Trovatore: Towards a Highly Scalable
Distributed Web Crawler

P. Boldi, S. Vigna
Dipartimento di Scienze
dell'lnformazione
Via Comelico, 39/41
1-20135 Milano, ltaly

{boldi,vigna}@dsi.unimi.it

ABSTRACT

Trovatore is an ongoing project aimed at realizing an ef-
ficient distributed and highly scalable web crawler. This
poster illustrates the main ideas behind its design.

Keywords
Distributed crawling, web searching, fault-tolerance, self-
stabilization, delegation function, Java, RMI.

1. INTRODUCTION

The main goal of this project is the design and imple-
mentation of a distributed highly scalable web crawler.
As a consequence, essential features of the software be-
ing developed are platform-independence, and tolerance
to transient failures. In addition, the software will make
it possible to recover from permanent non-destructive fail-
ures in an easy manner. The needs of efficiency and fault-
tolerance imply seeking trade-offs between communication
complexity and data replication.

An essential property of our system is self-stabilization
(in the classical sense defined by Dijkstra [3]). Although
guaranteeing this property required a significant amount
of effort in the initial design phase and in the construc-
tion of the interaction protocol, it has been instrumental
to achieve that agents in the system (and a fortiori new
hardware or bandwidth resources) can be added, or obso-
lete parts can be removed, without interfering too much
with its behaviour.

Indeed, many Internet services are actually self-stabilizing,
even if no theoretical machinery or guidance was used in
their design, the most notable example being the Domain
Name System. Although self-stabilization is clearly un-
acceptable when stringent safety property are imposed on
the system, we believe that the nature of the web (see Sec-
tion 3) makes a web crawling system an ideal testbed for
design principles based on self-stabilization.

2. THE SOFTWARE ARCHITECTURE

The software architecture consists of a number of agents,
each one delegated to deal with a specified portion of the
web domain under investigation.

The more relevant components of each agent (see Figure 1)
are the following:

Store. This component deals with the storage of the crawled
pages. Its main functions are: to check whether a page

B. Codenotti
Istituto di Matematica
Computazionale — CNR
Via Moruzzi, 1
I-56124 Pisa, Italy

codenotti@imc.pi.cnr.it

M. Santini
Istituto per le Applicazioni
Telematiche — CNR
Via Moruzzi, 1
I-56124 Pisa, Italy

santini@imc.pi.cnr.it

Agent

Store

Stores crawled pages

Tells if a page has been crawled

Returns batch of pages for further processin

Frontier

Maintains the queue of pages to crawl
Fetches queued pages from the web
Processes fetched pages

Controller

Monitors the status of peer agents
Delegates processing of URLs to peers
Enforces fault-tolerance and self-stabilizati

R

Figure 1: Internal architecture of a single agent.

has already been crawled, to store the content of crawled
pages, to keep track of some relevant information about its
stored pages. Such information should include (but is not
limited to) the out-links and in-links of each page; more-
over, Store can also compute some statistics of its stored
pages (size, time of the last crawl, ...).

Additionally, it should deal with “indexers” or other soft-
ware processing its content; to this end, it should be able
to return its content both in response to a single query
(specified by an URL) and as a “stream”, in response to
a “batch” of related queries.

Frontier. This component deals with the retrieval of new
pages. Its main functions are: to keep track of the URLs
that have to be crawled by the agent, to actually fetch
the content of the URL to be crawled and to parse the
retrieved URL via different filters. In addition to accom-
plishing other tasks, such filters should determine the new
URLs to be crawled.

Controller. It oversees all the communications between
agents and works as a reliable crash-failure detector; reli-
ability refers to the fact that a crashed agent will eventu-
ally be distrusted by every active agent (a property that
is usually referred to as strong completeness in the theory
of failure detectors).

One of the central issues in the design of the Controller
is the use of a delegation function that determines which



agent is responsible for each single URL. The delegation
function must be chosen in such a way that data replica-
tion is minimized; in particular, if some agent crashes, or
deliberately decides to gracefully stop working, the URLs
for which it was responsible should be partitioned among
the remaining agents, thereby maintaining all other previ-
ously decided assignments.

