
1

An Object Oriented Approach to Web-Based Application Design

Daniel Schwabe* and Gustavo Rossi**

(*)Departamento de Informática. PUC-RIO, Brazil

E-mail: schwabe@inf.puc-rio.br

 (**)LIFIA, Fac Cs. Exactas, UNLP, Argentina; CONICET; UNLM

E-mail: gustavo@sol.info.unlp.edu.ar

Abstract

In this paper we discuss the use of an object-oriented approach for web-
based applications design, based on a method named Object-Oriented Hypermedia
Design Method (OOHDM).

 We first motivate our work discussing the problems encountered while
designing large scale, dynamic web-based applications, which combine complex
navigation patterns with sophisticated computational behavior. We argue that a
method providing systematic guidance to design is needed. Next, we introduce
OOHDM, describing its main activities, namely: conceptual design, navigational
design, abstract interface design and implementation, and discuss how OOHDM
designs can be implemented in the WWW. Finally, related work and future research in
this area are further discussed.

1. Introduction. The problems of hypermedia design

The emergence of the World Wide Web has raised a new generation of
information systems: those combining navigation through a heterogeneous
information space with operations querying or affecting that information. The WWW
provides a simple client-server architecture, and, most importantly, from the point of
view of application design, it introduces the hypertext (or hypermedia) paradigm.

The first hypermedia applications, typically distributed in CD ROMs, were
thought of as unchangeable applications that were not meant to be maintained or
modified for new releases, possibly as a consequence of physical properties of their
support media. The evolution of technology, most notably the phenomenal growth of
the WWW, has given rise to applications that are constantly modified, that are
enriched with new services, and new navigation and interface features are added
according to the organization’s marketing policy. As such, we argue that good web-
based applications should be, first of all, be good hypermedia applications;
furthermore, the WWW poses certain constraints that are reflected mostly in the
interface and in the architecture of the implementation.

Traditional software engineering methodologies, or methodologies for
developing information systems using databases, do not contain useful abstractions
capable of easing the task of specifying applications that embody the hypertext
metaphor. For example, they do not provide any notion of linking, and very little is
said about how to incorporate hypertext into the interface. In addition, as the size,
complexity and number of applications grows, a systematic approach is needed that

2

helps dealing with complexity, and allows evolution and reuse of previously gathered
design knowledge.

Producing applications in which the user may benefit from the hypertext
paradigm for navigating through Web-sites, while performing complex transactions
over its information base, is a difficult task [Gellersen97]. In [Bieber97], the authors
point out that while many organizations will embrace the WWW, there is a risk of
losing well-known advantages of hypertext in the web. Meanwhile, if we look
carefully at new products supporting the development of Web-applications we find
that the suggested approach for building these applications is just designing them
as if they were to run in a non-web environment. As exemplified by Parc-Place’s
Visual Wave [VWave96] or Applied Reasoning’s Classic Blend [CBlend96]), only some
aspects related with concurrent access to shared databases are taken into account.
Navigation, which is a distinguishing feature of Web-based applications, is not
considered at all.

 What are the inherent complexities in this kind of software? First, navigation
poses many problems, as repeatedly reported in the literature [Nielsen90]. A healthy
navigational structure is one of the keys to success in hypermedia applications. When
the user understands where he can go, and how he can reach a desired target point,
he can benefit the most from the application. When navigation is combined with
multimedia data, new problems appear [Hardman93]. For example, what happens
when we navigate (in) to a node with an active multimedia presentation? In addition,
what happens if we leave it?

Building the interface of a web application is also complex; not only do we
need to specify which interface objects should be implemented, but also the way in
which those interface objects will interact with the rest of the application. For
example, we need to distinguish when an interface action causes navigation to
another page, when it is just a local interface effect (for example activating a pop-up
menu), etc.

