1l zero
23 /1 twenty-three
0x17 /'l same in hexadeci mal
027 // same in octal
-34 /1l negative thirty-four
+34 [l postitive thirty-four
+34 /'l same

12.3.3 Real numbers

Data dements that are of typer eal :

if integral, may be represented integers, as specified above in subclause 19.5, Inte-
gers,

if not integral or not represented as integers, shall be represented as per ISO/IEC
9899:1999, C Programming Language, subclause 6.4.4.2, Floating Constants; -
cluding 'F" and 'L" suffixes and their lowercase variants; and may include an @-
tional leading sign, either plus ("+") or minus (- "), but not both.

Examples.
0 !/l zero
0.0 /'l sane

130.0 /1 one hundred thirty
1. 3E2 /'l same
+1.3E2 // sane

12.3.4 Date and time values

Data elements of type t i ne shal be represented as per 1SO 8601, Data elements and inter-
change formats — Information interchange — Representation of dates and times.

Note 1: ISO 8601 is intended to represent dates and times between 1 January 0001 and 31 De-
cember 9999 using the Gregorian cadendar. It iswell understood that there are anomdies with
this gpproach, e.g., the month of September 1752 has less than 30 days, the lack of correlation
of timezones prior to the introduction of transcontinenta railroads, changing the beginning
month of the calendar, the inability to represent dates Before the Common Era, and the inabil-
ity to represent dates after 31 Decermber 9999.

SO 8601 is applied as follows:

Only the basic format shall be used. Example: "19990102" and "030405" are
valid, but " 1999- 01- 02" and " 03: 04: 05" are not. Rationae: The additional proc-
essing for extended formats may be more error prone and can reduce interoperability;

Copyright © 2000 |EEE. All rights reserved.
Thisisan unapproved | EEE Standards Draft, subject to change. 110

2000-11-28 P1484.2D7

the additional lexical elements of the extended formats may interfere or conflict with
other lexical, embedded, or surrounding information processing environments.
Decimal fractions shall use the full stop character (*. "), aso known as the period
character. Example: "199901020304. 1" represents 03:04:06 AM on 2 January
1999. Note: 1SO 8601 permits the use of the comma (', ") and full stop characters,
and specifies that comma is the preferred sign. This Standard only permits the full
stop (period) character. Rationale: The comma character may interfere or conflict
with other lexical, embedded, or surrounding information processing environments.

For pointsin time, 1SO 8601 is applied as follows:

Dates shall be represented by calendar date format only. Note: Calendar dates are
represented by year, month, and date. Other formats permitted by 1SO 8601, but pro-
hibited in this Standard include ordina date (i.e., the date is represented by three
decimal digits, e.g., "1985032" is 1 February 1985) and calendar week and day
number (i.e., the date is represented by the week number and the day of the week,
e.g., Sunday, 1 January 1995 is " 1994Ws27", and Tuesday, 31 December 1996 is
"1997W12"). Rationale: The additional processing for these other date formats may
be more error prone and can reduce interoperability.

Dates and times shall be represented as an SO 8601 complete representation and
shall not use the "T" time indicator. Example: "19990102030405" represents
03:04:05 AM on 2 January 1999. Rationale: The " T" time indicator is omitted be-
cause it is not necessary; 1SO 8601 permits this omission when there is no ambiguity.
The ambiguity is avoided by (1) permitting only SO 8601 basic formats, and (2) re-
quiring the identification of missing date and time components.

The underscore character (*_") shall be used to indicate missing components. One
underscore character shall be used for each digit that is missing from the integer por-
tion of the date or time. Example: " 0102" represents 2 January of the current
year. Note: Data that has missing components (e.g., the century) can cause signifi-
cant interoperability problems, such as the "Year 2000 Problem”. It is recommended
that implementations avoid generating data with missing components, but it may not
be possible to resolve all circumstances. Rationale: 1SO 8601 uses hyphens for miss-
ing components, but hyphens may interfere or conflict with other lexical, embedded,
or surrounding information processing environments. 1SO 8601 uses the hyphen to
indicate that one component is missing (e.g., "--0102"), while this Standard uses
one underscore character per digit (e.g., " 0102"), which is less error prone for
information processing.

