
Web Application Models are more than Conceptual
Models

Gustavo Rossi 1,3, Daniel Schwabe2, Fernando Lyardet1

1 LIFIA, Departamento de Informática, UNLP. Argentina
E-mail: [gustavo,fer]@sol.info.unlp.edu.ar

2 Depto de Informática, PUC-Rio, Brazil.
E-mail: schwabe@inf.puc-rio.br

3 also at CONICET and UNLM

Abstract. In this paper, we argue that web applications are a particular kind of
hypermedia applications and show how to model their navigational structure.
We motivate our paper discussing the most important problems in the design of
complex Web applications. We argue that if we need to design applications
combining hypermedia navigation with complex transactional behaviors (as in
E-commerce systems), we need a systematic development approach. We next
present the main ideas underlying the Object-Oriented Hypermedia Design
Method (OOHDM). We show that Web applications are built as views of
conceptual models. We next present the abstraction primitives we use to design
the conceptual and navigational structure of Web applications and describe the
view definition language. We introduce navigational contexts as the structuring
mechanism for the navigational space. Some further work on designing Web
applications with OOHDM is finally presented.

1 Introduction: Web Applications are Hypermedia Applications

The emergence of the World Wide Web has made the hypertext paradigm more
popular than ever. Web applications combine navigation through a heterogeneous
information space with operations querying or affecting that information.

The WWW is based on the hypertext paradigm, inasmuch as it is composed of
pages (in HTML) which can be linked to each other through URLs (links). Regardless
of how a reader has reached a page, he will normally have the option of accessing the
pages linked to the current page; by choosing a particular link, he will cause the page
pointed to by the link to be exhibited; this process can repeats itself indefinitely. This
succession of steps is know as “navigation”, and is intrinsic to hypertext, and hence to
the WWW.

However, this second generation of hypermedia applications is rather different
from the first one, in which applications, usually delivered in CD-ROMs, were not
supposed to be updated and, in general, were not critical for any organization. Web
applications, on the other hand, are constantly modified, are permanently enriched
with new services, and new navigation and interface features are added, e.g.,
according to the organization’s marketing policy.

In this paper we argue that good Web applications should be, first of all, good
hypermedia applications, i.e. they should provide easy navigational access to large
information resources, preventing users from being lost in the cyberspace, and
providing consistent navigation operations even when other kind of transactional
behavior is involved. As navigation problems have been largely discussed in
hypertext literature (see for example [12]) we should be able to reuse existing
knowledge on building good Web applications.

Unfortunately, state-of-the art conceptual modeling approaches neglect navigation
modeling as they do not provide useful abstractions capable of easing the task of
specifying applications that embody the hypertext metaphor. For example, they do not
provide any notion of linking and very little is said about how to incorporate
hypertext into the interface. For example, we could easily model the domain of an
electronic commerce application using UML [UML97]. However we can not specify
critical aspects for this kind of application, such as which nodes will be navigated or
which paths or indexes the application will contain. Even if we specify all this
hypermedia functionality using UML primitives, we will be using low-level
primitives whose semantics were not intended to model navigation.

At the same time, we could model this kind of applications by considering
navigation as just another kind of interface behavior; this is the approach followed by
some recent (object-oriented) tools like VisualWave [27]. In this case, applications
built using the well-known model-view-controller interface metaphor are published in
the Web by just translating views into HTML pages; only some aspects related with
concurrent access with shared databases are taken into account. However this
approach fails to consider the most powerful feature of the Web: its linking
capabilities.

 If we want to profit from the potential of the Web platform we need to consider
both aspects of Web applications: navigation and transactional (or other kind of
conventional) behaviors.

Web applications provide a powerful mechanism for building different views (in
fact navigational views) to corporate databases. For example, while customers access
the Amazon.com bookstore using a particular Web interface, managers or technical
staff can access the same information resources through a different Web application
(and obviously different access rights) in an Intranet. However, these views are more
than simple database views as they involve different navigation paths, indexes, etc. In
this paper we show how to design Web applications as views of (shared) conceptual
models. In addition, it will be argued that the links provided for navigation are more
than a representation of conceptual relations, as a more naive approach would
suggest.

To summarize the discussion above, we can intuit that there are distinguishing
features in Web applications that present new design requirements vis-a-vis
traditional systems. In a broad sense, we can categorize them in three groups. The first
group of design issues has to do with navigation, addressing questions such as:

• What constitutes an “information unit” with respect to navigation?
• How does one establish what are the meaningful links between information units?
• Where does the user start navigation?

