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Résumé
Les portails offrent à des communautés d’utilisateurs sur le
Web ou à l’intérieur des entreprises, l’accès à des services de
bibliothèque numérique, de syndication de contenu, ou aux
services de fournisseurs intermédiaires d’information. Un
portail communautaire repose sur un catalogue qui organise
et décrit un ensemble de ressources d’information (services,
documents ou données) s’adressant à une audience parti-
culière : personnel d’une entreprise, personnes intéressées
par un secteur d’activité, clientèle d’un marché électronique,
etc. Un seul catalogue permet de décrire la même ressource
d’information de plusieurs façons, offrant ainsi une soup-
lesse de représentation bien plus importante que les bases
de données traditionnelles. Dans cet article, nous proposons
un langage déclaratif pour l’interrogation des catalogues des
portails créés en utilisant RDF, une norme de description de
ressources du Web proposée par le W3C. Ce langage, ap-
pelé RQL, se fonde formellement sur un modèle de graphes
qui capture les primitives de modélisation de RDF et permet
l’interprétation des descriptions des ressources à travers un
ou plusieurs schémas superposés. RQL adapte les fonction-
nalités des langages de requêtes semi-structurés aux partic-
ularités de RDF, mais il étend également ces fonctionnalités
afin de permettre l’interrogation uniforme des descriptions
de ressources et de leur(s) schéma(s) associé(s). RQL est util-
isé dans plusieurs projets visant à la construction, l’accès et
la personnalisation de portails communautaires.

Mots clés : Web Communautaires, Portails, Reseaux Se-
mantique, Données Semistructurées, Langages de Requêtes,
RDF

Abstract
Community Web Portals (e.g., digital libraries, vertical ag-
gregators, infomediaries) have become quite popular nowa-
days in supporting specific communities of interest on cor-
porate intranets or the Web. Portal Catalogs, organize and
describe various information resources (e.g., sites, docu-
ments, data) for diverse target audiences (corporate, inter-
enterprise, e-marketplace, etc.), in a multitude of ways,
which are far more flexible than those provided by standard
databases. In this paper, we propose a declarative language
suitable for querying Portal Catalogs created according to
the Resource Description Framework (RDF) W3C standard.
Our language, called RQL, relies on a formal graph model,
that captures the RDF modeling primitives and permits the
interpretation of superimposed descriptions by means of one
or more schemas. In this context, RQL adapts the functional-
ity of semistructured query languages to the peculiarities of

RDF but also extends this functionality in order to uniformly
query both resource descriptions and related schemas. RQL
is used in several projects aiming at building, accessing and
personalizing Community Web Portals.

Keywords : Community Webs, Portals, Semantic Networks,
Semistructured Data, Query Languages, RDF

1 Introduction
Information systems such as digital libraries, vertical aggre-
gators, infomediaries, etc. are expected to play a central role
in the 21st-century economy by enabling the development
and maintenance of specific communities of interest (e.g.,
enterprise, professional, trading) on corporate intranets or
the Web [28]. Such Community Web Portals essentially pro-
vide the means to select, classify and access various infor-
mation resources (e.g., sites, documents, data) for diverse
target audiences (corporate, inter-enterprise, e-marketplace,
etc.). The core Portal component is a Catalog holding de-
scriptions, i.e., metadata, about the available resources. In
order to effectively disseminate community knowledge, Por-
tal Catalogs assimilate and organize information in a mul-
titude of ways, which are far more flexible than those pro-
vided by standard (relational or object) databases. Yet, in
commercial software for deploying Community Portals (e.g.,
Epicentric, Plumtree, Glyphica2), querying is still limited
to full-text (or attribute-value) retrieval and more advanced
information-seeking needs is realized by navigational access.
Furthermore, recent Web standards for describing resources
are completely ignored.
The Resource Description Framework (RDF) standard [36,
10] proposed by W3C intends to facilitate the creation
and exchange of resource descriptions between Community
Webs. By considering community information as a collec-
tion of resources identified by URIs and by modeling re-
source descriptions using named properties, RDF enables
the provision of various kinds of metadata (for administra-
tion, recommendation, content rating, intellectual property
rights, site maps, push channels, etc.) about resources of
quite diverse nature (ranging from PDF or Word documents,
e-mail or audio/video files to HTML pages or XML data).
The most distinctive feature of the RDF model is its abil-
ity to superimpose several descriptions for the same Web re-
sources, enabling content syndication - and hence, automated
processing - in a variety of application areas. To interpret
these descriptions within or across communities, RDF al-

2www.epicentric.com, www.plumtree.com, www.glyphica.com respec-
tively.



lows the definition of appropriate schema vocabularies [10].
Many content providers (e.g., ABCNews, CNN, Time Inc.),
Web Portals (e.g., Open Directory, CNET, XMLTree3) or
browsers (e.g., Netscape 6.0, W3C Amaya) already have
adopted RDF, as well as, emerging application standards for
Web data and services syndication (e.g., the RDF Site Sum-
mary [8], the Dublin Core [48], the Web Service Description
Language [49], the Composite Capabilities/ Preference Pro-
files [14] or the Publishing Requirements for Industry Stan-
dard Metadata [44]). In a nutshell, the growing number of
Web resources and the proliferation of description services,
lead nowadays to large volumes of RDF metadata (e.g., the
Open Directory Portal of Netscape comprises around 170M
of Subject Topics and 700M of indexed URIs). It becomes
evident that browsing such large description bases is a quite
cumbersome and time-consuming task. Unfortunately, this is
the only support provided by existing RDF systems [45].
Motivated by the above issues, we propose a new query
language for RDF descriptions and schemas. Our language,
calledRQL, relies on a formal graph model that captures the
RDF modeling primitives (i.e., labels on both graph nodes
and edges, taxonomies of labels) and permits the interpreta-
tion of superimposed resource descriptions. In this context,
RQL adapts the functionality of semistructured query lan-
guages to the peculiarities of RDF but also extends this func-
tionality in order to uniformly query both RDF descriptions
and schemas. Thus, community members are able to query
resources described according to their preferred schema,
while discover, in the sequel, how the same resources are
also described using another (sub-)community schema. This
is quite useful when different Community Web Portals need
to exchange descriptions about their resources. To illustrate
our claims, we are using as a running example a Portal cre-
ated for a cultural community (see Section 2). Then, we make
the following contributions :

– In Section 3, we introduce a formal data model for de-
scription bases created according to the RDF Model &
Syntax and Schema specifications [36, 10]. In order to
support superimposed RDF descriptions, the main mod-
eling challenge is to represent properties as self-existent
individuals, as well as to introduce a graph instantia-
tion mechanism permitting multiple classification of re-
sources (i.e., nodes).

