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Abstract

Millions of online electronic auctions on the Inter-
net today are being conducted as isolated auctions,
leading to ineÆcient outcomes. We argue that if the
independent ascending auctions of substitutes (simi-
lar items) are made simultaneous and agents are pro-
vided to the customers to bid across a number of these
auctions, then the resulting system has several desir-
able properties. In particular, we show under very
general conditions, that if the agents follow a sim-
ple truth telling greedy bidding strategy (which we
call LGB), then a Nash equilibrium results which not
only maximizes the total surplus of the system but
also distributes it fairly among the bidders and the
sellers through nearly unique competitive prices. We
discuss the implications of our results for the design
of online auctions on the Internet.

1 Introduction

Commerce is about transfer of goods and services to
entities who value them more from entities who value
them less, thus creating value (surplus). There is a
justi�cation for electronic commerce if it creates addi-
tional value, either from cutting costs or doing better
allocation.
Commerce on Internet is poised to constitute a sig-

ni�cant fraction of the entire global commerce in the
years to come. Conventional models like �xed price
sale, auctions and double auctions are now being used
to buy and sell on the Internet. Auctions fall some-
where in between the �xed price and double auction
mechanisms - they ful�ll the need to sell (or buy)
unique items where there is a single seller and mul-
tiple potential buyers. Such items cannot be sold by
double auctions as the items are not standardized.
They cannot be sold through �xed price sales because
the demand and `true' prices of such items are often
not known and need to be discovered in the process.
The reader is referred to [1, 2] for an introduction to
auctions.
In general, the outcome of an auction de�nes the

allocation (which items go to which bidders) and the

prices. The allocation determines the surplus while
the prices determine the sharing of the surplus be-
tween the auctioneer and the bidders. An eÆcient
allocation is one that maximizes the global total sur-
plus in a given setting [3]. In case of a single item,
certain auctions under some general conditions, are
known to result in eÆcient allocation and fair and
competitive pricing [4].

An auction outcome is the result of the interac-
tion of bidding strategies adopted by the bidders. A
pro�le of strategies is said to constitute a Nash equi-
librium [5] if given that all bidders adhere to the pre-
scribed strategies, no bidder can gain by unilaterally
switching to another strategy. A strategy is domi-
nant if it maximizes a bidder's payo� independently
of the strategies of the other bidders. Therefore, if
a mechanism has a dominant strategy, the bidders
would choose the dominant strategy above all other
strategies.

The conventional open cry auction is designed for
a physical setting where a bidder can participate in
only one auction at a time. Even though this restric-
tion is no longer relevant to the auctions on Internet,
the auction sites continue to use the isolated auctions

model. A better model would take into account the
presence of substitutes being sold simultaneously and
the presence of all competing bidders in determining
the allocation of items and their prices.

The present work proposes a way of conducting si-
multaneous online ascending auctions of substitutes.
The proposed mechanism allows sellers to auction the
items independently using open cry auctions, but re-
quire that the auctions open and close at the same
times. If this condition is met, we show that a sim-
ple bidding strategy exists (which software bidding
agents can execute) which maximizes the surplus in
the system and redistributes it fairly amongst the par-
ticipants through nearly unique competitive prices.
The strategy constitutes a Nash Equilibrium for the
system under very general conditions and is also a
dominant strategy under somewhat restrictive con-
ditions. It also has many other properties desirable
from a practical point of view.

Shapley and Shubik [6] considered an assignment
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market where each participant wants one item and
places a monetary value on each item in the market.
A participant demands the item which, given a price
vector for the items, maximizes its surplus. It was
shown that if the valuations of all participants for all
items are known then the model always has an equi-
librium and there is a unique smallest price vector P
such that P is at least as small in every component
as any other equilibrium price vector. Leonard [7]
and Demange and Gale [8] showed that a sealed bid
multi-item auction of substitutes, where each bidder
wants one item, is incentive compatible if the smallest
equilibrium price vector is used as the price setting
rule. This implies that submitting their true valua-
tions is the dominant strategy for bidders. This al-
lowed the results derived by Shapley and Shubik [6] to
be directly applicable to multi-item sealed bid auction
of substitutes. This also established the multi-item
sealed bid auction as a generalization of the second
price sealed bid auction of a single item [4].

Bikhchandani and Mamer [9] extended the results
of Shapley and Shubik [6] to an exchange economy of
indivisible items where a participant may want a sub-
set of items instead of a single item. The participants'
preferences are speci�ed by non-decreasing monetary
values for each subset of items, i.e., if T � S then
value(T ) � value(S). They derived the necessary
and suÆcient conditions for the existence of market
clearing prices and showed that if the market clearing
prices existed, the corresponding allocation would be
eÆcient.

Do there exist market mechanisms, in particular,
which can be implemented in the form of online mech-
anisms on the Internet, which can eÆciently allocate
multiple items?