• How does one organize the navigation space, i.e., establish the possible sequences
of information units the user may navigate through?

• If we are adding a WWW interface to an existing system, how do we map the
existing data objects onto “information units”, and what relationships in the
problem domain should be mapped onto links?

The second group of design issues has to do with the organization of the interface,
addressing questions such as:

• What interface objects the user will perceive? How do these objects relate to the
navigation objects?

• How will the interface behave, as it is exercised by the user?
• How will navigation operations be distinguished from interface operations and

from “data processing” (i.e., application operations)?
• How will the user be able to perceive his location in the navigation space?

The third group of design issues has to do with implementation, addressing questions
such as:
• How are information units mapped onto pages?
• How are navigation operations implemented?
• How are other interface objects implemented?
• How are existing databases integrated into the application?

In this paper we will concentrate on discussing our approach for solving the first
group. A discussion on the third group of issues can be found in [Segor99].

The rest of this paper is structured as follows: we first introduce the Object-
Oriented Hypermedia Design Method. We next discuss how we build navigational
models as views on conceptual models; then we introduce navigational contexts as a
structuring mechanism for navigation. Finally, we discuss some ongoing work on
mining navigation patterns and present some further work on designing and
implementing these kind of systems.

2 The OOHDM Design Framework

The Object-Oriented Hypermedia Design Method [Schwabe 98, Schwabe 96] is a
model-based approach for building large hypermedia applications. It has been
extensively used to design different kinds of applications such as: Web sites and
information systems, interactive kiosks, multimedia presentations, etc. It should be
stressed the OOHDM has been applied outside the academic environment, such as in
government agencies, telecommunications companies, oil companies, IT service
companies, etc…

OOHDM comprises four different activities namely, Conceptual Design,
Navigational Design, Abstract Interface Design and Implementation. During each
activity a set of object-oriented models describing particular design concerns are built
or enriched from previous iterations.

We explicitly separate conceptual from navigation design since they address
different concerns in Web applications. Whereas conceptual modeling and design
must reflect objects and behaviors in the application domain, navigation design is
aimed at organizing the hyperspace taking into account users’ profiles and tasks.
Though applications views are not new in the literature [4], the hypermedia paradigm
as it appears in the Web raises additional concerns such as orientation, cognitive
overhead, etc. that should be treated in a separate design activity.

Considering conceptual, navigational and interface design as separate activities
allows us not only to concentrate on different concerns at a time, but mainly to obtain
a framework for reasoning about the design process, encapsulating design experience
specific to each activity. As we explain below, navigational design is a key activity in
the implementation of Web applications and it must be explicitly separated from
conceptual modeling

OOHDM design primitives can be mapped onto non object-oriented
implementation settings using some simple heuristics [22]. We next discuss the first
three activities in more detail.

2.1 Conceptual Modeling

During this step we build a model of the application domain, using well known
object-oriented modeling principles and primitives similar to those in UML [24]. The
product of this step is a class schema built out of Sub-Systems, Classes and
Relationships.

We chose UML because it is a modeling standard whose syntax and semantic are
clear and well-understood. The major differences with UML are the use of multiple-
valued attributes, and the use of directions explicitly in the relationships. Aggregation
and generalization/specialization hierarchies are used as abstraction mechanisms.

Conceptual Modeling is aimed at capturing the domain semantics as “neutrally” as
possible, with little or no concern for the types of users and tasks. When the
application involves some sophisticated behavior in conceptual objects, it may evolve
into an object model in the implementation environment. However it can be
implemented in a straightforward way in current Web platforms combining for
example a relational database with some stored procedures. The main thesis in this
paper is that the conceptual model may not reflect the fact that the application will be
implemented in the WWW environment, since the key application model will be built
during navigational design. This view allows using the same strategy for
implementing “legacy” applications in the Web, by considering their conceptual
model as the product of this OOHDM activity.

Classes in the conceptual model will be mapped to nodes in the navigational model
using a viewing mechanism and relationships will be used to define links among
nodes. It will also be shown that there are other links that do not correspond to
relationships in the conceptual model.