Times shall be represented in local time or Coordinated Universal Time (UTC).
Times represented in local time shall use no suffix and shall not indicate the differ-
ence between local time and UTC. Times represented in UTC shall use the "Z" suf-
fix, as per 1ISO 8601. Example: " 19990102030405" local timein New York City (5
hours west of UTC) is the same time as " 19990102030905Z" . Rationae: The use
of time zone information, other than UTC, causes additional processing for data n-
terpretation, which may be more error prone. The prohibition of time differences
(eg., "19990102030405+0700") eliminates the use of the plus (' +") and minus
("-") characters which may interfere or conflict with other lexical, embedded, or sur-
rounding information processing environments.

Copyright © 2000 |EEE. All rights reserved.
Thisisan unapproved | EEE Standards Draft, subject to change. 111

2000-11-28 P1484.2D7

For durations of time, 1SO 8601 is gpplied as follows:

The time duration shall begin with the prefix " P, as per ISO 8601. Example: " P2Y"

means two years. Note: Not all date and time components are required for a duration
of time.

The time duration shall use the case-sensitive designators: " Y" for years, "M for
months, " D" for days, "W for weeks, "h" for hours, " mi' for minutes, and "s" for
seconds. Example: " P2Y10M25h2nbs" represents the duration 2 years, 10 months,
25 hours, 2 minutes, and 5 seconds. For durations of time, a date and time component
may exceed the maximum number of units in a corresponding component of a point
in time, e.g., months may exceed 12, hours may exceed 24, and minutes may exceed
60. Rationale: The use of case-sensitive designators ssimplifies the processing of date
and time information.

Note 2: The characters described in 1SO 8601 only specify the names of characters, not their
encodings. Thisis emphasized by 1SO 8601, subclause 4.4, Characters used in the represen
tations. "The representations specified in this International Standard use digits, aphabetic
characters, and specia characters specified in 1SO 646. ... Note 2: Encoding of characters for
the interchange of dates and times is not in the scope of this Standard.”

12.3.5 Void types

A void type shdl have no representation and shal have no encoding.

Example: The following record
A: record

(

B: integer,

C. void,

D: characterstring(iso-10646-1),
)

isrepresented in XML as.

<l-- correct XM representation of C -->
<A>

17</ B>

<D>hel | o</ D>
</ A>

but not as;

<l-- incorrect XML representation of C -->
<A>

17</ B>

<C</ C

<D>hel | o</ D>
</ A>

12.4 Encoding of character representations

The encoding of character representations to octet values is specified by the XML encoding
technique.

Copyright © 2000 |EEE. All rights reserved.
Thisisan unapproved | EEE Standards Draft, subject to change. 112

2000-11-28 P1484.2D7

Conforming PAP!I Learner data instances with XML coding binding shall be encoded in one
of: ASCII, ISO/IEC 8859-1, ISO/IEC 10646-1 UTF-8, or ISO/IEC 10646-1 UTF-16.

Conforming PAPI Learner applications with XML coding binding shall support al of the fol-
lowing encodings. ASCII, ISO/IEC 8859-1, ISO/IEC 10646-1 UTF-8, and 1SO/IEC 10646-1
UTF-16.

12.5 Handling exceptions and extensions

12.5.1 Implementation-defined behavior

The following are implementation-defined behaviors in addition to those described elsewhere
in this Standard.

The following are implementation-defined behaviors in the production and consumption of
XML codings:

The maximum size, in octets, of a strictly conforming PAPI Learner data instance, as
coded in XML, that may be processed successfully.
The maximum nesting depth of XML records.

The time zone information for data elements of ti me type that have unspecified
timezones.

12.5.2 Unspecified behavior

The following are unspecified behaviors in addition to those described el sewhere in this Stan-

dard.

The following is unspecified behavior in the generation or interpretation of XML codings:
The order of processing data elements.

The following is unspecified behavior in the production or consumption of XML codings:

The use of additional whitespace characters outside those of the data element value
and those required by the XML specification.

12.5.3 Undefined behavior

The following are undefined behaviors in addition to those described elsawhere in this Stan-
dard.

The following are undefined behaviors in the production or consumption of XML codings:

The use of XML tags that correspond to extended data elements.

The use of XML tags that correspond to reserved data el ements.

The use of XML tags or attributes not specified in this XML coding binding.
The use of characters outside the repertoire described in this Standard.

Copyright © 2000 |EEE. All rights reserved.
Thisisan unapproved | EEE Standards Draft, subject to change. 113

2000-11-28 P1484.2D7

13 Annex D: DNVP coding binding (conditionally
normative)

If a PAPI Learner gpplication includes a"PAPI Learner DNV P coding [implementation vari-
ety] " in itsimplementation conformance statement, then that application shall conform to the
requirements of this Annex.

