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ABSTRACT

In this paper, we present our research on dialog dependent
language modeling. In accordance with a speech (or sentence)
production model in a discourse we split language modeling into
two components; namely, dialog dependent concept modeling and
syntactic modeling. The concept model is conditioned on the last
question prompted by the dialog system and it is structured using
n-grams. The syntactic model , which consists of a collection of
stochastic context-free grammars one for each concept, describes
word sequences that may be used to express the concepts. The re-
sulting LM is evaluated by rescoringN-best lists. We report signif-
icant perplexity improvement with moderate word error rate drop
within the context of CU Communicator System; a dialog system
for making travel plans by accessing information about flights, ho-
tels and car rentals.

1. INTRODUCTION

Statistical modeling of spoken language structure is crucial for the
speech recognition and speech understanding components of di-
alog systems. Two broad statistical language models (LMs) that
have been extensively studied aren-grams [1] and stochastic con-
text free grammars (SCFGs) [2].

The standardn-gram LM tries to capture the structure of a
spoken language by assigning probabilities to words conditioned
onn� 1 preceding words. The value ofn is usually kept low (2 or
3) since (a) the number of parameters increases exponentially with
n and (b) the training data is sparse, particularly, in early phases
of sytem development. Therefore, standardn-gram LMs do not
model longer distance correlations. They also do not take advan-
tage of linguistic knowledge or structure.

A SCFG consists of a number of non-terminals, terminals,
production rules and rule probabilites. It defines a stochastic
formal language. It is possible to define SCFGs at two levels;
namely, sentence level and phrase level. Sentence level SCFGs
provide complete syntactic analysis across a sentence considering
all words. They are expected to work very well for grammati-
cal sentences (those covered by the grammar) but completely fail
in sentences with ungrammatical construction. So, their use for
spoken language applications is very limited. On the other hand,
phrase level SCFGs focus on the syntax of sentence fragments.
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They allow partial parsing of sentences and are more appropriate
for spoken language modeling.

SCFGs have properties complementary ton-grams. They are
combined in various ways to obtain LMs with better perplexity
and speech recognition/understanding performance [3, 4, 5, 6]. A
promising approach is the use of semantically motivated phrase
level SCFGs to parse a sentence into a sequence of concept (or
semantic) tokens which are modeled usingn-grams.

In this paper, we consider the language modeling problem
within the framework of concept decoding (an integrated approach
to speech recognition and understanding) based on the speech pro-
duction model in a typical dialog. This framework uses a dia-
log context dependent LM with two components that we describe
in Section 2. The idea of using dialog contextual knowledge to
improve speech recognition and speeh undersatnding is not new
[7]. Dialog dependent LMs have been recently investigated in
[8, 9, 10, 11]. The method presented here is an extension of the
work in [4], which was developed from ideas presented in [12], to
a dialog dependent language modeling. We use the resulting LM
to rescore N-best lists from our dialog system known as CU Com-
municator [13]. The rescoring scheme is a crude approximation to
the integrated approach. We report significant perplexity improve-
ment along with moderate improvement in word error rate after the
N-best list rescoring.

The paper is organized as follows. Section 2 presents the in-
tegrated approach as a motivation to the use of dialog dependent
language modeling. In Section 3, we explain an N-best rescoring
scheme as a first order approximation to the integrated approach.
Section 4 explains syntactic and semantic models in detail. Exper-
imental results are presented in Section 5. Concluding remarks are
made in the last section.

2. INTEGRATED APPROACH

The speech production model that we base our approach on is de-
picted in Figure 1. It is a slightly modifed version of the model
in [14]. The user is assumed to have a specific goal that does not
change throughout the dialog. According to the goal and the di-
alog context the user first picks a set of concepts with respective
values and then use phrase generators associated with concepts to
generate the word sequence. The word sequence is next mapped
into a sequence of phones and converted into a speech signal by
the user’s vocal apparatus which we finally observe as a sequence
of acoustic feature vectors.
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Fig. 1. A speech production model in a dialog

The integrated approach, as depicted in Figure 2, is based on
the speech production model, maximum a posteriori (MAP) opti-
mization and Viterbi approximation:

C�;W� = argmax maxP (A=Ph)P (Ph=W )P (W=C)P (C=S)

(1)C;W Ph

whereS is the dialog context,C is the sequence of concepts,W is
the sequence of words, andPh is the sequence of phones andA is
the sequence of acoustic features. In (1) we identify four models:

� Concept model:P (C=S)

� Syntactic model :P (W=C)

� Pronunciation model:P (Ph=W )

� Acoustic model:P (A=Ph)

The concept model is the a priori probabilities of concept se-
quences conditioned on the dialog context. The syntactic model
is the probability of word strings used to express a given concept.
The pronunciation model gives the probabilities of possible pho-
netic realizations of a word. The acoustic model is the probability
for the occurance of acoustic feature observations given phones.