A further requirement is that the delegation function should
partition the web domain in such a way that every run-
ning agent is assigned approximately the same number of
URLs.

The design of the Controller may seem to be limited es-
sentially to some synchronization logic that delivers new
URLs to be retrieved. However, this is not true if we want
to design the system so that it will stabilize to a correct,
balanced page distribution between agents. Indeed, this
requires that the controller, before actually trying to re-
trieve a page, tries to check whether other agents already
have this page. This can happen because the current agent
was stopped for a while (so other agents were responsible
for that page), or because the agent suffered a transient
failure (for instance, disk full), so it previously delegated
elsewhere the page retrieval. Querying all the agents is
clearly out of the question. Thus, the retrieval mechanism
must use the properties of the delegation function to guar-
antee that in the presence of a small number of faults most
pages will be retrieved just once.

We are currently experimenting on some different choices
for the delegation function to be used by our system.

parsing "http://www.computer.org/internet/events.htm"
found "http://www10.org/*
which agent is "http://www10.org/" delegated to? 8
3
Pl Agent j 3
c B . . o
[T tell Agent j to deal with "http://www10.org/" =
=
crawl "http://www10org/" g
)
]
=
has "http://www10.org/" been seen before? n =
3
no 3
add "http://www10.org/" to the queue g‘
=
5

Figure 2: Inter-agent transactions.

The components of each agent interact as semi-independent
modules, each running possibly more than one thread. In
order to limit the amount of information exchanged on the
network, each agent is confined to live in a single machine.
Nonetheless, different agents may (and typically will) run
on different machines, and interact using RMI (see Fig-
ure 2 where time flows downwards. Note that the figure
only shows a simplified excerpt of the actual interaction).

3. IMPLEMENTATION ISSUES

We now make a little bit more precise some of our de-
sign choices. Concerning self-stabilization, the system is
designed in such a way that transient faults can possibly
induce a small amount of useless replication, but in a short
time the system converges to the desired behaviour. We

believe that for a system that interacts heavily with a com-
plex and sometimes unforeseeable (even unfathomable) me-
dium as the web, which however displays a globally co-
herent behaviour, it seems more reasonable to allow the
system to temporarily behave loosely and eventually con-
verge to a correct behaviour rather than insisting on very
strict protocols whose correctness is often very difficult to
prove, and that are usually not so robust in the face of
unpredictable inputs.

Agent 1 Agent 2

D Listener

Callers

m Listener
g
/

Callers

=

Caller /| Listener
. " " ! s Callers
Listener "proxy’ ¥ implementation

Java RMI

Figure 3: Some implementation issues.

In order to achieve the platform-independence goal, we
have chosen Java™ 2. This is a well-established, secure,
and scalable development environment equipped with many
features tailored to the web. In particular, instead of
explicitly implementing a dedicated network protocol for
inter-agent communication, we adopt Remote Method In-
vocation [5], a technology which enables us to create dis-
tributed applications in which the methods of remote Java
objects can be invoked from other Java virtual machines
(possibly on different hosts), using object serialization to
implicitly marshal and unmarshal parameters (see Fig-
ure 3).

4. CONCLUSIONS

We have presented the guiding ideas behind the design of
Trovatore. This is an ongoing effort, and we plan to make
available an on-line report on its status.

5. REFERENCES
[1] Sergey Brin and Lawrence Page. The anatomy of
large-scale hypertextual web search engine. In
Proceedings of the Seventh International World Wide
Web Conference, volume 30 of Computer Networks
and ISDN Systems, pages 107-117, April 1998.

[2] Junghoo Cho and Hector Garcia-Molina.
Incremental crawler and evolution of the web.
Technical Report, Department of Computer Science,
Stanford University.

[3] Edsger W. Dijkstra. Self-Stabilizing Systems in Spite
of Distributed Control Communications of the ACM,
17(11):643-644, 1974.

[4] Allan Heydon and Marc Najork. Mercator: A
Scalable, Extensible Web Crawler. In World Wide
Web, December 1999, pages 219-229.

[5] Java™ Remote Method Invocation (RMI).
http://java.sun.com/products/jdk/rmi/