– In Section 4, we propose RQL, the first declarative
language for querying RDF description bases. RQL is
a typed language following a functional approach (a
la OQL [13]). Its functionality is illustrated for sev-
eral categories of useful queries required by Commu-
nity Web Portals. The novelty of RQL lies in its ability
to smoothly switch between schema and data querying
while exploiting - in a transparent way - the taxonomies
of classes and properties, as well as, the multiple classi-
fication of resources.

– In Section 5, we describe the implementation of RQL
on top of an object-relational DBMS (ORDBMS). We
illustrate how RDF descriptions can be represented in

3www.dmoz.org, home.cnet.com, www.xmltree.com respectively.

an ORDBMS taking into account the related schemas
and sketch how RQL queries are translated into SQL3.
More precisely, we focus on the algebraic rewriting per-
formed by the RQL optimizer to push the maximum of
path expressions evaluation (involving both schema and
data querying) to the underlying ORDBMS.

Finally, Section 6 presents our conclusions and draws direc-
tions for further research.

2 Motivating example
In this section, we briefly recall the main modeling primitives
proposed in the Resource Description Framework (RDF)
Model & Syntax and Schema (RDFS) specifications [36, 10]
using as example a Portal Catalog created for a cultural com-
munity. To build this Catalog, we need to describe cultural
resources (e.g., Museum Web sites, Web pages with exhib-
ited artifacts) both from a Portal administrator and a museum
specialist perspective. The former is essentially interested in
administrative metadata (e.g., mime-types, file sizes, modi-
fication dates) of resources, whereas the latter needs to fo-
cus more on their semantic description using notions such
as Artist, Artifact, Museum and their possible relationships.
These semantic descriptions4 can be constructed using ex-
isting ontologies (e.g., the International Council of Museums
CIDOC Reference Conceptual Model5) or vocabularies (e.g.,
the Open Directory Topics6) and cannot always be extracted
automatically from resource content or hyperlinks.
The lower part of Figure 1 depicts the descriptions created for
two Museum Web sites (resources &r4 and &r7) and three
images of artifacts available on the Web (resources &r2,
&r3 and &r6). We hereforth use the prefix & to denote the
involved resource URIs (i.e., resource identity). For exam-
ple, &r4 is first described as an ExtResource having two
properties : title with value the string “Reina Sofia Muse-
um” and last_modifiedwith value the date 2000/06/09.
Then, &r4 is also classified under Museum, in order to cap-
ture its semantic relationships with other Web resources such
as artifact images. For instance, we can state that &r2 is
of class Painting and has a property exhibited with
value the resource &r4 and a property technique with
string value “oil on canvas”. Resources &r2, &r3 and &r6
are multiply classified under ExtResource. Finally, in or-
der to interrelate artifact resources, some intermediate re-
sources for artists (i.e., which are not on the Web) need
to be generated, as for instance, &r1 and &r5. More pre-
cisely, &r1 is a resource of class Painter and its URI is
given internally by the Portal description base. Associated
with &r1 are : a) two paints properties with values the re-
sources &r2 and &r3 ; and b) a fname property with value
“Pablo” and a lname property with value “Picasso”. Hence,
diverse descriptions of the same Web resources (e.g., &r2
as ExtResource and Museum) are easily and naturally
represented in RDF as directed labeled graphs. The labels

4Note that the complexity of semantic descriptions depends on the kind
of resources (e.g., sites, documents, data) and the breadth of the community
domains of discourse (e.g., targeting horizontal or vertical markets).

5www.ics.forth.gr/proj/isst/Activities/CIS/cidoc
6www.dmoz.org
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FIG. 1: An example of RDF resource descriptions for a Cultural Portal

for graph nodes (i.e., classes or literal types) and edges (i.e.,
properties) are defined in RDF schemas.

The upper part of Figure 1 depicts two such schemas,
intended for museum specialists and Portal administra-
tors respectively. The scope of the declarations is deter-
mined by the corresponding namespace definition of each
schema, e.g., ns1 (www.icom.com/schema1.rdf) and
ns2 (www.oclc.com/schema2.rdf). The uniqueness
of schema labels is ensured by using namespaces as pre-
fixes of the corresponding class and property names (for
simplicity, we will hereforth omit namespaces). In the for-
mer schema, the property creates, is defined with do-
main the class Artist and range the class Artifact.
Note that properties serve to represent attributes (or char-
acteristics) of resources as well as relationships (or roles)
between resources. Furthermore, both classes and properties
can be organized into taxonomies carrying inclusion seman-
tics (multiple specialization is also supported). For example,
the class Painter is a subclass of Artist while the prop-
erty paints (orsculpts) refinescreates. In a nutshell,
RDF properties are self-existent individuals (i.e., decoupled
from class definitions) and are by default unordered (e.g.,
there is no order between the propertiesfname and lname),
optional (e.g., the property material is not used), multi-
valued (e.g., we have two paints properties), and they can
be inherited7 (e.g., creates). Note that, although multi-
ple resource classification can be expressed by multiple class

7Conflicts between inherited properties are excluded due to the unique
name assumption.

specialization, it is an unrealistic alternative, since it im-
plies that, for each class C in our cultural schema, a com-
mon subclass of C and ExtResource needs to be created.
However, in a Web setting, resources are usually described
by various communities using their independently developed
schemas.
These modeling primitives give us the flexibility we need to
refine Portal schemas (e.g., by adding new taxonomies of
names) and/or enrich descriptions (e.g., by adding new de-
scriptions to the same resources) at any time, whilst they en-
sure the autonomy of description bases for different (sub-)
communities. In this context, a Portal may comprise super-
imposed resources descriptions while preserving a concep-
tually unified view of its description base (i.e., its Catalog)
through one or the union of all related RDF schemas.