Note 1: The implementation varieties are defined in Clause 4, Conformance, and summarized
in subclause 4.2, Conformance Labels.

Note 2: The Dotted Name-Vaue Pair (DNVP) notation is based on an RFC 822 style of mes-
saging. RFC 822, Standard for the Format of ARPA Internet Text Messages, describes text
messages that are commonly referred to as internet E-mail messages. In this style of messag-
ing, the beginning of a message contains a header with header elements. For exanmple,

From sender @ost.com
To: user @ost.com
Subect: a subject |ine

might represent three header dements — a portion of a header. This kind of messaging is de-
scribed in RFC 822, subclause 3.1, Genera Description. Additionaly, RFC 2068, Hypertext
Transfer Protocol — HTTP/1.1, subclause 4.2, Message Headers, itsdlf is harmonized with
RFC 822 (from RFC 2068, subclause 4.2: "HTTP header fields ... follow the same generic
format asthat given in Section 3.1 of RFC 822").

This style of binding (RFC-822-like) is in common use in many interchange environments,
such as E-mail systems and web servers.

The following is an example of this generalized format:

nane_1: value_1
name_2: val ue_2
name_3: val ue_3

13.1 Dotted Name-Value Pairs (DNVPs)

Note: The following wording was extracted, excerpted and adapted from, and harmonized
with RFC 2068 (HTTP/1.1).

13.1.1 Basic lexical elements

A newline character (CRLF) is defined by its encoding.

Note 1: A newline character might be line feed (e.g., Unix/Linux), carriage return (e.g., Mac-
intosh), or carriage return line feed combination (e.g., Windows).

For maximum interoperability, implementations should use the carriage return line feed com-
bination for the newline character when producing data. Implementations that use only one

Copyright © 2000 |EEE. All rights reserved.
Thisisan unapproved | EEE Standards Draft, subject to change. 114

2000-11-28 P1484.2D7

character, either line feed or carriage return, for the newline character should ignore the other
character, carriage return or line feed, respectively, when consuming data.

Leading whitespace (LWY) is defined as at least one or more space or tab characters that fol-
low anewline.

Note 2: LWS does not include the prior newline. A sequence of space or tab characters with-
out a prior newlineis not LWS.

A control character (CTL) is a character in the range 0-31 (decima) or the octet 127 (decimal)
but not the octet 9 (HT).

A text charactersis any character except control characters.
The following are token specid characters:
() < > @
: ; : \ "
I 1?0 =
{ '} SP HT
A token is one or more characters that exclude control characters or token special characters.

A gring of text is consumed as a single token (and token specid characters are not specid) if it
is quoted using double-quote marks.

Example 1: The characters
"abcd -(), :[]"
are consumed as a single token.

The backdash character ("\ ") may be used for single-character quoting, i.e,, removing the
specia nature of atoken specia character, one character at atime.

Example 2: The characters

they're

are consumed as a single token and the single quote character (') has no specia meaning.

Example 3: The characters
"say \"hello\""

are consumed as a single token, the token includes the double quote characters before and af-
ter the work hello, and the quote characters that surround the word hello have no specia
meaning.

Copyright © 2000 |EEE. All rights reserved.
Thisisan unapproved | EEE Standards Draft, subject to change. 115

2000-11-28 P1484.2D7

13.1.2 Field name and field value

A Name-Vdue Pair (NVP) shdl consst of afield name, followed by a colon (":"), followed
by itsfield vaue. A fiedd nameisatoken. Field names shal be case-senstive.

Note: The case sensitivity of this DNV P binding differs from RFC 822.

A field vaue may be preceded by any amount of leading white space (LWS). Conforming
implementations should use asingle space (SP) as LWS. A field vaue is zero more characters
congsting of combinations of tokens and/or token specid characters.

A field vaue of zero characters represents an empty value being associated with the field
name.

Note: A Name-Vaue Pair starts at the beginning of aline.

13.1.3 Newline processing

A Name-Vdue Pair may be extended over multiple lines by preceding each extra line with at
least one space (SP) or horizontal tab (HT). All linear white space, including folding, has the
same semantics as asingle SP character.

A newline (CRLF) shdl follow a completed Name-Vaue Pair.