Milgrom [10] examined simultaneous ascending
auctions for substitutes in the context of FCC auc-
tions [11]. He considered a multi-round sealed bid
auction for multiple items and showed that if the bid-
ders bid `straightforwardly' (place bids in the next
round for the subset of items that maximizes their
current surplus), then a competitive equilibrium re-
sults which maximizes the surplus in the system up
to a number proportional to the bid increment. How-
ever, the straightforward bidding strategy is restric-
tive since it requires that all bidders be present right
from the beginning of the auction and place a bid
in each round (i.e., they cannot temporarily with-
hold their demands). In practical online auctions, it
should be possible for bidders to join any time and
stay inactive (or withhold demand) for some part of
the auction.

Demange et. al. [12] considered an ascending auc-
tion where the bidders want only a single item out
of a set of heterogeneous items. They showed that if
the bidders announced honestly at each stage the item

whose value to the bidder exceeds its current price by
the maximum amount, the auction mechanism nearly
converges to the smallest equilibrium price vector P
with each component of P being within m� (where
m is the number of items sold and � is a minimum
required bid increment) of the corresponding small-
est equilibrium price. Miyake [13] showed that under
assumptions of monotonicity and continuity on the
bidders' preferences, the honest strategy assumed by
Demange et. al. [12] converges to a dominant strat-
egy in the limit of the bid increment approaching zero.
Wellman et. al. [14] further showed that the ineÆ-
ciency in the resulting allocation is bounded by at
most m(m+ 1)�.

While the auction mechanism suggested by De-
mange [12] et. al. is easily implemented for online
auctions on Internet in the form of independent si-
multaneous ascending auctions of items, many prob-
lems remain. The bound on ineÆciency obtained by
Wellman et. al. [14] does not augur well for such auc-
tions because it seems to suggest that the ineÆciency
per item (in a system of m items on simultaneous
auctions) is proportional to m. On Internet, m may
be several thousands, and hence the system of auc-
tions does not scale well. We derive a much tighter
bound on ineÆciency in this paper which removes this
problem.

Further, the assumptions on bidder behaviour used
by Miyake are restrictive and may not represent all
possibilities. It is not clear whether the honest bid-
ding strategy continues to be a dominant strategy or
even constitute a Nash Equilibrium in the presence
of deviant bidders who do not adhere to the assump-
tions used by Miyake. In this paper, we show that
even under very general conditions, the honest bid-
ding strategy assumed by Demange [12] constitutes
a Nash Equilibrium for the system. However, under
these general conditions, we show that the strategy
ceases to be a dominant strategy.

The rest of the paper is organized as follows: Sec-
tion 2 formally de�nes the system of simultaneous in-
dependent open cry auctions (SIA). Section 3 de�nes
a truth-telling local greedy bidding (LGB) strategy.
In Section 4 we discuss the characteristics of the equi-
libria of SIA under LGB bidding. Section 5 discusses
the implications of our work for online auctions. Fi-
nally Section 6 lists the conclusions. Important proofs
are given in the Appendix.

2 Simultaneous Independent

On-Line Auctions

Auctions are simultaneous if they open and close at
the same times. We consider simultaneous auctions
where each auction is conducted independently as an
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open cry auction. In each of these auctions, bid-
ders may place their bids at any time on any item
so as to outbid the current highest bid on that item.
For each item, the bidder with the highest bid at the
close of the auction is declared the winner and pays
an amount equal to its bid to get the item. To en-
sure that the auctions terminate in a �nite number of
steps, a new bid must exceed an existing bid by a min-
imum increment (�). If bidders are software agents, �
can be set to a very small value.

We consider a set A of m items auctioned simulta-
neously in open cry manner. The seller of each item
j sets a reserve price prj , equal to its valuation for the
item. Let B be the set of n bidders in the system.
Each bidder i has a preference set of items, Ai � A.
For each item j 2 Ai, the bidder i has an independent
private valuation vij . The bidder i wants at most one
item from amongst the items in Ai. Therefore, the
bidder i regards the items in Ai as substitutes. They
are however, only partial substitutes in the sense that
the bidder i has di�erent valuations for the di�erent
items in Ai.

Let P r represent the m x 1 vector of reserve prices
prj and let V represent the n x m matrix of valuations
vij . The system of simultaneous independent open
cry auctions described above is now represented as
SIA(A;B; V; P r). The status of the auction at any
time can be stated in terms of the vector of current
prices (winning bids) for the m items, P .

In a more general setting, there are multiple identi-
cal copies of each item on auction. For all qj copies of
an item j, a bidder i is assumed to have identical val-
uations vij and the auctioneer sets the same reserve
price prj for them. The multiple copy scenario is eas-
ily mapped to the single copy scenario by treating
each copy of an item as a separate item. Set A now
contains

Pm

j=1 qj items instead of m items. It is easy
to see that since each bid in the system is for only
one unit, and since the bidders regard the items as
substitutes, it does not matter whether the multiple
copies of an item are auctioned by the same or dif-
ferent auctioneers. Therefore, we shall consider only
the case where each item has only one copy although
the results derived will be applicable for the case of
multiple copies as well.