2.1 RDF/S vs. Well-Known Data Models
The RDF modeling primitives are reminiscent to knowledge
representation languages like TELOS [41, 43] as well as, to
data models proposed for net-based applications such as Su-
perimposed Information Systems [24, 37] and LDAP Direc-
tory Services [32, 7]. It becomes clear that RDF modeling
primitives are substantially different from those defined in
object or relational database models [4]. More precisely :

– Classes do not define object or relation types : an
instance of a class is just a resource URI without
any value/state (e.g., the URI &r2 is an instance of
Painting regardless of any property associated to it) ;

– Resources may belong to different classes not neces-
sarily pairwise related by specialization : the instances



of a class may have associated quite different proper-
ties, while there is no other class on which the union
of these properties is defined (e.g., the different prop-
erties of &r2 and &r4 which both are instances of
ExtResource) ;

– Properties may also be refined by respecting a minimal
set of constraints i.e., domain and range compatibilities
(e.g., the property creates).

In addition, less rigid models, such as those proposed for
semistructured or XML databases [1], also fail to capture the
semantics of RDF description bases. Clearly, most semistruc-
tured formalisms, such as OEM [42] or UnQL [11], are to-
tally schemaless (allowing arbitrary labels on edges or nodes
but not both). Moreover, semistructured systems offering
typing features (e.g., pattern instantiation) like YAT [19, 20],
cannot exploit the RDF class (or property) hierarchies. Fi-
nally, RDF schemas have substantial differences from XML
DTDs [9] or the more recent XML Schema proposal [46,
38] : due to multiple classification, resources may have quite
irregular structures (e.g., the different descriptions of &r2
and &r4) modeled only through an exception mechanism
a la SGML [31]. Last but not least, they can’t distinguish
between entity labels (e.g., Artist) and relationship la-
bels (e.g., creates) and represent unordered, optionaland
multi-valued properties. As a consequence, query languages
proposed for semistructured or XML data (e.g., LOREL [3],
StruQL [27], XML-QL [26], XML-GL [15], Quilt [22] or re-
cent XQuery [16]) fail to interpret the semantics of RDF node
or edge labels. The same is true for the languages proposed
to query standard database schemas (e.g., SchemaSQL [35],
XSQL [34], Noodle [40]).
Similar difficulties are also encountered in logic-based
frameworks, which have been proposed for RDF manipula-
tion. For instance, SiLRI [23] proposes some RDF reason-
ing mechanisms using F-logic. Although powerful, this ap-
proach does not capture the peculiarities of RDF : refinement
of properties is not allowed (since slots are locally defined
within the classes), container values are not supported (since
it relies in a pure object model), while resource descriptions
having heterogeneous types cannot be accommodated (due to
strict typing). Moreover, Metalog [39] uses Datalog to model
mainly RDF properties as binary predicates, while it suggests
an extension of the RDFS specification with variables and
logical connectors (and, or, not, implies). However, storing
and querying RDF descriptions with Metalog almost totally
disregards RDF schemas.

3 A Formal Model for RDF
In most Community Web Portals, resources may have sev-
eral descriptions for different syndication contexts, that can
be easily and naturally represented in RDF [36] as directed
labeled graphs whose nodes are called resources (or literals)
and edges are called properties. Hence, RDF schemas [10]
essentially define vocabularies of labels for graph nodes
(called classes or literal types) and edges (i.e., properties).
Both kinds of labels can be organized into taxonomies carry-
ing inclusion semantics (i.e., class or property subsumption).
More formally, each RDF schema uses a finite set of class

C and property names P . Properties are then defined us-
ing class names or literal types so that : for each p 2 P ,
domain(p) 2 C and range(p) 2 C [ L, where L is a set
of Literal type names like string, integer, date, etc. We de-
note byH = (N;�) a hierarchy of class and property names,
where N = C [ P . H is well-formed if � is a smallest par-
tial ordering such that : if p1; p2 2 P and p1 � p2, then
domain(p1) � domain(p2) and range(p1) � range(p2).
Our model guarantees that the union of two well-formed hi-
erarchies of names used in an RDF schema is always well-
formed.
A specific resource (i.e., node) together with a named prop-
erty (i.e., edge) and its value (i.e., node) form a state-
ment in the RDF jargon. Each statement can be represented
by a triple having a subject (e.g., &r1), a predicate (e.g.,
fname), and an object (e.g., “Pablo”). The subject and ob-
ject should be of a type compatible (under class specializa-
tion) with the domain and range of the predicate (e.g., &r1
is of class Painter). Although not illustrated in Figure 1,
RDF also supports structured values called containers for
grouping statements, namely rdf :Bag (i.e., multi-sets)
and rdf :Sequence (i.e., lists), as well as, higher-order
statements (i.e., reification) which are not treated here. In the
rest of the paper, the term description base will be used to de-
note a set of RDF statements and the term description schema
to denote one or more well-formed hierarchies of RDF names
used to label RDF descriptions.