Using a behavioral object-oriented model for describing different aspects of Web
applications allows to express a rich variety of computing activities, such as dynamic
queries to an object-base, on-line object modifications, heuristics-based searches, etc.
The kind of behavior required in the conceptual model depends upon the desired

features of the application. For many Web applications, in particular those
implementing plain browsing (i.e. read-only) functionality, class behavior beyond
linking functionality is unnecessary and does not need to be specified.

Name: string

Equipment

Name: string
UrlSponsor: string

Sponsor

Name: string
Description: string
Budget: real

Research Project

Name: string
Description: string

Area of Research

OnLineContent: string

Students Production

Name: string
Description: string

Laboratory

N

advises

funds

conducted in

0..N

0..N
belongs

0..N

participates N

0..N

belongs
N

N

N

belongs

N

related

belongs

N

produces

N

produces
NN

Semester: string
Schedule: string
Classroom: string

Course Offering

OnLineContent: string
Location: string

Complementary Material

N

teaches
1

N

attend
N

N

Name: string
Description: string
NumberOfCredits: integer
SuggestedPeriod : string
Syllabus : text

Course

offered

1

N

belongs
N

N 1

N

requires0..N 0..N

Name: string
RequiresAmount : integer
ElectivesAmount : integer

Degreehas elective

has required

N

N

N

N

N

pursues

requires

requires

requires

1

1 1

1

1

N

Degree: string

Student

StudentID: integer
BeginningDate: date
EndingDate: date

AdministrativeTechnicalAcademic

Thesis

MScPhD

Graduation
Project

PhDMSc

Graduate Undergraduate

0..N

Slide WorkBook Exercise

Evaluation: integer

N

N N

belongs

N
N

N

Title: string
PublicationDate: date
Abstract: text
Autors: set of string

Research Result

Edition: string
Publishing: string

Book

Code: string
OnLineContent: string

Technical Report

BiblioReference: string
OnLineContent: string

Paper

UrlConference: string

Conference Paper

UrlJournal : string

Journal Paper

OnLineContent: string

Software

N

Hardware

0..N

1

Name: string
Degree: string
Description: [text+, image]
Email: string
HomePage: string

Personel

Rank: string

Professor

Fig. 1. Conceptual Schema of the Academic Department Site.

Figure 1 shows the Conceptual Schema for an Academic Department Web site.
Perspectives (multiple valued attributes) are denoted by enumerating the possible
types, with a + next to a default type. Thus, description: [text+, image] means that
attribute description has a text perspective (always present), and may have also an
image perspective.

2.2 Navigational Design

In OOHDM, an application is seen as a navigational view over the conceptual model.
This reflects a major innovation of OOHDM with respect to other methods, at it
recognizes that the objects (items) the user navigates are not the conceptual objects,
but other kinds of objects that are “built” (through a view mechanism) from one or
more conceptual objects. Moreover, it is important to stress that the user navigates
through links, many of which cannot be directly derived from conceptual
relationships.

For each user profile we can define a different navigational structure that will
reflect objects and relationships in the conceptual schema according to the tasks this
kind of user must perform. The navigational class structure of a Web application is
defined by a schema containing navigational classes. In OOHDM there is a set of pre-
defined types of navigational classes: nodes, links, anchors and access structures. The
semantics of nodes, links and anchors are the usual in hypermedia applications.
Access structures, such as indexes, represent possible ways for starting navigation.

Different applications (in the same domain) may contain different linking
topologies according to the user’s profile. For example, in the Academic Web site we
may have a view to be used by students and researchers, and another view for use by
administrators. In the second view, a professor's node may contain salary information,
which would not be visible in the student’s view. In section 3 we detail how we
specify nodes and links using a view definition language.

The most outstanding difference between our approach and others using object
viewing mechanisms is that while the latter consider Web pages mainly as user
interfaces that are built by “observing” conceptual objects, we clearly favor an
explicitly representation of navigation objects (nodes and links) during design.

2.3 Abstract Interface Design

In the Abstract Interface Design activity, we specify which interface objects the user
will perceive and how the interface will behave. For each node’s attribute (either
contents or anchors) we must define its appearance. By distinguishing between
navigation and interface design we can build different interfaces for the same
application and besides achieve implementation independence.