Experience already gathered in building interactive applications shows that
using object-oriented techniques is a key approach, especially in the case of large
scale, evolvable applications. Many companies are now retrofitting existing interactive
applications to the WWW (or to intranets using the WWW protocols), which entails
adding hypertext functionality on top of existing application behavior. The
combination of these functionalities is often difficult, since different design concerns
must be accommodated.

As we discuss in section 2, modern design methodologies tend to neglect one
of those dimensions: in general object-oriented design methods do not provide
primitives for specifying navigation, while hypermedia design approaches emphasize
structural aspects, ignoring computational behavior.

The approach presented in this paper is based on the Object-Oriented
Hypermedia Design Method (OOHDM) [Schwabe 96a; Rossi 96d; Schwabe 95 a;
Schwabe 95b]; we show that our method provides high level abstraction and
composition mechanisms aimed at solving most of the previously mentioned
problems. We first describe each of the OOHDM underlying design models and their
design concerns. We discuss how OOHDM designs can be implemented in the WWW.

3

Finally, we compare our work with others in the hypermedia and object-oriented
design field and discuss further research in this area.

2. The Object-Oriented Hypermedia Design Method

There is a growing consensus about the kind of activities that must be
performed with respect to the software product: modeling or analysis, design,
implementation, testing and maintenance. This is true regardless of the different life-
cycle models specifying the sequencing of processes and products involved in the
development of an application (e.g. the spiral and waterfall model). In this respect,
the process of building web-based (or more general hypermedia) applications is not
intrinsically different from the one used when building conventional applications.

In the hypermedia domain there are conflicting requirements that must be
satisfied in a unifying framework. On one hand, in the final application, navigation
and functional behavior must be seamlessly integrated. On the other hand, during
the design process we should be able to decouple design decisions related with the
application's navigational structure from those related with the domain model itself.
Since most implementation environments do not give full support to object-oriented
concepts, our design models should easily translate into existing platforms.

According to OOHDM, the development of hypermedia applications occurs
as a four activities process – Conceptual Design, Navigation Design, Abstract Interface
Design, and Implementation – that are performed in a mix of iterative and incremental
styles of development; in each step a model is built or enriched.

The cornerstones of the OOHDM approach are

1. The notion that navigation objects are views, in the database sense, of
conceptual objects;

2. The use of appropriate abstractions to organize the navigation space,
with the introduction of navigational contexts;

3. The separation of interface issues from navigation issues;

4. An explicit identification that there are design decisions that need only
be made at implementation time.

The starting point is the elaboration of a model of the application domain,
which determines the universe of discourse. This is done during the Conceptual
Design phase, using well known object-oriented modeling principles [Wirfs-Brock 90,
Rumbaugh 91] augmented with some primitives such as attribute perspectives and
sub-systems.

The Conceptual Model represents two kinds of objects: those that will be
eventually perceived as nodes in the navigational model (called Entity Objects by
Jacobson [Jacobson 92]); and those that provide computational support for the
application, encapsulating behaviors such as algorithms, access to databases, etc.
The resulting model may possible serve as a basis for many applications, and does
not include any navigation specific information.

4

One essential distinguishing feature of hypermedia applications is the notion
of navigation, in which the user of an application in this domain navigates in a space
made out of objects. These objects are not the same as the conceptual objects, but
rather objects customized to the user’s profile and tasks. This customization is
achieved using the view mechanism between objects, analogously to views in
databases.

In this fashion, navigation object attributes are a “cut and paste” of possibly
several different conceptual object attributes, which is indicated by the patterned
boxes in Figure 1. Navigation objects may also have their own behavior, implementing
functionalities beyond browsing and navigation, e.g., updates and computations in
general. When a full O-O environment is used, nodes may be implemented as
observers of conceptual objects.

Another step in structuring the Navigation space is provided by collecting
the objects of the navigational space in meaningful sets called Navigational Contexts.
There are several possible criteria for defining such collections of nodes, based on
class attributes and relationships. During Navigational Design we also define the way
in which navigation will proceed by specifying transformations in the navigational
space, i.e. the set of accessible navigational objects at a given time.