3.1 RDF Typing System
As we have previously seen, RDF schemas (a) do not impose
a strict typing on the descriptions (e.g., a resource may be lib-
erally described using properties which are loosely-coupled
with entity classes) ; (b) permit superimposed descriptions of
the same resources (e.g., by classifying resources to multiple
classes which are not necessarily related by subclass rela-
tionships) ; (c) can be easily extended to meet the description
needs of specific (sub-)communities (e.g., through special-
ization of both entity classes and properties).
In this context, RDF data can be literals, resource URIs,
and container values and the typing system foreseen by our
model8 is :

� = �L j �U j f�g j [� ] j (1 : � + 2 : � + : : :+ n : �)

where �L is a literal type in L, �U is the type for resource
URIs9, f:g is the Bag type, [:] is the Sequence type, and (:)
is the Alternative type. Alternatives capture the semantics of
union (or variant) types [12], and they are also ordered (i.e.,
integer labels play the role of union member markers). Since
there exists a predefined ordering of labels for sequences
and alternatives, labels can be omitted (for bags, labels are
meaningless). Furthermore, no subtyping relation is defined
in RDF/S. The set of all type names is denoted by T .
This typing system allows us to capture containers with both
homogeneous and heterogeneous member types (e.g., rep-

8Compared to the current status of the W3C RDF/S recommendation,
our model provides a richer type system including several basic types as
well as union types.

9In Section 4, we will see that our query language treats URIs, i.e., iden-
tifiers, as simple strings



resenting n-ary relations returned by queries), as well as,
to manipulate RDF schema classes and properties as self-
existent individuals. For instance, unnamed ordered tuples
denoted by [v1; v2; : : : ; vn] (where vi is of some type �i) can
be defined as heterogeneous sequences of type [(�1 + �2 +
: : :+�n)]. Unlike traditional object data models, RDF classes
are then represented as unary relations of the type f�Ugwhile
properties as binary relations of type f[�U ; �U ]g (for relation-
ships) or f[�U ; �L]g (for attributes). Finally, assignment of a
finite set of URIs (of type �U ) to each class name10 is cap-
tured by a population function � : C ! 2U . The set of all
values foreseen by our model is denoted by V and the inter-
pretation function [[:]] of types is defined in a straightforward
manner.

3.2 RDF Description Bases and Schemas
Definition 1 An RDF schema is a 5-tuple RS =
(VS ; ES ;  ; �;H) where : VS is the set of nodes and ES
is the set of edges, H is a well-formed hierarchy of class
and property names H = (N;�), � is a labeling function
� : VS [ ES ! N [ T , and  is an incidence function
 : ES ! VS � VS .

Note that the incidence and labeling functions are total in
VS [ES andES respectively. This does not exclude the case
of schema nodes which are not connected through an edge.
Additionally, we impose a unique name assumption on the
labels of RS nodes and edges.

Definition 2 An RDF description base, instance of a schema
RS, is a 5-tuple RD = (VD ; ED;  ; �; �), where : VD is
a set of nodes and ED is a set of edges,  is the incidence
function : ED ! VD�VD, � is a value function � : VD !

V , and � is a labeling function � : VD [ED ! 2N[T which
satisfies the following :

– for each node v in VD , � returns a set of names n 2

C [T where the value of v belongs to the interpretation
of each n : �(v) 2 [[n]] ;

– for each edge � in ED going from node v to node v 0, �
returns a property name p 2 P .

Note that the labeling function returns for atomic data nodes
a literal type �L while for complex resource nodes returns
one or more class names which may be defined in several
well-formed hierarchies of names. Opposite to traditional ob-
ject models all class names annotating resource nodes have
a unique type �U . Additionally, integer labels (1, 2, ...) are
used as property names by the members of RDF container
values. Readers are referred to [5] for formal definitions of
the imposed constraints.

4 The RDF Query Language : RQL
RQL is a typed query language relying on a functional ap-
proach (a la OQL [13]). It is defined by a set of basic queries
and iterators which can be used to build new ones through
functional composition. RQL supports generalized path ex-
pressions, featuring variables on labels for both nodes (i.e.,

10Due to multiple classification we consider here a non-disjoint object id
assignment to classes.

classes) and edges (i.e., properties). As we will see in the
sequel, the smooth combination of RQL schema and data
path expressions is the key issue in order to satisfy the needs
of several Community Web Portal applications (e.g., simple
browsing, personalization, interactive querying, etc.).
To uniformly query nodes and edges either in RDF descrip-
tions or in schemas, RQL blurs the distinction between
schema labels (for classes, properties and types) and resource
labels (i.e., URIs and literal values). In the rest of the pa-
per we consider that both kinds of labels can be treated as
strings and the interpretation of �U is extended as follows :
[[�U ]] = T [C [P [U . Abusing notation, we use �UC (�UP )
to denote the type of class (property) names in schemas and
�UR to denote only the URIs of resources in description
bases. For the complete syntax, formal semantics and typing
rules of RQL readers are referred to [33].

4.1 Browsing Portals

The core RQL queries essentially provide the means to ac-
cess RDF description bases with minimal knowledge of the
employed schema(s). These queries can be used to imple-
ment a simple browsing interface for Community Web Por-
tals. For instance, in Web Portals such as Netscape Open Di-
rectory, for each topic (i.e., class), one can navigate to its
subtopics (i.e., subclasses) and eventually discover the re-
sources which are directly classified under them. In this sub-
section, we show how the basic RQL queries can be used to
generate such Portal interfaces, either off-line (i.e., by ma-
terializing the various query results in HTML/XML files) or
online (by computing query answers on the fly).
To warmup readers, we start with queries which can find
all the schema classes or properties used in a Portal Cat-
alog as, by using the names Class and Property. In
our example, these basic queries will return the URIs of the
classes (of type �UC ) and properties (of type �UP ) illustrated
in the upper part of Figure 1. Then, for a specific prop-
erty we can find its definition by applying the correspond-
ing domain (of type �UC ) and range (of type �UL for at-
tributes and �UC for relationships) functions. For instance,
domain( creates ) will return the class name Artist. To tra-
verse the class/property hierarchies, RQL provides various
functions such as subClassOf (for transitive subclasses)
and subClassOfˆ (for direct subclasses). For example, the
query subClassOfˆ( Artist ) will return the class URIs
Painter and Sculptor. More generally, we can access any RDF
collection by just writing its name.
This is the case of RDF classes considered as unary rela-
tions : Artist. This query will return the bag containing the
URIs www.culture.net#rodin424 (&r5) and www.-
culture.net#picasso132 (&r1) since these resources
belong to the extent of Artist. It should be stressed that, by
default, we consider an extended class (or property) inter-
pretation. Thus, RQL allows to query complex descriptions
using only few abstract labels (i.e., the top-level classes or
properties). This is motivated by the fact that names can be
simply viewed as terms in an RDF schema vocabulary, and
RQL offers a term expansion mechanism similar to that of
thesauri-based information retrieval systems [30]. In order to