During this activity we define the way in which different navigational objects will
look like, which interface objects will activate navigation, the way in which
multimedia interface objects will be synchronized and which interface
transformations will take place. In OOHDM, we use the Abstract Data View (ADV)
design approach for describing the user interface of a hypermedia application [3].
Though not completely related with the aim of this paper, it is important to stress that
building a formal model of the interface of Web applications is a rewarding activity as
user interfaces tend to change even faster than navigation topologies. We clearly need
a precise design specification to be able to support changes smoothly. A complete
description of our approach for specifying user interfaces can be found in [14].

2.4 Implementation

During the implementation activity we map conceptual, navigation and interface
objects onto the particular runtime environment being targeted. When the target
implementation environment is not fully object-oriented, we have to map the
conceptual, navigational and abstract interface objects into concrete objects, i.e. those
available in the chosen implementation environment. This may involve defining
HTML pages (or, for example, Toolbook objects in non Web-based environments),
scripts in some language, queries to a relational database, etc. Notice that even in
object-oriented environments like VisualWave [27] there may be no significative
difference among conceptual and navigation objects which will act as models of
Smalltalk’s interfaces. Meanwhile, in a more “hybrid” environment, conceptual
objects will be mapped to a persistent store (files or relational databases) while the
interface and navigation objects will be implemented as conventional Web pages.

In the following sections we discuss the OOHDM approach for defining the
navigational structure of Web applications.

3 Specifying Navigational Objects as Views on the Conceptual
Schema

One of the cornerstones of the OOHDM approach is the fact that most navigational
objects (nodes and links) are explicitly defined as views on conceptual objects and
according to each different user profile. These views are built using an object-oriented
definition language that allows to “copy and paste” and/or filter attributes of different
(related) conceptual classes into the same Node class and to create Link classes by
selecting the appropiate relationships.

In the academic site example we may want that nodes representing Courses contain
an attribute with the name of the Professor that teaches that course, an eventually use
that name as an anchor to the Professor’s home page. It is clear that in the conceptual
model the name of the professor is an attribute of Class Professor and should not be
included in Class Course. Meanwhile, in a different view, we may want to filter some
attributes (such as the professor’s salary, for example) or include new relationships as
links.

Node classes are defined using a query language similar to the one in [10]. Nodes
possess single typed attributes, link anchors, and may be atomic or composite.
Anchors are instances of Class Anchor (or one of its sub-classes) and are
parameterized with the type of Link they host. The object-oriented nature of nodes
and anchors allow re-defining their opening and activation semantics allowing
customization to different application domains.

The syntax for defining Node classes is shown next:

NODE name [FROM className: varName] [INHERITS FROM nodeClass]

 attr1: type1 [SELECT name1] [FROM class1:varName1, classj: varNamej

 WHERE logical expression]

 attr2: type2 [SELECT name2]...

 ...,

 attrn: typen [idem]

 anch1: Anchor [linkType1]

 anch2: Anchor [linkType2]

 ...

 END

 Where

• name is the name of the class of nodes we are creating.

• className is the name of a Conceptual Class (from which the node is
being mapped). It is called the Subject class.

• nodeClass is the name of the super-class

• attr are the names of attributes for that class, type the attribute’s types.

• name are the subjects for the query expression and var are mute variables
used to express logical conditions.

• -logical expression allows defining classes whose instances are a
combination of objects defined in the conceptual schema when certain
conditions on their attributes and/or relationships hold.

• -anch are names of anchor variables. Anchor is the abstract class for all
anchors

• linkType is a link type qualifying anchors.

Nodes implement a variant of the Observer design pattern [5] as they express a
particular view on application objects. Changes in conceptual objects are broadcasted
to existing observers while nodes may communicate with conceptual objects to
forward them events generated in the interface.

As an example we would define the Node class CourseOffering including as one of
its attributes the name of the professor who teaches it and an anchor for the link that
connects both nodes. We say that the conceptual class CourseOffering is the subject
of Node class CourseOffering. Notice that in OOHDM we defer the decision of
defining the anchor’s appearance until the abstract interface design activity.

NODE CourseOffering [FROM CourseOffering:C]

professor: String [SELECT Name] [FROM Professor:P WHERE P teaches
C]

.... (other attributes “preserved” from the conceptual class CourseOffering}

taughtBy: Anchor [TaughtBy]

Links connect navigational objects and may be one-to-one or one-to-many. The result
of traversing a link is expressed by either defining the navigational semantics
procedurally as a result of the link's behavior, or by using an object-oriented state
transition machine similar to Statecharts. Since Web applications usually implement
simple navigation semantics (closing the source node and opening the target), we do
not discuss this issue further.