Navigation objects are not directly perceived by the user; rather, they are
accessed via interface objects. Accordingly, the Abstract Interface Design specifies
interface objects that are responsible for mediating user interaction with navigation
objects. The interface model specifies which interface objects the user will perceive;
which interface objects will activate navigation; how multimedia interface objects will
be synchronized; and the interface transformations that will take place.

Finally, the Implementation phase is responsible for mapping conceptual
objects, navigation objects and interface objects onto the particular runtime
environment being targeted. When the target implementation environment is not fully
object-oriented, we have to map the conceptual, navigational and abstract interface
objects into concrete objects, i.e. those available in the chosen implementation
environment. This may involve defining HTML pages (or, for example, Toolbook
objects in non Web-based environments), scripts in some language, queries to a
relational database, etc; in this way the author produces the actual hypermedia
application to be run.

5

Conceptual Model

Interface Model

Interface Model

Interface Model

Interface Model

Navigational Model

Navigational Model

Object-Oriented View

Object-Oriented View

Figure 1 - Relation among Conceptual, Navigational and Interface Objects in OOHDM.
Navigation classes are views over Conceptual Classes; Interface objects
mediate interaction of Navigation objects with the outside world, including
users. (Shaded boxes stand for Class Attributes).

In this work we will describe each activity in more detail, discussing with
concrete examples the way in which each design formalism helps in gaining
understanding of hypermedia, and in particular web-based, applications. We define
how the designer proceeds from Conceptual modeling through Navigation design to
Interface design and Implementation.

2.1 Conceptual Modeling

During this activity, we build a conceptual schema representing objects,
their relationships and collaborations existing in the target domain. In “conventional”
hypermedia applications, i.e. those in which the hypermedia components will not be
modified during their execution, we could use a structural semantic model
[Banerjee87]. However, when either the information base may change dynamically or
we intend to perform complex computations or queries on the objects or the schema,
we need a behaviorally richer object-oriented model.

In OOHDM, the conceptual schema is built upon classes, relationships and
sub-systems. Classes are described as usual in object-oriented models, though
attributes may be multi-typed representing different perspectives of the same real-
world entity. We use a notation that is similar to UML [OMG 00]. Class and
Relationships Cards, similar to CRC cards [Wirfs-Brock 90] are used as a
documentation aid, helping to trace design decisions forward and backwards.
Different processes of object modeling and design are proposed and discussed by

6

object-oriented methodologies and bibliography in the field. However, there are
some modeling decisions appearing in any process that may impact on the
navigational structure of hypermedia applications. In this paper, we will focus on
design decisions affecting such structure.

We briefly describe our modeling primitives in the following paragraphs. As
most of them are slight variations of their counterparts in object-oriented modeling
and design methods, we do not elaborate them further. Instead, we will focus on
those issues that affect the navigational design activity.

In OOHDM the class schema consists of a set of classes connected by
relationships. Objects are instances of classes, and thus, when a relationship holds
between classes, it abstracts corresponding object-to-object relationships. Classes
will be used later during Navigational Design to derive Nodes, and Relationships will
be used to derive Links.

Figure 2 contains a simple schema for an online magazine. In this model,
there are stories, which can be essays, translations or interviews; an interview is an
aggregation of questions and answers. Every story has an author, and an interview is
also related to the person who grants the interview.

Q&A
Question: string
Answer: string

Essay
Illustration: [Photo+,Video]

Person
Name: string
Bio: string
Address: string
Telephone: string
URL: string
Email: string
Photo: image

Translation
Link to original
Comments

Interview
Sound
Illustration:

[Photo,Video]

Story
Type: string
Title: string
Sub-title: string
Date: date
Summary: string
Text: string
Distribution: {local,

national}

Is Author of

grants

Related to

Figure 2 - Conceptual Model for an online Magazine

It should be noted that there is no class “Magazine” in this schema; the
magazine as such will be realized in the Navigational Design phase.