Consider that an item j is sold to a bidder i at a
price pj . The seller of j derives a surplus of pj � prj
while the buyer i derives a surplus (si) of vij � pj .
The total surplus created by this auction outcome
is the sum of the seller and buyer surpluses and
equals vij � prj . The total surplus is independent
of the price and depends only on the assignment of
the items to bidders. The global total surplus for
SIA(A;B; V; P r) is simply the sum of the total sur-
plus created in each of the m auctions. Thus, if the
item j was sold to its winner w(j), then the global

total surplus is given by: SG =
Pm

j=1(vw(j)j � prj).

3 Local Greedy Bidding

Consider a bidder i who wants to get at most one item
out of the m items in SIA(A;B; V; P r). The current
local surplus of bidder i on an item j is de�ned as
vij � pj where pj is the current price of item j. For a
bidder i who does not have any winning bid, the item
of greedy choice, gP (i), given the current price vector
P is de�ned as the item with the maximum current
local surplus. Thus, gP (i) = j such that 8j0; vij�pj �
vij0 � pj0 and vij � pj � �. If there exist more than
one such item, gP (i) can be de�ned as the item with
lowest index j without losing generality.

According to the local greedy bidding strategy
(LGB) a bidder never has more than one outstanding
(winning) bid at any point of time. If a bidder is cur-
rently not winning on any item, it determines its item
of greedy choice and places a bid of value � greater
than its current price. In case there is no such item,
the bidder stops bidding. When a bidder is outbid, it
uses LGB to determine the next bid.

Note that LGB has the property that at any time
during the auction, bidder i's outstanding bid is al-
ways on an item such that i cannot obtain a greater
surplus by placing a bid on any other item. By de�-
nition of LGB, this is true at the time when i places a
new bid. From then onwards and until i is outbid, the
prices of other items can only rise (and so i's surplus
on them can only fall).

We assume that there are m dummy bidders in the
system, one bidder corresponding to each item in A.
The dummy bidder corresponding to the item j has a
valuation of prj for j and zero for all other items. The
set of bidders B is assumed to include these dummy
bidders. At the start of the auction, these dummy
bidders place their respective bids at reserve prices
on the respective items prior to any bids being placed
by any exogenous bidders.

4 Equilibria with Local Greedy

Bidding

Consider the system SIA(A;B; V; P r) with the bid-
ders following LGB. De�ne competition on an item
j, given the current price vector P for the system, as
one (current winner) plus the number of non-winning
bidders for whom the item j is the item of their
greedy choice. More precisely, COMP (j) = 1+ j
fijgP (i) = jg j. The competition in the system
SIA(A;B; V; P r), given the price vector P , is de�ned
to be the sum of competitions on all the m items on
auction, COMP =

Pm

j=1 COMP (j). At the start of
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the auctions P = P r and for all j, COMP (j) � 1 due
to the presence of dummy bidders.
Every new bid either decreases COMP , or leaves

it una�ected. A bid on an item j causes its price pj
to increase by �. This can cause a bidder who was
competing on j to either (a) place a new bid on the
new item of its greedy choice, or (b) quit the system
if no such item exists. In the former case COMP

remains unchanged while in the latter, it falls. The
bidders not competing on j are not directly a�ected
by the new bid on j.

Lemma 1 (Termination) The bidding in system

SIA(A;B; V; P r), with the bidders following the local

greedy bidding strategy terminates in a �nite num-

ber of steps. When bidding terminates, COMP (j) =
1;8j 2 f1 : : :mg.

The proof is provided in the Appendix. We now have
an intuitive picture of how LGB works. When the
auctions commence, there are many items on which
more than one bidders may maximize their local sur-
pluses. As a result of this competition on a given
item, the price of that item increases, making the sur-
plus on it less than the surplus on some other item
for some of the bidders who were competing for this
item. This causes them to move away to other items
(or quit, if there is no item left which gives them a
non-negative surplus). Thus, LGB shifts competition
from one item to another as bidders keep hunting for
items that maximize their local surplus. In the pro-
cess the prices rise, leading to exit of some bidders,
thereby reducing competition in the system.

Theorem 1 (EÆcient Allocation) If SOPT is the

maximum global total surplus for the system

SIA(A;B; V; P r) under any allocation, and SLGB
is the global total surplus with LGB bidding then,

SOPT � SLGB � m�.