Access structures (such as indices or guided tours) are also defined as classes and
present alternative ways for navigation in the application. Application Links are also
defined as views on conceptual relationships (see the discussion on Context Links in
section 4). Access structures are usually defined in Navigational Contexts (see
Section 4), and they are specified by defining the target navigational objects and the
selectors (usually attributes of the targets). The syntax for defining Link classes is
shown below (we avoid describing link’s attributes and behavior for the sake of
simplicity).

LINK name

SOURCE: sourceNode: sourceVar

TARGET: targetNode: targetVar

WHERE logical expresion

END

• name indicates the name of the Link Class

• sourceNode is the name of the source Node class

• targetNode is the name of the target Node class

• sourceVar, targetVar are mute variables used in the logical expression

• logical expression indicates a condition that involves the Subjects of
Source, Target and perhaps other conceptual classes.

Using the syntax above we may define the Link class TaughtBy as shown below (the
qualifier “S.” indicates the subject of the corresponding node classes, in this case
CourseOffering and Professor). Notice that the conceptual relationship “taught by”
between CourseOffering and Professor may not exist in the conceptual schema and
we should carefully plan the final implementation of this view.

LINK TaughtBy

SOURCE: CourseOffering: c

TARGET: Professor: p

WHERE S.p teaches S.c

END

The navigational schema contains a diagrammatic description of the relationships
among nodes. Each navigational schema represents the model of a different Web
application.

It is important to stress the similarities and differences among the conceptual and
navigational schema. They are similar because both are abstract and implementation
independent and they represent concepts of the underlying application domain using
objects. However, while the former should be neutral with respect to navigation, the
latter expresses a particular user’s view (in the navigation sense) that is strongly
influenced by the tasks he is supposed to perform.

OOHDM enforces a clear separation between the specification of navigation and
other application’s behavior. However, in complex Web applications it may be
necessary to integrate both kinds of behaviors (electronic stores are a good example of
this need). As nodes implements Observers they can communicate easily with their
conceptual counterpart in order to delegate actions they can not perform (as for
example, modifying a persistent store).

Nodes and Links are the basic primitives of Web applications. However we need
higher level abstractions to build meaningful and usable navigation structures, since
we may need to introduce nodes and links that do not reflect conceptual entities or
relationships and that may be defined opportunistically for improving navigation. We
next introduce Navigational Contexts, a powerful mechanism for structuring the
navigational space.

4 Structuring the Navigational Space: Navigational Contexts

Web applications usually contain collections of pages dealing with similar concepts,
e.g.: books from an author, CDs performed by a group, hotels in a city, etc. These
collections may be explored in different ways, according to the task the user is
performing. For example, in an electronic bookstore he may want to explore books of
an author, books on a certain period of time or literary movement, etc. It is also
desirable to give him different kinds of feedback in different contexts, while allowing
him to move easily from item to item. For example, it is not reasonable that if he
wants to explore the set of all books written by Shakespeare, he has to backtrack to
the index (the result of a keyword search for example) to reach the next book in the
set.

As a result of organizing navigation objects into sets, many navigation operations
refer to intra-set navigation, most notably "next", "previous" and "up". Therefore, sets

define links that allow such navigations, and these links have no direct counterparts in
the conceptual model. In other words, there is no conceptual relationship that directly
translates into intra-set navigation links

Unfortunately, most modeling approaches ignore sets as first-class citizens and
therefore operations such as “next” and “previous” are not usual while traversing sets.
To make matters worse, the same node may appear in different sets: e.g. a book
written by Shakespeare may appear in the set of Romantic books or in the set of
books written in England. We may intend to include some comments about the book
in the corresponding context, e.g.: when accessed as a romantic book, some
comments about the role of the book in the romantic period.

OOHDM structures the navigational space into sets, called Navigational Contexts
represented in a Context Schema. Each Navigational Context is a set of nodes and it is
described by indicating its internal navigational structure (e.g. if it can be accessed
sequentially), an entry point and associated indexes. Generally speaking, contexts are
defined by properties of its elements, which may be based on their attributes or on
their relations, or both. There are four special cases that occur more frequently when
stating such properties to define contexts in OOHDM:

1 Simple class derived – includes all objects of a class that satisfy some property
ranging over their attributes; e.g., “ professors with rank = associate”, “paintings with
painter= Van Gogh.