In this Class Schema, we have emphasized relationships over class behavior
for simplicity. Class attributes are typed, and represent the object’s intrinsic
properties (e.g., the story’s title, the author’s name, etc.). Each possible type is called
a perspective, similar to HDM’s [Garzotto 93], exemplified in Figure 2: the attribute
Illustration of an Essay may be either a Photo or a Video. When multiple
perspectives exist, the notation "[p1, p2]" is used, and a “+” may be added next to a

7

perspective to mark it as default, as is the case for Photo of Illustration. Only the
default perspective must be present in all instances, whereas the others may or may
not be implemented.

We will refine this specification during Navigational and Abstract Interface
Design by defining which perspective is shown, when and how. Clearly, when we
implement classes in the conceptual model, we need to specify one instance variable
for each perspective.

Deciding whether to express a relationship as an attribute, a method or a
combination of both is a design issue that has been largely discussed in the object
community. In fact current object-oriented modeling approaches use relationships as
“first-class citizens”, thus relegating the discussion to the design and implementation
step. As an alternative, behavioral approaches such as Wirfs-Brock’s responsibility
driven design [Wirfs-Brock 90] favor using collaboration diagrams instead of
relationships in the style of UML.

From the hypermedia design point of view relationships express an
important aspect of the application domain and they should not be hidden in class
attributes (at least until we need to implement those classes). This means that a
relationship should be specified whenever an attribute represents a complex
conceptual entity intended to be explored in the final hypermedia. In fact, when
implementing web applications using an object-oriented architecture, providing
access to relationships will be a responsibility of the source class and will be
implemented as a method, perhaps accessing an instance variable. In [Lange94], an
extension to the OMT class diagram [Rumbaugh91] is presented to enhance
relationships.

In our design approach, we provide three abstraction constructs for dealing
with complexity: Aggregation, Generalization/Specialization and a packaging concept,
Sub-Systems. The first one is useful for describing complex classes as aggregation of
simpler ones and the second for building Class Hierarchies and using inheritance as a
sharing mechanism. Sub-Systems are a packaging mechanism for abstracting entire
domain models.

Part-of relationships (Book chapters, Car parts) are described using
aggregation relationships. Aggregates in a class definition are similar to components
in HDM [Garzotto 93]. Implicit relationships exist between a complex object and its
parts (and vice versa) and between part themselves. These are called structural links
in HDM. In the example in Figure 2, an Interview is composed of Q&As (question-
answer pairs).

Choosing to use aggregate objects, complex attributes or relationships is a
modeling decision that may vary from application to application. Given that
aggregation is an important structural relationship, we suggest decomposing an
object into parts each time these parts are supposed to be explored in the
hypermedia application as non-atomic ones. Existing heuristics in the object-oriented
modeling domain may be used to identify aggregation structures.

We use the same inheritance semantics as in [Rumbaugh 91] i.e. classes
inherit attributes, part-structure, relationships and behavior of their super-classes. In
Figure 2, a Story may be either an Essay or a Translation or an Interview.

8

Using a behavioral object-oriented model for describing different aspects of
a hypermedia application allows expressing a rich variety of computing activities
such as dynamic queries to an object base, on-line object modifications, heuristics-
based searches, etc. The kind of behavior required in the conceptual model depends
upon the desired features of the application. For many web applications, in particular
those implementing plain browsing (i.e. read-only) functionality, class behavior
beyond linking functionality may seem unnecessary. In this case, the behavior
amounts to accessing a multimedia information base by navigating over relationships,
and could be “built-in” into the model itself.

In contrast, in applications in which the underlying information base may
change dynamically as the effect of user actions, or when the hypermedia network is
just a component of a larger corporate application, we may need to define methods
that implement this behavior in conceptual classes. During Navigational and Interface
design, we will specify the way in which interface objects trigger behavior both in the
navigational and conceptual models.