The proof is provided in the Appendix. Theorem 1
implies that if � is small, SIA(A;B; V; P r) with LGB
bidding leads to eÆcient allocation. This theorem
implies that the average ineÆciency per item for a
system having m items on simultaneous auctions is
of the order of �, no matter how large m is.
Since the reserve prices are �xed, the allocation is

such that the sum of valuations of the winners for
their respective items,

Pm

j=1 Vw(j)j , is close to the
maximum such sum possible for any allocation fea-
sible for the system SIA(A;B; V; P r). This can be
regarded as a generalization from a simple open cry
auction of a single item, where the item is allocated
to the bidder with highest valuation.
Consider any outcome of SIA(A;B; V; P r) with

LGB bidding. De�ne marginal losers of a subset
C � A of items as bidders who placed the second

highest bid on an item in C and eventually did not
get any item from C.

Lemma 2 (Existence of Marginal Loser) In ev-

ery outcome of SIA(A;B; V; P r) with LGB bidding,

for any C � A, either there exists a marginal loser

or all the items in C were sold to the corresponding

dummy bidders at their reserve prices.

The proof is provided in the Appendix. The lemma
states that if an item was sold to an exogenous bidder,
there exists a loser who just lost out on the margin.
It signi�es that it is not possible for all prices to fall
simultaneously by more than � from one outcome to
another. If that were to happen, a marginal loser
would step in and place a bid. The marginal losers
thus hold the �nal prices. The lemma can be seen as
a generalization of simple open cry auction, where the
second highest bidder eventually loses but determines
the price.

Theorem 2 (Almost Unique Prices)
Consider the system SIA(A;B; V; P r) with LGB bid-

ding. Let P 1 and P 2 be the �nal price vectors for two

di�erent outcomes of the system. Then the following

holds: 8j 2 A; j p1j � p2j j� 2m�.

This result follows from earlier work by Demange et.
al. [12]. A bound of 3m� on the price di�erences is
also deducible from Lemma 3 below.

Corollary 1 (Almost Unique Auctioneer Sur-
pluses) The surplus of every auctioneer is uniquely

determined within 2m�.

Lemma 3 (Deviant Bidder) Consider any out-

come of SIA(A;B; V; P r) with LGB bidding with �nal

price vector P 1. Consider another outcome where all

bidders except for a bidder l follow LGB. If bidder l

places a bid pj on item j such that p1j � pj > 3m�,
then it will be outbid.

The proof is provided in the Appendix. The lemma
establishes that no bidder has the ability to ob-
tain lower prices by unilaterally following some other
strategy when all others follow LGB. We are able to
show this without any assumption on the strategy
followed by the deviant bidder.

Theorem 3 (Nash Equilibrium)
Consider any outcome of SIA(A;B; V; P r) with LGB

bidding and let si be the surplus of bidder i. Bidder

i cannot obtain a surplus greater than si + 3m� by

unilaterally following some other strategy. Therefore

the system approaches Nash equilibrium in the limit

when bid increment approaches zero.
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a1

a2

b1

b2

b3

Items
Bidders

if (p2 < 50)
bid on item a2

else do not bid.

Bidder b3’s strategy: place the first bid on item a1

Bidder b2’s strategy:

if (outbid and p2 < 100)
bid on item a2

else do not bid.

if (0 < p1 < 10) then

else if ((p1 = 0) and (p2 < 100) then
bid on item a1

bid on item a2
else do not bid.

Bidder b1’s strategy:

10

10
100

100

50

Figure 1: An example where LGB is not a dominant
strategy

The proof is provided in the Appendix. Note that
LGB constitutes a Nash Equilibrium for the system
under very general conditions since no assumptions
have been made on what strategy a deviant bidder
can adopt for obtaining a greater surplus.

Corollary 2 (Almost Unique Bidder Surpluses)
The surplus of every bidder, when all bidders follow

LGB, is uniquely determined within 3m�.

We note that if � is close to zero, the prices and sur-
pluses are unique. It follows that the order in which
bids arrive is inconsequential if � is small. We can in-
crease m as long as � can be correspondingly reduced
to keep the price uncertainty within acceptable levels.
Increasing m implies better allocation (maximization
of surplus for a larger system) but it also leads to a
greater uncertainty in prices and individual surpluses.
The source of this uncertainty lies in the formation

of ties and the order in which bidders may place their
bids. If every bidder had an ordering for selecting its
item of greedy choice, gP (i), from amongst the items
where it has equal current local surplus, and if the
bidders placed their bids in a round-robin manner,
then the entire sequence of bids can be determined by
a deterministic algorithm, thereby implying a unique
allocation and price vector.