obtain the proper instances of a class (i.e., only the nodes
labeled with the class URI), RQL provides the special op-
erator (“ˆ”). In our example, the result of ˆArtist will be
the empty bag. Additionally, we can inspect the cardinality
of class extents (or any other collection) using the count
function.
It should be stressed that RQL considers as entry-points to
an RDF description base not only the names of classes but
also the names of properties. This is quite useful in several
practical cases where Portal schemas may be composed of
a) just property names (e.g., the Dublin Core Metadata El-
ements [48]) defined on the root class ; b) large class hi-
erarchies with only few properties defined between the top
classes (e.g., when extending ontology concepts with the-
sauri terms [6]) ; or c) large property hierarchies resulting
from the interconnection of several RDF schemas (e.g., when
integrating different Metadata schemas [25]). In such cases,
the labels of nodes may not be available or users may not be
aware of them. Still, RQL allows one to formulate queries,
as for example, creates. By considering properties as bi-
nary relations, the above query will return the bag of ordered
pairs of resources belonging to the extended interpretation of
creates (source and target are simple position indices) :

source target
&r5 &r6
&r1 &r2
&r1 &r3

Common set operators applied to collections of the same
type are also supported. For example, the query "Sculp-
ture intersect ExtResource" will return a bag with the
URI www.artchive.com/crucifixion.jpg (&r6),
since, according to our example, it is the only resource classi-
fied under both classes. Note that the typing system of RQL
permits the union of a bag of URIs with a bag of strings, but
not between a class and a property extent (unary vs. binary
relation). Besides class or property extents,RQL also allows
the manipulation of RDF container values, such as Bag and
Sequence. More precisely, the Boolean operator in can be
used for membership test in any kind of collection and the
operator element is used to extract the unique member of
a singleton. Additionally, to access a member of a Sequence
we can use the operator “[ ]” with an appropriate position
index (or index range). If the specified member elements do
not exist the query will return an empty sequence.
Finally, RQL supports standard Boolean predicates as =, <,
> and like (for string pattern matching). All operators can
be applied on literal values or resource URIs. It should be
stressed that the latter case also covers comparisons between
class or property URIs. For example, the condition “Painter <
Artist” will return true since the first operand is a subclass
of the second one. Disambiguation is performed in each case
by examining the type of operands (e.g., literal value vs. URI
equality, lexicographical vs. class ordering, etc.).

4.2 Personalizing Portal Access Channels
In order to personalize access to Community Web Portals,
more complex RQL queries are needed. Portals personal-
ization is actually supported by defining information chan-
nels to which community members may subscribe. Channels

essentially preselect a collection of the Portal resources re-
lated to a theme, subject or topic (e.g., Museum Web sites)
and they are specified using the recent RDF Site Summary
(RSS) schema [8]. An RSS channel is specified by a static
RDF/XML document containing the URIs of the resources
along with some administrative metadata (e.g., titles, etc.).
Not surprisingly, we can use RQL to define channels as
views over the Portal Catalog and generate their contents on-
demand.
In order to iterate over collections of RDF data (e.g., class
or property extents, container values, etc.) and introduce
variables, RQL provides a select-from-where filter.
Given that the whole description base can be viewed as a col-
lection of nodes/edges, path expressions can be used inRQL
filters for the traversal of RDF graphs at arbitrary depths.
Consider, for instance, the following query :
Q1 : Find the resources having a title along with the property
values.

select X, Y
from {X}title{Y}

In the from clause we use a basic data path expression with
the property name title. The node variables X and Y take
their range restrictions from the source and target values of
the title extent. As we can see in Figure 1, the title prop-
erty has been defined with domain the class ExtResource
but, due to multiple classification, X may be valuated with
resources also labeled with any other class name (e.g., Ar-
tifact, Museum, etc.). Yet, in our model X has the unique
type �UR, Y the literal type string, and the result of Q1 is of
type f[�UR; string]g. The select clause defines, as usual,
a projection over the variables of interest. Moreover, we can
use “select *” to include in the result the values of all
variables. This clause will construct an ordered tuple, whose
arity depends on the number of variables. The result of the
whole filter will be a bag. The closure of RQL is ensured by
the basic queries supported for container values.
In order to define a channel with Museum resources available
in our Cultural Portal we need to restrict the source values of
the title extent to resources belonging to the class name Mu-
seum or any of its subclasses. To achieve this, we can formu-
late the following query exploiting superimposed resource
descriptions (e.g., as ExtResources and Museums) :
Q2 : Find the Museum resources and their title.

select X, Y
from Museum{X}.title{Y}

Here MuseumfXg is also a basic data path expression
where X ranges over the resource URIs in the extent of class
Museum. The “.” used to concatenate the two path expres-
sions is a syntactic shortcut for an implicit join condition be-
tween the source values of the title extent and X . Hence,
Q2 is equivalent to the query MuseumfXg; fZgtitlefY g

where X = Z. Variables X , Z are of type �UR, Y is of type
string and the result of Q2 will contain all the resources ac-
cessible by our Museum channel along with their titles (e.g.,
the site www.museum.es (&r4) with title "Reina Sofia Mu-
seum").
In addition, for each available resource (called item), chan-
nels usually provide a textual description of their information



content. This description can also be generated automatically
by appropriate RQL queries. For instance, we can use the
names of artists whose artifacts are exhibited in the Muse-
ums as descriptions of our channel items as follows :