Graphically:

2 Class derived group – is a set of simple class derived contexts, where the defining
property of each context is parameterized; e.g. “professors by rank”, “paintings by
painter” (rank and painter can vary). Graphically, same as 1

3 Simple link derived – includes all objects related to a given object; e.g., “courses
taught by Professor Smith”, “exhibitions where Sun Flowers was presented”.
Graphically, same as 1.

4 Link derived group - a set of link derived contexts, each of which is obtained by
varying the source element of the link; e.g. “courses taught, by professor”, “exhibitions
by painting” (professor and painting can vary). Graphically, same as 1.

Besides the context definition forms above, there are the following additional forms:
5 Arbitrary - The set is defined by enumeration. For example, a guided tour showing
some pictures in a museum or some outstanding research projects. Graphically, same
as 1.

Contexts may also vary during navigation, either because the reader can create or
modify information elements (navigation objects), thus affecting the elements of a
derived context, or because they can explicitly insert or remove objects to the context.
Such contexts are said to be dynamic; examples are history and shopping baskets.

Graphically:

In any of the above, if there is an access structure defined for it, the corresponding
graphical notation contains a small black square in the upper left corner.
Associated to the contexts, there are access structures (indices). They are denoted
graphically by:

Simple Index:

Dynamic Index:

Index with multiple orderings:

The Navigational Context Schema represents contexts and their access structures. In
Figure 2 we show the context schema for the academic site. Notice that for each Node
class (i.e. Student, Professor, Research Result, Research Project, Laboratory, etc) we
have indicated different kinds of contexts and indexes, such as the Main Menu, the
Personnel Category Menu, etc. Arrows indicate both navigational relationships and
possible transitions among navigational contexts.

When the same node (e.g. Research Project, Professor, etc.) may appear in more
than one set (context) we need to express the peculiarities of this node within each
particular context. We may take as a default that “next” and “previous” anchors and
links are automatically defined for traversing each set; but we may also want that
some context-sensitive information appears when accessing a Professor by research
area (for example giving access to the papers he wrote in that area).

In OOHDM this is achieved with InContext classes; for each Node class and each
Context in which it appears, we can define an InContext class that acts as a Decorator
[5] for nodes when accessed in that particular context. Decorators provide a good
alternative to sub-classing, and prevent us from defining multiple sub-classes of the
base Node class. InContext Classes are organized in hierarchies with some base
classes already provided by the design framework; for example InContext classes
defined as sub-classes of InContextSequential inherit anchors for sequential
navigation and for backtracking to the context index. When we do not define
InContext classes, a default one is assumed according to the type of context defined.
It is important to stress that (similarly to context links) InContext classes are not
directly mapped from the conceptual schema as they address a “pure” navigational
concern.

by Research Area

Laboratory

Research Project

by Research Area

by Academic

by Laboratory

for Researchers

Professor

by Laboratory

by Research Project

by Research Area

Research Area

by Professor

ResearchResults +
StudentsProductio n

by Research Area

Academic

Personnel
Category

Menu

Research
Production

Laboratories

Professors
Personel

Research
Areas

Students

 Results

Project
RFP’s

Main
menu

by Academic

Project Menu
Projects for
Sponsors

Projects for
Researchers

 by Query

Alphabetic

for Sponsors

Alphabetic

Alphabetic

Student

by Laboratory

by Research Project

Alphabetic

Fig. 2. Navigational Contexts in an Academic Web site.

The Navigational Contexts Schema complements the Navigational Schema by
showing the way in which nodes are grouped into navigable sets. Additional nodes
behavior can be implemented in InContext classes. In Amazon.com for example when
we access a book in the context of a query we have an option to move it to the
shopping basket. When we access the same book in the context of the shopping basket
we should have other different operations to perform. In the example of the academic
website, presenting a "Research Project" for a sponsor will show different attributes
than those presented when showing the same project to another researcher.

Navigational Objects (nodes, links, contexts, indexes, etc) are documented using a
set of cards (like CRC cards [Wirfs-Brock 90]) that provide complete information for
implementers.