13.1.4 Syntax summary
This subclause is informative and not normative.

Note: The following BNF syntax summary is extracted, excerpted and adapted from, and
harmonized with RFC 2068 (HTTP/1.1):

"\'" character
<">*<any char except non-quoted
doubl e quot es><">
field-nanme ":" [field-value] CRLF
t oken
*(field-content | LWS)
<t he characters making up the field-val ue
and consisting of conbinations of
t okens or tspecial s>

guot ed- pai r
qguot ed-string

CRLF = <newl i ne character>
CTL = <any US-ASCI| control character
(characters 0 - 31) and DEL (127), except HT

(9)>
LWS = [CRLF] 1*(SP | HT)
t oken = 1*<any character except CTLs or tspecial s>
tspecials =t e] @

I I AR IR S A

A e S R S B B

| {1)| SP | oHT

nmessage- header
field-name
field-val ue
field-content

Copyright © 2000 |EEE. All rights reserved.
Thisisan unapproved | EEE Standards Draft, subject to change. 116

2000-11-28 P1484.2D7

13.2 Generating and producing dotted name-value pairs

The following rules describe the transformation of PAPI Learner data elements, as described
by this Standard and by 1SO/EC 11404 notation, to DNV P notation.

Rule 1: For each data element, map all identifiers to fully-qualified field names. A
fully-qualified name represents the nested structure of the data element, as described
by its "aggregate datatype generator” (ISO/IEC 11404 terminology). A period (. ")
shall separate each level of nesting in a fully-qualified field name. For array and se-
guence aggregates, (1) the individua data elements are represented by repeated
DNVP field names based on the identifier of the aggregate minus the suffix " _1i st ™"
or " _bucket", not the index of the element, (2) each element of the array or &
guence aggregate shall bracketed by two null-value DNVPs, one at the beginning of
each dement with the field name suffix *. __begi n" and one at the end of each ele-
ment with the fiedld name suffix ". __end". A field name is followed by a colon
(":"), followed by the value of its associated data element.

Rule 2: Transform the following DNV P field names (wildcard notation):
PAPI | ear ner _*

to the following DNV P field names (wildcard notation):
| EEE_LTSC PAPI _| earner _*

Rationale

The following is a rationae for these two rules for this specific transformation of the PAPI
Learner datatypes.

Note: This RFC 822-like binding (PAPI Learner ® DNVPS) requires 2 transformation rules.
Other standards and different DNVP bindings may require more, fewer, or different trans-
formation rules.

Rationalefor Rulel

Rule 1 is the main transformation from ISO/IEC 11404 datatypes to DNVP notation. The
following examples use the following definition to illustrate the transformeations:

A. record

(
B: integer,
C. record

(
D. integer,
E: characterstring(iso-10646-1),
)

’_I ist: array (0..limt) of (integer),

)
The firg three sentences, "For each data dement, map dl identifiers to fully-qualified field
names. A fully-qualified name represents the nested structure of the data element, as e
scribed by its "aggregate datatype generator” (1SO/IEC 11404 terminology). A period (.)
shal separate each level of nesting in a fully-qudified fiedd name", transform identifiers in to
field names, such as.

A B

Copyright © 2000 |EEE. All rights reserved.
Thisisan unapproved | EEE Standards Draft, subject to change. 117

2000-11-28 P1484.2D7

A.C.D
A .C E

The fourth sentence, "for array and sequence aggregates, € ements are represented by repeated
DNVP field names based on the identifier of the aggregate, not the index of the element”, re-
quires arrays and sequences (lists) to be represented as multiple DNV Ps with the same name
— permitted in RFC 822-like systems, but with a dightly different meaning (RFC 822 alows
these lines to be combed, while this PAPI Learner coding binding does not permit automatic
consolidation of DNV Ps). For example, the data dement F would be represented as.

(correct DNVP binding of F)

A. F. __begin:
A F: XXX
A F. __end:
A. F. __begin:
A F. yyy
A F. __end:
A. F. __begin:
A F. zzz
A F. __end:
but not as.
(incorrect DNVP binding of F)
A F. 0: XxxXx
A F. 1. yyy
A F. 2. zzz

The fifth sentence, "A field name is followed by a colon (*:"), followed by the vaue of its as-
sociated data element”, associates the field name with its value and separates the two with a
colon (":).

A B 17

A.C.D: 34

A. C. E vyellow pigs
A F. 51

A . F. 68

A F: 85

Rationalefor Rule 2

Thisruleis used for rewriting tags to use certain namespace conventions.

13.3 Consuming and interpreting dotted name-value pairs

The following rules describe the transformation of DNV Ps to PAPI Learner data elements, as
described by this Standard and by 1SO/IEC 11404 notation.