select Y, Z, V, R
from {X}creates.exhibited{Y}.title{Z},

{X}fname{V}, {X}lname{R}

In the from clause we use three data path expressions. Vari-
able X (Y ) ranges over the source (target) values of the
creates (exhibited) property. Then, reusing variable X for
the source values of the other two path expressions simply
denotes implicit joins between the extents of the properties
fname/lname and creates, on their source values. Since the
range of the exhibited property is the class Museum we don’t
need to further restrict the labels for the Y values in this
query example.
Two remarks are noteworthy. First, RQL data path ex-
pressions may be liberally composed in the from clause
of a query using node and edge labels, as for example,
MuseumfXg:titlefY g (a class and a property name) or
fXgcreates:exhibitedfY g (two property names). The “.”
syntactic sugaring is used to introduce appropriate join con-
ditions between the left and the right part of the expression
depending on the type of each path component (i.e., node vs.
edge labels). In the above query, it implies a join between
the extents of creates (including its subproperties paints and
sculpts) and exhibited on their target and source values re-
spectively. Recall at this point, that RDF classes do not define
types on which attribute extractors like “.” could be defined
and thus the expression “Y:title” is meaningless in out set-
ting.
Second, due to multiple classification of nodes (e.g.,
www.museum.es (&r4) is both a Museum and Ex-
tResource) we can query paths in a data graph that
are not explicitly declared in the schema. For instance,
creates:exhibited:title is not a valid schema path since the
domain of the title property is the class ExtResource and not
Museum. Still, we can query the corresponding data paths by
ignoring the schema classes labeling the endpoint instances
of the properties (in the style of LOREL [3], StruQL [27],
XML-QL [26], XML-GL [15], Quilt [22], XQuery [16]).
This is achieved by using only data variables on path nodes
like X , Y and Z. However, the flexibility of RQL path ex-
pressions enables us to turn on or off schema information
during data filtering with the use of appropriate class and
property variables.

4.3 Querying Portals with Large Schemas

The browsing interfaces actually supported by Portals like
Netscape Open Directory, force users to navigate through the
whole hierarchy of topics (i.e., classes) in order to find re-
sources classified under the leaf topics. It is evident that for
large Portal schemas this is a cumbersome and time consum-
ing task (e.g., the Art hierarchy of the Open Directory alone
contains 25000 subtopics and currently over 200000 indexed
resources). Clearly, we also need declarative query support

for navigating through the schema taxonomies of classes and
properties. Consider, for instance, the following query :
Q3 : Find the resources classified under a class more specific
than Painter and more general than Neo-Impressionist which
have created something.

select X, Y
from {X :$Z}creates{Y}
where $Z <= Painter and

$Z >= Neo-Impressionist

In the from clause of Q3 we can see a mixed path ex-
pression featuring both data (e.g., X) and schema variables
on graph nodes (e.g., $Z). More precisely, class variables
prefixed by the symbol $ are implicitly range-restricted to
Class (i.e., ClassfZg). Then, $Z is of type �UC and it
will be valuated to the domain class of the property creates
(i.e., Artist) and recursively to all of its subclasses (i.e.,
Painter, Sculptor, or Neo-Impressionist). The
conditions in the where clause will in turn restrict $Z to
the classes in the hierarchy having as superclass Painter
and as subclass Neo-Impressionist. Naturally, without
any restriction to $Z the whole extent of creates will be re-
turned and $Z will be valuated to the actual classes of its
source values. Note that, if the class in the where clause
is not a valid subclass of the domain of creates, then the
query will return an empty bag without accessing the cre-
ates extent. To make this kind of path expressions more com-
pact for class equality (e.g., $Z = Painter), shortcuts as
“{X :Painter}creates{Y}” are also supported.
In other words, RQL extends the notion of generalized path
expressions [17, 18, 3] to entire class (or property) inheri-
tance paths. This is quite useful since resources can be mul-
tiply classified and several properties coming from different
class hierarchies may be used to describe the same resources.
Still RQL allows one to query properties emanating from re-
sources according to a specific class hierarchy only, as we
will see in the next example.
Q4 : Find the source and target values of properties emanat-
ing from ExtResources.

select X,Y
from {X :ExtResource}@P{Y}

X Y

&r6 “image/jpg”
&r7 “Rodin Museum”
&r4 “R.Sofia Mus”
&r7 2000/06/09
&r4 2000/02/01

The mixed path expression of Q4, features a schema vari-
able on graph edges (e.g., @P ). More precisely, property
variables, prefixed by the symbol @, are implicitly range-
restricted to Property (i.e., PropertyfPg). Then, @P is
of type �UP and it will be valuated to all properties having as
domain ExtResource or one of its superclasses. Finally,
X , Y will be range-restricted for each successful binding of
@P . The type of X is �UR while that of Y is the union of
all the range types of ExtResource properties. Accord-
ing to the schema of Figure 1, @P will valuated to file_size,
title, mime-type, and last_modified, while Y will be of type
(integer+string+date). In case we want to filter Y values



in the where clause,RQL supports appropriate coercions of
union types in the style of POQL [2] or Lorel [3].

4.4 Querying Portal Schemas

In this subsection, we focus our attention on querying RDF
schemas, regardless of any underlying instances. The main
motivation for this is to use RQL as a high-level language
to implement schema browsing. This is quite useful when
Portal Catalogs use large schemas (e.g., the Open Directory
Topics hierarchy). Thus, to describe resources we first need
to discover what classes and properties could be used. Con-
sider for instance the query :
Q5 : Find all the properties which specialize the property
creates and may have as domain the class Painter along with
their corresponding range classes.

select @P, $Y
from { :Painter}@P{ :$Y}
where @P <= creates

@P $Y

creates Artifact
creates Painting
creates Sculpture
paints Painting

The schema path expression in the from clause of Q5 in-
troduces two variables : @P (of type �UP ) ranging over
Property, and $Y (of type �UC) ranging over the range
class (and its subclasses) of each @P valuation ($Y <=
range(@P )). Furthermore, @P should be a subproperty of
creates for which the domain is Painter or one of its super-
classes. This expression is a shortcut for f: $Xg@Pf: $Y g
where $X = Painter and $X <= domain(@P ). Given
the schema of Figure 1, @P will be valuated to the proper-
ties creates and paints. Due to class inheritance, creates may
have as range any subclass of Artifact.
In cases where an automatic expansion of class hierarchies
is not desired, RQL allows one to obtain only the classes
which are directly involved in the definition of properties
by using the functions domain() and range(). We con-
clude this subsection, with a query example illustrating how
RQL schema paths can be composed to perform more com-
plex schema navigations. It should be stressed that this
kind of queries cannot be expressed in existing languages
with schema querying capabilities (e.g., SchemaSQL [35],
XSQL [34]).
Q6 : What properties can be reached (at one step) from the
range classes of creates.