Remark 1: Dominant Strategy - A Discussion

For LGB to be a dominant strategy a bidder should
be able maximize its payo� by using LGB indepen-
dent of the strategies used by other bidders. In a
general setup where no restrictions are placed on the
strategies that the other bidders can use, LGB may
not be a dominant strategy.
To illustrate this, con-

sider a system SIA(A;B; V; P r) as shown in Figure 1
with A = (a1; a2), B = (b1; b2; b3), V (b1) = (10; 100),
V (b2) = (10; 100), V (b3) = (0; 50) and P r = (0; 0).
Assume that minimum required bid increment, � = 1.
Bidder b1 follows the strategy: if 0 < p1 < 10 then

bid on a1 else if p1 = 0 and p2 < 100 then bid on a2
else do not bid. Bidder b2 follows the strategy: place
its �rst bid on a1. On being outbid, if p2 < 100 place
a bid on a2. Bidder b3 uses the strategy: if p2 < 50,
place bid on a2.
With these set of strategies, b2 will either get a1 at

a price of 1 (with a surplus of 9) or a2 at a price of
51 (surplus of 49). However, if b2 were to follow LGB
strategy, it would get item a2 at a price of either 90
or 91 (surpluses of 10 and 9 respectively) or item a1
at a price of 1 (and a surplus of 9). Therefore, b2
may realize signi�cantly greater surplus by following
a strategy other than LGB when other bidders follow
arbitrary strategies as indicated. Therefore, LGB is
not a dominant strategy for the system under general
conditions.
However, if the set of strategies that the bidders can

follow is suitably restricted, LGB can be shown to be
a dominant strategy. Miyake [13] restricts this set to
strategies which can be expressed by (a) de�ning a
total order on the set of pairs (item, price) which sat-
is�es the properties of monotonicity and continuity,
and (b) bidding at each stage on the item of high-
est rank given the current price vector. He shows
that under these conditions, the truth telling bidding
strategy in which the total order is de�ned by the
bidder surplus is a dominant strategy.

Remark 2: Price Determination and Decom-
position of SIA

Consider an outcome of LGB bidding and assume
that the bid increment is suÆciently small and can
be ignored. Suppose bidder i1 got item j1 in this out-
come. Suppose that bidder i2 had the second last bid
on item j1 and it got item j2 in the outcome. Con-
tinue to extend the chain in this way until it reached
a bidder ik+1 who did not get any item. The prices
of items in such a chain are related by the following
equations:

p�jk = vik+1

p�jl = p�jl+1 + vil+1jl � vil+1jl+1

The marginal loser ik+1 holds the price of all the
other items in the chain. A small Æ increase in his
valuation will increase the price of all the items in the
chain by Æ. None of the other losers has any impact
on the system. This is a generalization of theM+1st

price auction of M identical items where the price of
all the items is determined by the M + 1st highest
bid.
For such a chain, the prices of items j1 : : : jk are

completely determined by the valuations of bidders
i1 : : : ik+1. The system SIA(A0; B0; V 0; P r0

) where
B0 = fi1; : : : ; ik+1g and A0 = fj1; : : : ; jkg and V 0

and P r0

are appropriately de�ned, with LGB bidding,
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converges to nearly the same prices (and therefore the
same bidder and auctioneer surpluses) as in the out-
come of SIA(A;B; V; P r) with LGB bidding. There-
fore, the system of simultaneous independent auc-
tions can be decomposed into multiple (potentially
overlapping) chains, with each chain containing one
more bidder (the marginal loser) than the number of
items in it.

Remark 3: Collusion and Price Reduction

Consider any LGB allocation. If bidders were to
�rst choose the items which they would respectively
win using LGB, and then bid only on them, the re-
sulting prices will, in general be lower than the prices
when they use LGB. This is because, when bidders
use LGB, some of the second highest bids can come
from amongst the winners of some other items. If
each bidder chose and bid only for its item, these
second highest bids which came from winners (when
LGB was used) would be replaced by second highest
bids coming from some bidders who did not win any
item and also did not have any second highest bids
when LGB was used. With LGB, all the prices, ex-
ceeded the valuations of these bidders by at least �.
But with the new strategy, there may be some prices,
which are equal to their valuations or no more than
� greater than their valuations.
Therefore, if bidders were to collude (or know each

others valuations) then they can follow a strategy of
bidding only on their respective items and get them at
lower prices. In practice, since the valuations are not
known to one another, they will have to compete with
each other and discover the allocation and prices.

5 Implications for Online Auc-

tions

We saw that if partial substitutes are sold using simul-
taneous independent ascending auctions, then a sim-
ple and truth telling greedy bidding strategy (namely
LGB) results in an equilibrium which has many de-
sirable properties.
The isolated auctions model tries to maximize the

surplus for each auction separately and in the process
leads to a system outcome which may be ineÆcient.
We saw that LGB bidding in SIA leads to eÆcient
allocations. The additional surplus in SIA with LGB
bidding comes from the ability to take into account
the valuations of all bidders for all items in deciding
the allocation. In the isolated auctions model, the
bidders select the items to bid on and given the bid-
ders' selections, the auctions then discover the prices
and winners. In SIA with LGB bidding, both allo-
cation and prices are discovered by the mechanism
itself, thus avoiding sub-optimal choices.