Direct optimization of (1) is computationaly very demanding.
For real time performance one ought to implement (1) in multiple
stages at the expense of optimality. Since our major concern is the
design, understanding and use of the concept and syntactic models
with real-time performance we have chosen the simplest possible
set-up to evaluate the models.

3. N-BEST LIST RESCORING

A quick and easy way of checking a new language model is rescor-
ing of N-best lists from a speech recognizer that works with a rel-
atively simple language model. The N-best list is a collection of
sentences ranked according to their total acoustic and LM scores.
Usually, rescoring is done by replacing the old LM scores with the
new LM scores. Within the framework of Section 2, the N-best
rescoring can be stated as the following MAP optimization:

C�;W� = argmax pAP (W=C)P (C=S) (2)
C;W 2 LN
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wherepA = P (A=Ph)P (Ph=W ) is the acoustic probability from
the first pass,LN denotes the N-best list. If there is another mech-
anism to yield a unique concept sequence associated withW , say
CW , the N-best list rescoring in (2) will be:

W� = argmax pAP (W=CW )P (CW =S) (3)
W 2 LN

Our work is based on (3). The rescoring scheme is illustrated
in Figure 3. The parser providesCW and P (W=CW ) using
SCFGs. The pool of LMs is used to calculateP (CW=S) and the
best word sequence is output after rescoring.
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<s> I WANT TO FLY FROM MIAMI FLORIDA TO SYDNEY
AUSTRALIA ON OCTOBER FIFTH</s>
<s> [i want] [departloc] [arrive loc] [date]</s>

<s> I DON’T TO FLY FROM MIAMI FLORIDA TO SYDNEY
AFTER AREA ON OCTOBER FIFTH</s>
<s> [Pronoun] [Contraction] [departloc] [arrive loc] [after]
[Noun] [date]</s>

Fig. 4. Examples of parsing into concepts and filler classes

4. CONCEPT AND SYNTACTIC MODELS

The concept models are conditioned on the dialog context. Al-
though there are several ways to define a dialog context, we select
the last question prompted as the dialog context. It is simple and
yet strongly predictive and constraining.

The concepts are classes of phrases with the same meaning.
Put differently, a concept class is a set of all phrases that may be
used to express that concept (e.g. [iwant], [arrive loc]). Those
classes are augmented with single word, multiple word and a small
number of broad (and unambigious) part of speech (POS) classes.
In cases where the parser fails, we break the phrase into a sequence
of words and tag them using this set of ”filler” classes. Two exam-
ples in Figure 4 clearly illustrate the scheme.

The structure of the concept sequences is captured by ann-
gram LM. We use two methods to condition then-gram proba-
bilities to the dialog context. In the first method we replace the
sentence begin symbol<s> with the<dialog contextname> and
train a single n-gram LM with a lexicon that includes dialog con-
text names as context cues in place of<s>. In the second method
we train a seperate language model for each dialog context. Given
the contextS andC = c0c1 � � � cK; cK+1, the concept sequence
probabilities are calculated as (forn = 3)

P (C=S) = P (c1= < S >)P (c2= < S >; c1)
K+1Y

k=3

P (ck=ck�2; ck�1) (method 1)

P (C=S) = P (c1= < s >;S)P (c2= < s >; c1; S)
K+1Y

k=3

P (ck=ck�2; ck�1; S) (method 2)

wherec0 andcK+1 are for the sentence-begin and sentence-end
symbols, respectively.