Though OOHDM does not pre-suppose a particular implementation strategy for
mapping contexts to a run-time setting, there are many alternatives whose main
differences are the amount of “intelligence” in client pages and/or the Web server (see
[22] for a discussion). Taking into account the increasing trend towards “object-
orienting” the Web [8], implementing complex navigational structures in Web

applications directly with object technology is already feasible, for example using
Java (see, for instance, [Pizzol 99]).

5 Concluding Remarks and Further Work

In this paper, we have argued that we need several different design models for
building Web applications. We have presented the OOHDM approach that comprises
four different activities, namely: conceptual modeling, navigational design, abstract
interface design and implementation. We have focused on the design of the
navigational structure of Web applications, and have shown that these applications are
built as views on conceptual models. We have described navigational contexts as a
structuring mechanism for improving navigation. In OOHDM the navigational
schema describes which classes will be navigated and how, whereas the navigational
contexts schema provides additional information when dealing with collections of
nodes.

As in most complex design domains, just a method (and a set of modeling
primitives) is not enough for coping with the inherent complexity of Web
applications. We need to understand which recurrent problems we solve and be able
to reuse good design solutions to those problems. Design Patterns [5] are a good
strategy for recording and communicating design expertise about recurrent problems.

During the last four years we have been mining design patterns in the hypermedia
field: we call them hypermedia patterns [15, 16, 18, 19]. We have identified many
recurrent problems and well known design solutions and have recorded them in the
form of patterns. Using these patterns we can improve our ability to build Web
applications; we also simplify the navigational schema as we can use patterns as
higher level constructs, thus reducing the number of connections we have among
navigational classes.

As an example the Landmark navigational pattern indicates that when some sub-
system should be easily reached from every node in the application, we should treat it
in an special way and make it perceivable with a standard interface. Examples of
Landmark can be seen for example in the Book, Music, Gift and Auction subsystems
at Amazon.com or in global navigation bars in most Web applications.

When we identify a Node as being a Landmark it is understood that we would be
able to navigate to that node from every page so we do not need to define all links
pointing to the Landmark. In such cases not only do we obtain a well-behaved
application, but we also simplify the navigational schema. Landmarks show another
kind of links that are not derived from conceptual relationships but are defined
opportunistically to reduce navigation effort and complexity.

We are now working in a project associated with ACM-SigWeb (the ACM special
interest group on Hypermedia and the WWW) for building an online repository of
hypermedia and Web patterns, together with examples, known-uses, implementations
of those patterns, etc.

We are also enriching OOHDM by introducing the concept of Web applications
frameworks (i.e. set of abstract design structures that can be instantiated for different
applications in the same domain); we are defining a notation for describing and

instantiating frameworks [23]. In this way we can build even more abstract conceptual
and navigational schemas that may comprise families of related Web applications. We
believe that our approach may help to obtain greater levels of reuse in the design of
Web applications, and therefore this will reduce development times and costs by
simplifying evolution and maintenance.

6 References

1. Alexander, S. Ishikawa, M. Silverstein, M. Jacobson, I. Fiksdahl-King and S.
Angel:"APattern Language". Oxford University Press, New York 1977.

2. Bieber, M; Vitali, F.;"Toward Support for Hypermedia on the World Wide Web"
IEEEComputer 30(1), January 1997. Also available at:
http://www.cs.unibo.it/~fabio/bio/papers/1997/IEEEC97/January/IEEEC0197.html

3. D. D. Cowan; C. J. P.Lucena, “Abstract Data Views, An Interface Specification Concept to
Enhance Design for Reuse”, IEEE Transactions on Software Engineering, Vol.21, No.3,
March 1995.

4. M. Fowler: "Application Views: Another technique in the analysis and design armoury",
JOOP, Vol 7 N 1., pp 59-66.

5. Gamma, R. Helm, R. Johnson and J. Vlissides: "Design Patterns: Elements of reusable
object-oriented software", Addison Wesley, 1995.

6. H. Gellersen, R. Wicke, M. Gaedke: “WebComposition: An Object-Oriented Support System
for the Web Engineering Lifecycle” Electronic Proceedings of The Sixth International
WWW Conference, Santa Clara, USA, April, 1997.