The system SIA with LGB bidding is also a Nash
equilibrium with nearly unique prices. Therefore,
given the items and bidders, no auctioneer can in-
crease its surplus by selling its item at a higher price
and no single bidder can get a higher surplus by fol-
lowing any other strategy. The resulting allocation of
surplus between auctioneers and bidders is competi-
tive and hence fair.
For the bidders, ability to bid across multiple simul-

taneous auctions results in greater choice. Further,
LGB ensures that a if bidder has maximum valua-
tion amongst all bidders for some item, then it will
win at least one item. More than that, LGB ensures
that the bidder would get the `right' item that would
give it the maximum possible surplus, given the items
and the competition. For the auctioneers, simultane-
ous auctions with bidders bidding across them implies
more competition for their items. For the system as
a whole, it implies participation by all bidders in auc-
tions of all items, thereby yielding the surplus maxi-
mizing allocation of items to bidders.
A very desirable property of SIA is that each auc-

tioneer can conduct its own auction independently as
a simple open cry auction. The only requirement is
that the auctions be simultaneous. To achieve this,
various auction sites only need to group auctions of
similar items and agree on common start and end
times. Another desirable property is that LGB is a
fairly simple strategy and needs only the valuations
of a bidder and the current price vector of auctions
for bidding. Therefore, very simple software agents
can implement this strategy and execute it for bid-
ding across multiple auctions on an auction site and
also across multiple auction sites.
Therefore, we argue that the auction sites should

redesign their auctions so that the auctions of similar
items (potential substitutes) simultaneous. Further,
they should provide LGB capable agents for bidding.

6 Conclusions

In this paper, we formally de�ned the system of simul-
taneous independent open cry auctions (SIA) with
partial substitutes and proposed a bidding strategy
called local greedy bidding (LGB). With the indepen-
dent private valuation assumption, we showed that
the LGB bidding results in a nearly eÆcient alloca-
tion for SIA. We also showed that LGB constitutes
a Nash Equilibrium for the system under very gen-
eral conditions. Therefore, no bidder can improve its
surplus by unilaterally following any other strategy.
Under somewhat more restrictive conditions, LGB is
also a dominant strategy for the system.
Bidding in LGB is based on true valuations of

items, therefore the system also has good incentive
properties. The prices of items sold in SIA under
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LGB bidding are nearly unique, competitive and de-
pend only on the bidder's valuations (demand) and
the items (supply). We also argued that the surplus
generated is distributed fairly among the bidders and
the sellers. We identi�ed the bidders who are nec-
essary for the equilibrium to be achieved and in the
process identi�ed marginal losers (bidders who placed
a second highest bid on some item but did not get
any item) who along with the winners determine the
prices at equilibrium.

LGB bidding does not require any information
other than bidder's valuations and current winning
bids. Therefore it should be very simple to provide
LGB bidding agents to bidders. The simultaneous
auctions need not be conducted by the same auction-
eer. Independent auctioneers just need to agree on
opening and closing time for auctions of similar items.

SIA with LGB bidding may be seen as a general-
ization of multi-unit ascending auctions to indepen-
dent ascending auctions of heterogeneous items with
the additional condition that a bidder has one out

of k demand and may bid in multiple auctions. The
foregoing results can be extended further for the case
where a bidder wants to get more than one item by
suitably de�ning LGB for the multi-demand case. We
have not considered the general case here for simplic-
ity of exposition.
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8 Appendix

Proof : [Lemma 1] Each new bid increases some price
in the system by �. Since the valuations in V are
�nite, and since the prices of items on auction cannot
go beyond the valuations, the bidding terminates in
a �nite number of steps.
Initially, because of dummy bidders, each item has

a winning bid. Open-cry auctions ensure that a win-
ning bid gets invalidated only by another winning bid.
Therefore COMP (i) can never go below 1.
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Assume for contradiction that at termination, there
is an item j such that COMP (j) > 1. Since there can
be at most one winning bid on item j, there is a bid-
der i who is not currently winning on any item and
gP (i) = j. In the next step, bidder i should outbid
the current winner of item j by placing an LGB bid on
item j. Therefore the auction has not yet reached ter-
mination, which contradicts our assumption. Hence,
at termination 8j; COMP (j) = 1. 2

Proof : [Theorem 1] Let G = (A;B;E;W ) be the bi-
partite graph where A is the set of m vertices repre-
senting the m items, B is the set of n vertices rep-
resenting the n bidders. The edge (ai; bj) 2 E i�
vij � prj and the weight of the edge W (ai; bj) is equal
to vij � prj . A matching M on G is de�ned as a set
of edges, M � E such that for each vertices in A or
in B, there is at most one edge incident on it. Any
allocation of items to bidders can now be represented
as a matching M on G. The global total surplus for
any allocation is equal to the weight W (M) of the
corresponding matching. An allocation maximizing
the global total surplus of the system is also a maxi-
mum weight matching (MOPT ) of G. Let MLGB be
the matching corresponding to a LGB allocation at a
price vector P �.
Consider the di�erence graph GD = (A;B;ED ;W )

where ED = (MLGB [MOPT ) � (MLGB \MOPT ).
Every path in GD consists of alternating edges from
MLGB andMOPT . Every item will be sold (matched)
in both the allocations (because of dummy bidders).
Therefore every maximal path in GD starts with a
bidder vertex and ends at a bidder vertex. De�ne
weight of a subset of edges Q � ED in GD as:

W (Q) =
X

e2Q & e2MOPT

W (e)�
X

e2Q & e2MLGB

W (e):

Clearly (MOPT ) =W (ED) +W (MLGB).