select $Y, @P, $$Z
from creates{ :$Y}.@P{ :$$Z}

$Y @P $$Z

Artifact exhibited Museum
Painting exhibited Museum
Sculpture exhibited Museum
Painting technique string
Sculpture material string

In Q6 the “.” notation implies a join condition between the
range classes of the property creates and the domain of @P
valuations : $Y <= domain(@P ). As we can see from the

query result, this join condition will enable us to follow prop-
erties which can be applied (i.e., either directly defined of in-
herited) to any subclass of the creates range. Variable $$Z
will be valuated to the range classes (and their subclasses) or
literal types of the previously returned properties. The prefix
$$ is used to denote schema variables ranging over both class
and type names (i.e., of type �UCT ).

4.5 Putting it all Together
In the previous subsections, we have presented the main
RQL path expressions allowing us to browse and filter de-
scription bases with or without schema knowledge, or, al-
ternatively to query exclusively the schemas. Additionally,
RQL filters admit arbitrary mixtures of different kinds of
path expressions. In this way, one can start querying re-
sources according to one schema while discover in the se-
quel, how the same resources are described using another
schema. This functionality is required especially when differ-
ent servers of Portal Catalogs (within or across communities)
need to exchange resource descriptions. None of the existing
query languages combines all the power of path expressions
we provide with RQL. The following two scenarios depict
this functionality.
In the first, we assume two servers for Portal Catalogs having
different schemas (e.g., identified by two namespaces ns1
and ns2 shown in Figure 1) while sharing the same descrip-
tion base (e.g., in the case of sub-communities). Then we can
combine schema information from the first server with data
information from the second one, as illustrated in the next
example :
Q7 : Find the resources modified after 2000/01/01 which can
be reached by a property applied to the class Painting and its
subclasses.

select R, Y, Z
from (select @P

from { :$X}@P
where $X <= Painting

){R}.{Y}last_modified{Z}
where Z > 2000/01/01

R Y Z

exhibited &r4 2000/06/09
exhibited &r7 2000/02/01

In Q7, the nested query will return all the property names
which are used by the first server and satisfy the filtering
conditions (e.g., exhibited, technique). Then, the result of
this nested query will serve to query the description base
using the properties known only by the second server (e.g.,
last_modified). Here, the variable R (of type �UP ) will iter-
ate over the result of the nested query and the shortcut “.”
implies the join condition : target(R) = Y for each val-
uation of R. In other terms, we will obtain those resources
modified after 2000/01/01 for which there exists an incoming
edge with a (property) label returned by the nested query11.
In the second scenario, the two Portal servers have both dif-
ferent description bases and schemas. Then one of them can
send to the other the following query :

11Nested queries featuring existential and universal quantification are also
supported.
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FIG. 2: The RQL Interpreter and Storage System

Q8 : Tell me everything you know about the resources of the
site “www.museum.es”.

select X, $$Z, @P, Y, $$W
from {X :$$Z}@P{Y :$$W}
where Y like "www.museum.es*" or

X like "www.museum.es*"

This query will iterate over all property names (@P ). Then
for each property it will iterate over its possible domain
($$Z) and range ($$W ) classes or types, and, finally over the
corresponding extents (X , Y ). According to the example of
Figure 1 the type of Y is the union (�UC+string+integer+
date) and the predicate like will be applied only on class
names and strings. The final result of Q8 is given below :

X $$Z @P Y $$W

&r1 Painter paints &r2 Painting
&r1 Painter paints &r3 Painting
&r2 Painting exhibited &r4 Museum
&r2 Painting technique "oil on canvas" string
&r3 Painting technique "oil on canvas" string
&r4 ExtResource title "R.Sofia Mus" string
&r4 ExtResource last_modified 2000/06/09 date

5 The RDF Schema Specific DataBase
The algebraic interpretation ofRQL (see [33] for further de-
tails), relies on a relational representation of RDF descrip-
tion and schema graphs. Hence, we have implemented RDF
storage and querying on top of an object-relational DBMS
(ORDBMS), namely PostgreSQL12. The architecture of our
RDF-enabled DBMS, called RSSDB, is illustrated in Fig-
ure 2. It comprises three main components : the RDF valida-
tor and loader (VRP), the RDF description database (DBMS)
and the query language interpreter (RQL).

5.1 RDF Loading to an ORDBMS
We have implemented our loader as an extension of the Val-
idating RDF Parser (VRP13) for analyzing, validating and
processing RDF schemas and descriptions. Unlike other RDF
parsers (e.g., SiRPAC14), VRP is based on standard com-
piler generator tools for Java, namely CUP/JFlex (similar to
YACC/LEX). The stream-based parsing support of JFlex and
the quick LALR grammar parsing of CUP ensure a good per-
formance, when processing large volumes of RDF descrip-
tions. The VRP validation module relies on an internal ob-