7. A.M. Hester; R.C.Borges; R. Ierusalimschy; “CGILua: A Multi-Paradigmatic Tool for
Creating Dynamic WWW Pages”, Proceedings of the XI Brazilian Software Engineering
Symposium (SBES’97) pp.347-360, Fortaleza, Brazil, 1997 (available at
http://www.tecgraf.puc-rio.br/~anna/cgilua/ cgilua.ps.gz)

8. IEEE Internet Computing. Special issue on Object-Orienting the Web. January/February,
1999.

9. R. Ierusalimschy, L. H. de Figueiredo and W. Celes, "Lua - an extensible extension
language", Software: Practice & Experience 26 #6 (1996) 635-652. (see also
http://www.tecgraf.puc-rio.br/lua/).

10. W. Kim, "Advanced Database systems", ACM Press, 1994.
11. M.C. Meré, G. Rossi: “Specifying navigational transformations in hypermedia. A temporal

logic framework”. In Bodo Urban (ed) Multimedia’96. pp. 20-31. Springer Computer
Science, Springer Verlag New York, 1996.

12. J. Nielsen: “Hypertext and Hypermedia”. Academic Press, 1990.
13. Pizzol, A.M; Schwabe, D., "A Java Framework for Implementing OOHDM Designs",

Proceedings of the V Brazilian Symposium on Hypermedia and Multimedia (SBMidia 99),
Goiânia, Brazil, May 1999 (In Portuguese).

14. G. Rossi; D. Schwabe; C.J.P. de Lucena; D.D. Cowan, “An Object-Oriented Model for
Designing the Human-Computer Interface of Hypermedia Applications”, Proc. of the
International Workshop on Hypermedia Design (IWHD'95), Springer Verlag Workshops in
Computing Series. (available at <ftp://ftp.inf.puc-rio.br/pub/docs/techreports/
95_07_rossi.ps.gz>).

15. Rossi, A. Garrido and S. Carvalho: "Design Patterns for Object-Oriented Hypermedia
Applications". Pattern Languages of Programs 2, Vlissides, Coplien and Kerth eds., Addison
Wesley, 1996.

16. G. Rossi, D. Schwabe and A. Garrido: “Design Reuse in Hypermedia Applications
Development” Proceedings of ACM International Conference on Hypertext (Hypertext’97),
Southampton, April 7-11, 1997, ACM Press.

17. G. Rossi and A. Garrido: "Capturing Hypermedia Functionality in an Object-Oriented
Framework", to appear in Object-Oriented Frameworks, Wiley 1999.

18. G. Rossi, F. Lyardet and D. Schwabe: “Patterns for designing navigable spaces”To appear
in Pattern Languages of Programs 4, Addison Wesley, 1999.

19. G. Rossi, D. Schwabe, F. Lyardet: “Improving Web information systems with navigational
patterns” To appear in International Journal of Computer Networks and Applications, 1999.

20. D. Schwabe and G. Rossi:, “The Object Oriented Hypermedia Design Model”, Comm. of
the ACM, Vol. 38, #8, pp45-46 Aug. 1995. (available at <http://irss.njit.edu:5080/cgi-
bin/bin/option.csh?sidebars/schwabe.html>).

21. D. Schwabe, G. Rossi and S. Barbosa: "Systematic Hypermedia Design with OOHDM".
Proceedings of the ACM International Conference on Hypertext (Hypertext'96),
Washington, March 1996.

22. D. Schwabe, G. Rossi: “An object-oriented approach to web-based application design”.
Theory and Practice of object Systems (TAPOS), October 1998.

23. D. Schwabe: “Just Add Water” Applications: Hypermedia application frameworks.
Proceedings of the 2nd Workshop on Hypermedia Development, Darmstad, February 1999.
Available at:
http://ise.ee.uts.edu.au/hypdev/ht99w/submissions/SchwabeHT99Workshop.pdf.

24. UML Document Set. Version 1.013 January, 1997, Rational, 1997. (available at
http://www.rational.com/uml/references/index.html)

25. C. Varela, D. Nekhayev, P. Chandrasekharan, C. Krishnan, V. Govindan, D. Modgil, S.
Siddiqui, , D. Lebedenko, M. Winslett: “DB: Browsing Object-Oriented Databases over the
Web”. Proceedings of the Fourth International World Wide Web Conference. pp. 209-220,
1995.

26. The Visual Work Programming Environment. Parc Place-Digitalk, 1996.
27. The VisualWave Programming Environment. Parc Place Systems. In

http://www.parcplace.com/products/vwave/vwv_prod.htm.
28. R. Wirfs-Brock et al: “Designing Object-Oriented software”. Prentice Hall, 1990.