Claim 1 No cycle Q in GD with q bidders has a

weight greater than �q.

Proof : Without loss of generality, consider a cycle
Q as shown in Figure 1. The dashed edges represent
the LGB allocations and the solid edges represent the
optimal allocation. Since dummy bidders have valu-
ations on only one item, none of the bidders in Q can
be dummy bidders. Since bidder 1 places a winning
bid on item q under LGB, its surplus on item q would
have been the largest. Let the highest bid on item 1
at that instant be p1, then

v1q � (p�q � �) � v11 � p1:

Since the �nal price of item 1 can only rise we have:

v1q � (p�q � �) � v11 � p�1:

q

q

1

2

3

1

2

3

Bidders Items

Figure 2: A cycle

1

2

3

1

2

3

Items

q - 1

q

Bidders

Figure 3: A path

Similarly for bidder i, (i � 2) we have:

vii�1 � (p�i�1 � �) � vii � p�i :

Adding the above equations for all values of i yields:

W (Q) � �q:

2

Claim 2 No maximal path Q of GD, with q bidders

has weight greater than �q.

Proof : Consider a maximal path Q of GD. WLOG
consider the path shown in Figure 2. Since bidder 1
didn't get any item in LGB,

v11 � p�1 + �:

Since bidder i (i 6= q) preferred item i � 1 over item
i in the LGB bid, we have

vii � p�i � vii�1 � (p�i�1 � �):

Since bidder q bids for item q�1 in LGB, its valuation
of item q�1 must be greater than or equal to the price
at which it was sold:

vqq�1 � p�q :



RI00022 November 17, 2000 10

Note that the above equation holds even if bidder i
was a dummy bidder. Adding above equations over i
yields:

W (Q) � �(q � 3):

2

Since graph GD is di�erence of two matchings, it
can be decomposed into disjoint paths and cycles.
From Claim 1 and 2 it follows that W (ED) � m�.
Since W (ED) can also be written as W (MOPT ) �
W (MLGB), therefore W (MOPT )�W (MLGB) � m�.
2

Proof : [Lemma 2] Order the items of C in ascending
order of the time at which the winning bid on each
item was received. Consider the item j which is last
in this sequence and consider the system at the time
when all the bids on all items in C except the win-
ning bid on this item had been received. Since for all
items j

0

6= j; j
0

2 C, the eventual winners had their
bids outstanding at this time, they could not have
simultaneously had an outstanding bid on j. If there
already existed some bid on j at this time, then the
bidder who placed that bid did not get any item from
C in the �nal allocation. If there did not exist any
bid on j at this time, the item j receives only one bid,
that of its dummy bidder (auctioneer). Since all bids
by dummy bidders precede any bid by an exogenous
bidder, therefore no item in C got any bids from any
exogenous bidder. 2

Proof : [Lemma 3] Assume, for contradiction that
bidder l is not outbid. Let P 2 be the price vector
corresponding to this outcome and M2 be the corre-
sponding allocation (matching). Since bidder l's bid
on item j is not outbid, we have p2j = pj . Let M1

be the allocation (matching) in the outcome when all
bidders follow LGB.
In order to prove Lemma 3 we need to establish

certain properties. Let Q be a cycle in the graph
G0 = (A;B;M1 [M2). The following claim says that
if price of one item in Q falls (in the second outcome)
by a signi�cant amount, then the prices of all the
items in Q will also fall by similar amounts.

Claim 3 If items j; k 2 Q and p1j � p2j = Æ � 0 then

p1k � p2k � Æ � 2(q � 1)�, where q is number of items

in Q.

Proof : Suppose bidder i is the winner of item j in
the �rst outcome and bidder i gets another item j0 in
the second outcome. When bidder i placed a bid on
item j0 in the second outcome, it had the option of
placing a bid on item j. Let the current winning bid
on item j at that time be of amount pj . Therefore
from the property of LGB bidding for bidder i:

vij0 � (p2j0 � �) � vij � pj :

Since the prices can only increase, the �nal price p2j
of item j will be at least pj . Therefore:

vij0 � (p2j0 � �) � vij � p2j :

Using a similar argument for the �rst outcome, we
have:

vij � (p1j � �) � vij0 � p1j0 :

The above two equations yield:

p1j0 � p2j0 � p1j � p2j � 2�

or
p1j0 � p2j0 � Æ � 2�:

Applying the same argument to winner of item j0 in
the �rst outcome, the fall in the price of the next item
in the cycle Q can be bounded. Since there are q � 1
items in the cycle, excluding item j, the minimum fall
in price of any item k 2 Q can be bounded as:

p1k � p2k � Æ � 2q�:

2

Note that the above claim is not restricted to the
cycle containing the item j. It may be applied to any
cycle.