Rule 1: Transform the following XML tags (wildcard notation):
| EEE_LTSC _PAPI _| earner _*

to the following XML tags (wildcard notation):
PAPI | earner _*

Rule 2: For each field name that is associated with an identifier defined by a PAPI
Learner data element in this Standard, map each field name to the corresponding data

Copyright © 2000 |EEE. All rights reserved.
Thisisan unapproved | EEE Standards Draft, subject to change. 118

2000-11-28 P1484.2D7

element identifier. The nesting of the field names represents the nesting of the data
elements, i.e., the reverse of the operation in Rule #1 of subclause 13.2, Generating
and Interpreting Dotted Name-Vaue Pairs, above. Each field value is converted to
the value of the corresponding data element. An empty field value of an aggregate
may represent the existence of the aggregate, but not the value of its components.

Rationale

Rationalefor Rulel

This rule transforms any namespace prefixes, as necessary. In thisillustration, the namespace
prefix ("I EEE_LTSC ") was used to reduce the possibility of namespace collisons.

Rationalefor Rule 2
This rule handles the main transformation of DNV Ps to data eements.

The first sentence, "for each field name that is associated with an identifier defined by a PAPI
Learner data dement in this Standard, map each fidd name to the corresponding data e ement
identifier”, (1) ignores all identifiers that are unknown to this Standard, (2) properly pairs the
fidld names and identifiers of data elements, and (3) creates the association with data e ements,
but does not assign the values of the data elements..

The second sentence, "The nesting of the field names represents the nesting of the data ele-
ments, i.e, the reverse of the operation in Rule #1 of subclause 20.2, Generating and Inter-
preting Dotted Name-Vaue Pairs, above", assures that the interna structure of the DNV Ps, to
the extent required by this Standard, agree with the interna structure of the data e ements.

The third sentence, "each field value is converted to the vaue of the corresponding data ele-
ment”, transforms the field values of the data elements, i.e,, it "populates’ the data elements.

The fourth sentence, "an empty field value of an aggregate may represent the existence of the
aggregate, but not the vaue of its components', merdly creates the aggregate.

In the fragment below, A. C, which has an empty value, may be used to indicate the existence
of an aggregate:

A B 17

A C

A.C.D 34
A. C. E vyellow pigs

An empty vaue is a useful technique when aggregates are comprised of optiona data ele-
ments, i.e., the signaling of the existence of the aggregate, but the lack of aggregate compo-
nents:

A B: 17
A C

An empty valueisnot used to indicate avoi d type.

Copyright © 2000 |EEE. All rights reserved.
Thisisan unapproved | EEE Standards Draft, subject to change. 119

2000-11-28 P1484.2D7

13.4 Representation of basic data types

The following subclauses describe the transformation of data element values to/from character
representations for information interchange for use within the DNV P binding.

13.4.1 Characters and character strings

Data elements that are of type char act er shal be represented only as per 1ISO/IEC 8859-1
when encoded according to the rules of RFC 1522 .

13.4.2 Integers

Data dements that are of typei nt eger shal be represented as per subclause 19.3.2 above.

13.4.3 Real numbers

Data dements that are of typer eal shall be represented as per subclause 19.3.3 above.

13.4.4 Date and time values

Data dements that are of typet i nme shall be represented as per subclause 19.3.4 above.

13.4.5 Void types

A void type shdl have no representation and shal have no encoding.

Example: The following record
A: record

(

B: integer,

C. void,

D: characterstring(iso-10646-1),
)

is represented in an RFC 822-like binding as.

(correct DNVP binding of O
A B: 17
A.D: hello

but not as;

(incorrect DNVP binding of C)
A B: 17

A C

A.D: hello

Copyright © 2000 |EEE. All rights reserved.
Thisisan unapproved | EEE Standards Draft, subject to change. 120

2000-11-28 P1484.2D7

13.5 Encoding of character representations

Conforming PAPI Leaner DNVP coding bindings shall encode character representations to
character values specified by ISO/IEC 8859-1. Characters outside this repertoire shal be e
coded according to the rules of RFC 1522.

13.6 Handling exceptions and extensions

13.6.1 Implementation-defined behavior

The following are implementation-defined behaviors in addition to those described elsewhere
in this Standard.

The following are implementation-defined behaviors in the production and consumption of
DNVP codings.

The encoding, in characters, of the newline character. Note: Implementations can
avoid implementation-defined behavior by using the carriage return line feed combi-
nation characters for the newline character. See subclause 20.1.1, Basic Lexica Ele-
ments, above.