12www.postgresql.org
13www.ics.forth.gr/proj/isst/RDF
14www.w3.org/RDF/Implementations/SiRPAC

ject representation, separating RDF schemas from their in-
stances. This representation simplifies RDF metadata manip-
ulation while it enables an incremental loading of RDF de-
scriptions and schemas which is crucial for large volumes
of RDF data (e.g., Netscape Open Directory exports 100M
of class hierarchies and 700M of resource descriptions). The
various loading methods have been implemented as member
functions of the related VRP internal classes and communi-
cation with PostgreSQL relies on the JDBC protocol.
The core RDF/S model is represented in PostgreSQL by
four tables, namely, Class, Property, SubClass and
SubProperty which capture the class and property-type
hierarchies defined in an RDF schema. Although not illus-
trated in Figure 2, we also consider a table NameSpace
holding the namespaces of the RDF Schemas stored in the
ORDBMS. The main goal of RSSDB is the separation of the
RDF schema from data information, as well, as the distinc-
tion between unary and binary relations holding the instances
of classes and properties. More precisely, class tables store
the URIs of resources, while property tables store the URIs
of the source and target nodes of the property (recall that all
names are unique). Indices (i.e., B-trees) are constructed on
all the attributes of the above tables. In other words, RSSDB
relies on a schema specific representation of resource de-
scriptions similar to the attribute-based approach proposed
for storing XML data [29, 47].
Furthermore, RSSDB is flexible enough to allow the cus-
tomization of the representation of RDF metadata in the un-
derlying ORDBMS. This is important since no representa-
tion is good for all purposes and in most real-scale RDF ap-
plications variations of a basic representation are required to
take into account the specific characteristics of the employed
schema classes and properties, as well as those of the in-
tended query functionality. Our aim here is to reduce the total
number of created instance tables. This is justified by the fact
that some commercial ORDBMSs (and not PostgreSQL) per-
mit only a limited number of tables. Furthermore, numerous
tables have a significant overhead on the response time of all
queries (i.e., to find and open a table, its attributes, etc.).
One of the possible variations we have successfully experi-
mented for the ODP Catalog [5] is the representation of all
class instances by a unique table Instances. This table
has two attributes, namely uri and classid, for keeping
the uri’s of the resources and the id’s of the classes in which
resources belong. Finally, an alternative variation could be
the representation of properties with range a literal type, as
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attributes of the tables created for the domain of this prop-
erty. Consequently, new attributes will be added to the cre-
ated class tables. The tables created for properties with range
a class will remain unchanged. The above representation is
applicable to RDF schemas where attribute-properties are
single-valued and they are not specialized.

5.2 RQL Query Processing
The RQL interpreter consists of (a) the parser, analyzing the
syntax of queries ; (b) the graph constructor, capturing the
semantics of queries in terms of typing and interdependen-
cies of involved expressions ; and (c) the evaluation engine,
accessing RDF descriptions from the underlying database.
Since our implementation relies on a full-fledged ORDBMS
like PostgreSQL, the goal of the RQL optimizer is to push as
much as possible query evaluation to the underlying SQL3
engine (communication is based on libpq++, a JDBC-level,
C++ PostgreSQL API). Then pushing selections or reorder-
ing joins to evaluate RQL path expressions is left to Post-
greSQL while the evaluation ofRQL functions for traversing
class and property hierarchies relies on the existence of ap-
propriate indices (see the last paragraph). The main difficulty
in translating an entireRQL algebraic expression (expressed
in an object algebra a la [21]) to a single SQL3 query is due to
the fact that most RQL path expressions interleave schema
with data querying [18]. Consider for instance the following
query :
select y
from {x}creates{y :Painting}.technique{z}
where z=“oil on canvas”
During the query graph construction, the various shortcuts
(e.g., “.”) are expanded and variable dependencies are de-
termined. The algebraic translation of the above query is il-
lustrated in the left part of Figure 3. Data variables x, y (w, z)
iterate over the extent of creates (technique) while the class
variable $C iterates over all the subclasses of the range of
creates. The mixed path expression of our example is trans-
lated to a semi-join between the extent of creates and its per-
mitable range classes (y in ˆ$C). Since in this query we are
interested only in instances of the class Painting we can omit
the second branch of the semi-join and rewrite the algebraic

expression as illustrated in the middle part of Figure 3. The
selection implies an existential condition over the extent of
Painting whenever class Painting is a valid subclass of the
range of creates. This test is performed once during graph
construction and when successful the operation is equivalent
to a semi-join over creates and Painting as illustrated in the
right part of Figure 3. The final expression is translated into
an SQL3 query as follows (the * indicates an extended inter-
pretation of tables, according to the subtable hierarchy) :

select X.target
from creates* X, technique* Y, Painting P
where X.target = Y.source and X.target = P.uri

and Y.target=’oil on canvas’

We conclude this section with one remark concerning the en-
coding of class and property names. Recall that schema or
mixed RQL path expressions need to recursively traverse a
given class (or property) hierarchy. We can transform such
traversal queries into interval queries on a linear domain, that
can be answered efficiently by standard DBMS index struc-
tures (e.g., B-trees). For this, we need to replace class (or
property) names by ids using an appropriate encoding sys-
tem (e.g., Dewey, postfix, prefix, etc.) for which a convenient
total order exists between the elements in the hierarchy. We
are currently working on the choice of a such linear represen-
tation of node or edge labels allowing us to optimize queries
that involve different kinds of traversals in a hierarchy (e.g.,
an entire subtree, a path from the root, etc.).

6 Summary and Future Work
In this paper, we presented a declarative language for query-
ing Portal Catalogs, through a series of examples of increas-
ing expressiveness requirements and complexity. We believe
that we have illustrated the power of RQL generalized path
expressions, subsuming the filtering capabilities (i.e., with-
out any restructuring operators) of semi-structured and XML
query languages. A detailed analysis of the evaluation com-
plexity of the language is an ongoing effort. Furthermore,
exhaustive performance tests of RQL for various use cases
(as the Open Directory and our home made cultural Portal)
are currently under elaboration taking into account different



variations of our relational representation, as well as, differ-
ent encoding schemas for class and property hierarchies. Fi-
nally, we are also planning to study the problem of updates
in RDF description bases as well as the restructuring capa-
bilities (e.g., grouping) of RQL required by various Portal
applications. As a matter of fact, RQL is a generic tool ac-
tually used by several EU projects (i.e., C-Web, MesMuses,
Arion and OntoKnowledge15) aiming at building, accessing
and personalizing Community Web Portals. An online demo
of RQL for our Cultural Portal is available at the URL :
http ://139.91.183.30 :9090/RDF/RQL/.
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