Each class is written as a CFG and compiled into a stochas-
tic recursive transition network (SRTN). The production rules are
complete paths beginning from the start-node through the end-
node in these nets. The probability of a complete path traversed
through one or more SRTNs initiated by the top-level SRTN asso-
ciated with the concept is the probability of the phrase that belongs
to that concept. This probability is calculated as the multiplication
of all arc probabilities that defines the path. That is,

P (W=C) =
QK
i=1 P (si=ci)

=
QK
i=1

QMi

j=1
P (rj=ci)
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Fig. 5. Distrubition of sentences wrt dialog context

where si is a substring inW = w1; w2::wL = s1; ::s2; sK
(K � L) andr1; r2; :::rMi

are the production rules that construct
si. The concept and rule sequences are assumed to be unique in
the above equations. The parser uses heuristics to comply with this
assumption.

The training procedure for the models are shown in Figure 3.
SCFG and n-gram probabilities (including word based n-grams)
are learned from a text corpus by simple counting. We believe that
the degree of ambiguity in our models does not favor computa-
tionaly intensive stochastic training and parsing methods, thanks
to our efforts to keep it as low as possible and the semantic-driven
grammar.

5. EXPERIMENTAL RESULTS

The models were developed and tested in the context of the CU
Communicator dialog system which is used for flight, hotel and
rental car reservations [13]. The text corpus was divided into three
parts as training, development and test sets with 15220, 450 and
770 sentences, respectively. The development set was used to op-
timize language weights and smoothing parameters. All results
were reported using the test set. The average sentence length of
the corpus was 4 words (end-of-sentence was treated as a word).
We identified 20 dialog contexts and labeled each sentence with
the associated dialog context. The distrubition of sentences across
dialog contexts are shown in Figure 5.

We trained dialog dependent (DD) (for both method-1 and
method-2) and dialog independent (DI) word, class and grammar
based LMs. In all LMsn is set to 3. It must be noted that the DI
class-based LM has served as the LM of the baseline system with
921 unigrams including 19 classes. The total number of the distinct
words in the lexicon was 1681. The grammar-based LM had 199
concept and filler classes that completely cover the lexicon. The
perplexity results are presented in Table 1.

Although the target LM is DD-2 SCFG 3-gram we present
perplexities of all LMs from the least sophisticated (DI word 3-
gram LM) to the most sophisticated (DD-2 SCFG 3-gram LM) to
provide a guide for the choice of an LM. The perplexity improve-
ment with the target LM compared to the simplest LM is 56% and



Table 1. Perplexity results
DI DD-1 DD-2

word 3-gram 25.1 19.8 23.1
class 3-gram 18.1 13.6 14.9
SCFG 3-gram 15.1 11.1 11.1

compared to the baseline LM (DI class 3-gram) is 39%. Although
DD LMs with method 2 were expected to yield the best results,
Table 1 clearly shows that DD LMs with method-1 gave the best
results. The reasons are (a) fairly small average sentence length of
the task and (b) data sparseness particularly in some dialog con-
texts (see Figure 5). Therefore, the DD language modeling using
method-1 is of special interest for tasks where user utterances are
quite short and a small corpus of sentences is available for train-
ing. We believe that the results will be reversed as more data comes
in and we generalize the dialog contexts into a relatively smaller
set. Note that the grammar based LM is the least sensitive to data
sparseness making it useful particularly in early phases of system
deployment.

We did some experiments usingN-best lists from the base-
line recognizer. We first determined the best possible performance
in WER offered byN-best lists. This is done by picking the hy-
pothesis with the lowest WER from each list. We report the re-
sults for several values ofN in Table 2. They upperbound the
performance gain possible fromN-best list rescoring. We also
present the rescoring results in Table 2. The language model used
for rescoring is DD-2 SCFG LM. The result with N=10 (the best
so far) amounts to 6.3% relative improvement in WER. This im-
provement is 26% of the improvement offered by the 10-best list.

Table 2. The best possible absolute WER drop in N-best list
and the WER drop after N-best list rescoring: the baseline
WER is 25.4%

N 1 10 20 50 100
Best 0.0 6.2% 7.3% 8.2% 8.7%

DD-2 SCFG 0.0 1.6% 1.4% 1.5% 1.5%

6. CONCLUSIONS

We have presented our recent work on language modeling using
concept and syntactic models. The preliminary results show 39%
relative improvement in perplexity and 6.3% relative improvement
in WER after N-best rescoring with the target LM compared to the
present class-based LM used in our Communicator system. Our
work is in progress in several directions: (a) rescoring of word
lattice, (b) clustering of dialog contexts, (c) interpolation of LMs
and (d) assesment of the impact on concept accuracy.
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