The maximum size, in characters, of a strictly conforming PAPI Learner data i+
stance, coded as a DNVP, that may be processed successfully.

The time zone information for data elements of ti me type that have unspecified
timezones.

13.6.2 Unspecified behavior

The following are unspecified behaviors in addition to those described € sewhere in this Stan-
dard.
The following is unspecified behaviorsin the generation or interpretation of DNV Ps:

The order of processing data elements.

13.6.3 Undefined behavior

The following are undefined behaviors in addition to those described elsewhere in this Stan-
dard.

The following are undefined behaviors in the production or consumption of DNV Ps:

The use of field names that correspond to extended data elements.
The use of field names that correspond to reserved data el ements.

The use of field names not specified in this DNV P coding binding.
The use of characters outside the repertoire described in this Standard.

Copyright © 2000 |EEE. All rights reserved.
Thisisan unapproved | EEE Standards Draft, subject to change. 121

2000-11-28 P1484.2D7

14 Annex E: Document development (informative)

This Annex is informative and not normative.

This section concerns the development of this document. The past (revision history, resolved
issues), present (release notes, comment returns), and future (open issues) releases of this
document are identified here.

14.1 Revision history

Draft 1, 1997-03-27, the first draft. This draft was just the schema of the persona
information (at the time, known as "Persona Information Management Systems
(PIMS)").

Draft 2, 1997-10-07, the second draft. This draft was largely complete and submitted
as a base document for |EEE 1484.2.

Draft 3, 1998-04-02, the third draft. Revised wording to incorporate comments from
standards activity. Harmonized work with IMS specifications. Incorporated schema
changes from prototyped implementations.

Draft 4, 1998-06-08, the fourth draft. Added TCP and Java server bindings.

Draft 5, 1998-11-26, the fifth draft. Added functionality and conceptual model.

Draft 6, 2000-06-23, the sixth draft. Added semantics and bindings sections. Con-
verted to IEEE format.

Draft 7, 2000-11-28, the current draft. Added examples and bindings. Split docu-
ment into several pieces.

14.2 Release notes for this document

The following notes gpply to this release of this Standard:

The glossary needs harmonization with the IEEE 1484.3 work.

The codings and APl work will be harmonized with IEEE 1484.14 and other activi-
ties.

The protocols will be harmonized with |EEE 1484.15 and other activities.

PARs need to be written for other parts of the document.

14.3 Resolved issues

The following issues have been resolved:

Multiple syntax bindings. After much lively discussion in IEEE 1484.2, there is
agreement that multiple syntax bindings are necessary.

Functionality and conceptual model. This work has benefited from much discussion
in IMS.

Conceptual model and conformance wording has been defined.

Informative material has been moved to the end of the document.

Significantly reduced size of document.

Copyright © 2000 |EEE. All rights reserved.
Thisisan unapproved | EEE Standards Draft, subject to change. 122

2000-11-28 P1484.2D7

14.4 Open issues

The following issues are outstanding:

Interoperability negotiation. When two systems interoperate, they need to determine
and resolve incompatibilities in their data models.

Completing remaining coding, API, and protocol definitions.

Agreement on semantic codings. Need to have naming conventions for identifying
semantic coding conventions, e.g., creating the name "US-NY-LETTER-GRADE".
Need to consider mechanisms for tranglating from coding to another.

Other syntax bindings. What other syntax bindings are necessary? What tools are
available to convert syntax bindings and how are they invoked?

Rationale. Need more words on rationale for particular choices, such as multiple
syntax bindings. This will be incorporated into a separate annex.

14.5 Comments on this document

All comments are appreciated. Please return al comments on this release of this document by
Sunday, 2000-12-31 23:00 UTC. Ddliver dl comments to the IEEE 1484.2 Learner Model
Working Group by sending E-mail to:

| tsc-| earner @mj ordono. i eee. org

To subscribe to the working group mailing list, send the one-line message
subscri be Itsc-1earner

to the E-mail address” naj or dono@raj or dono. i eee. org".

The Technical Editor may be contacted at any one of the following:

Tel ephone: +1 212 486 4700
Fax: +1 212 759 1605
E-mai |l : frank@ arance. com

Frank Farance
Far ance/ Edut ool
I sl and Box 256
New Yor k, NY
10044- 0205

USA

Copyright © 2000 |EEE. All rights reserved.
Thisisan unapproved | EEE Standards Draft, subject to change. 123