Claim 4 Let bidder i be a marginal loser of a cycle

Q of G0, in the �rst outcome, and gets item h in the

second outcome. If price of an item falls by Æ then

price of item h will fall by at least Æ� (2q+1)� in the

second outcome.

Proof : Assume that bidder i places a second highest
bid on item j0 of Q in the �rst outcome. By Claim 3,
we have:

p1j0 � p2j0 � Æ � 2(q � 1)�:

Now consider the following two cases:
Case 1: Bidder i wins item k in the �rst outcome.
When the bidder placed the second highest bid on
item j0, it had more surplus on item j0 than on item
k. So we have:

vij0 � (p1j0 � 2�) � vik � (p1k � �): (1)

Since the bidder choose item k over item h in the
�rst outcome, we have:

vik � (p1k � �) � vih � p1h: (2)

In the second outcome, the bidder choose item h over
item j0, so we have:

vih � (p2h � �) � vij0 � p2j0 :

Adding above four equations yields:

p1h � p2h � Æ � (2q + 1)�: (3)
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Case 2: Bidder i wins no item in the �rst outcome.
When bidder i placed a bid on item j0, it had a non
negative surplus on it:

vij0 � (p1j0 � �) � 0:

Since bidder i did not bid on item h in the �rst out-
come, its surplus on item h would have been negative:

0 � vih � (p1h + �):

Combining above two equations with Eq. 8 and 8
yields Eq. 3. 2

We now continue the proof for Lemma 3. From our
assumption we have, p1j � p2j > 3m�.

Claim 5 The maximal path containing item j in

graph G0 = (A;B;M1 [M2) is a cycle.

Proof : If the maximal path is not a cycle, it must
end at a bidder i who gets an item j0 in the �rst
outcome and does not get any item in the second
outcome. On the lines of Claim 3, it can be argued
that the price of item j0 in the second outcome falls
by some non zero amount. Therefore, bidder i should
have a positive surplus on this item and should have
placed a bid on this item in the second outcome,
which is contradiction to our assumption. 2

Claim 6 Every cycle in graph G0 = (A;B;M1 [M2)
has a marginal loser in the �rst outcome.

Proof : Let Q be a cycle of G0. Since dummy bidders
have valuations on only one item, no dummy can be
in a cycle. If there is no marginal loser of Q in the
�rst outcome, then by Lemma 2, there is an item in Q
which is sold at the reserve price in the �rst outcome.
Therefore, the dummy bidder corresponding to that
item is in Q which is impossible. 2

Claim 7 If bidder i is a marginal loser, in the �rst

outcome, of the cycle containing item j, then bidder

i gets an item in the second outcome.

Proof : Let Q be the cycle of G0 containing the item
j. Assume for contradiction that bidder i does not
get any item in the second outcome. By Claim 3 and
our assumption that p1j � p2j > 3m�, prices of all the
items in Q must fall by more than 3�. Therefore the
marginal loser i should have a non negative surplus
on an item in Q and should place a bid on an item
in Q in the second outcome. This is a contradiction
to our assumption. Therefore the marginal loser of Q
in the �rst outcome should get an item in the second
outcome. 2

We expand the set Q by adding the cycle corre-
sponding to the marginal loser of Q in the �rst out-
come. Using above two claims and Claim 3 and 4 it
follows that the price of every item in the new set
Q, falls by more than Æ � 3(q � 1)�. Finally, a set Q
is obtained whose marginal loser in the �rst outcome
(say bidder i) does not get an item in the second out-
come. Bidder i was a marginal loser in Q in the �rst
outcome and prices of items in Q drop by an amount
greater than 3� in the second outcome. Therefore bid-
der i should have non-negative surplus on at least one
item in Q in the second outcome, which is impossible.
So, our assumption that bidder l is not outbid in

the �nal outcome of the LGB must be wrong. Hence
the proof of Lemma 3. 2

Proof : [Theorem 3] Assume that a bidder i follows
any strategy and all other bidders follow LGB. Let
P � be the �nal price vector if bidder i was also to
follow LGB. It is clear from Lemma 3 that the bidder
i cannot win any item j at a price less than p�j �3m�.
If it did not win any item when LGB was used (and
so had a zero surplus on all items at the price vector
P �), it cannot get a surplus of greater than 3m� by
winning any item using any other strategy. On the
other hand, if the bidder i had won an item j when
LGB was used, it cannot increase its surplus by more
than 3m� by winning the same item j. Further, since
item j was the surplus maximizing item for bidder i
at P �, the bidder cannot increase its surplus by more
than 3m� by winning any other item when prices do
not fall by more than 3m�. This completes the proof.

2