Since OOHDM is a design method and not an implementation framework, we
shall assume that methods for getting the value of attributes of an object are
automatically generated. When other computations must be done, corresponding
methods should be specified. Using the terminology of object-oriented methods, we
may say that the Conceptual Model will contain features of both Analysis and Design
Models. When the application will run on top of an environment supporting
(distributed) objects, classes in the conceptual model will be implemented directly as
they are defined, specifying multiple perspectives as separate attributes. If not, they
will serve as design specifications for the navigational and interface design activities.

2.2 Navigational Design

The first generation of web applications was intended to perform navigation
through an information space using a single hypermedia data model. The simplicity
of HTML as the implementation language and the lack of a hypermedia design
culture resulted in web sites in which users experienced cognitive overhead and dis-
orientation while navigating the web. To make matters worse, there are no good
orientation tools for existing browsers, and most existing tools (such as MAPA,
http://www.dynamicdiagrams.com) provide a map of the “node and link” level,
which quickly becomes unwieldy. In addition, such maps are not well defined in the
case of dynamically generated pages.

In spite of these problems being well known in the hypermedia community
(see for example [Nielsen 90]), they have seldom been taken into account by web-site
designers. Most of the design effort has been usually placed in user interface
aspects, and the navigation structure is built on simple hierarchies. Now that web
browsers are the interface, and sometimes the host, for different kinds of
applications, there is a risk that navigation be considered just another kind of
application behavior.

In OOHDM, navigation is considered a critical step in the design of a
hypermedia application. A Navigational Model is built as a view over a conceptual
model, thus allowing the construction of different models according to different users
profiles. Each navigational model provides a “subjective” view of the conceptual

9

model [Harrison 93]. While designing the navigational structure of a web application,
we will take into account several aspects such as:

• Which objects will be navigated, which attributes they possess, and what are the
relationships among these objects and the ones defined in the conceptual
schema? We will do this by defining nodes and links as object-oriented views of
conceptual objects and relationships.

• What kind of composition structures exist among navigational objects and how are
they related?

• What is the underlying structure of navigation? In which contexts will the user
navigate? We will introduce the concept of navigational contexts, an architectural
primitive for organizing the navigation space.

• We need to decide whether navigated objects may look different according to the
context in which they are visited, and we must clearly specify those differences.
We shall use InContext classes to “decorate” navigational objects.

• Which connections and access structures exist among objects that will be
navigated (links, paths, indices, guided-tours, etc.)?

• How does navigation proceed when the user “jumps” from one object to another,
i.e., what is the effect of navigation on the source and target object and possibly
on other related objects as well?

 Navigation design is expressed in two schemas, the Navigational Class
schema and the Navigational Context schema. The navigable objects of a hypermedia
application are defined by a navigational class schema, whose classes reflect the
chosen view over the application domain. In OOHDM, similarly to HDM [Garzotto 93]
and RMD [Isakowitz 95], there is a set of pre-defined types of navigational classes:
nodes, links, and access structures. The semantics of nodes and links are the usual in
hypermedia applications, and access structures, such as indices and guided tours,
represent possible ways of accessing nodes.

 The Navigational Transformations specification describes the dynamics of the
application, showing the way the navigational space changes when the user
navigates, i.e. which nodes are activated and which are deactivated when a link is
followed. The default navigational semantics in OOHDM is that when a link is
followed, the source node is deactivated and the target node activated. This
interpretation is the default one commonly found in Web browsers. Since navigational
dynamics that are more complex are hard or infeasible for implementation in the
web, we will not discuss the primitives of the Navigational Transformations schema
further. The reader can refer to [Meré 96, Rossi 96c] to see a temporal logic based
specification of navigational transformations and [Rossi 96d] where a variant of
Harel’s Statecharts and Coleman’s Objectcharts have been used.

 In order to define nodes as object-oriented views of conceptual classes
defined during conceptual design, we use a query language similar to the one in [Kim
94]. We allow a node to be defined by combining attributes of different related
classes in the conceptual schema. Nodes possess single typed attributes, link
anchors, and may be atomic or composite, as in [Gronbaek 94]. Anchors are instances

10

of Class Anchor (or one of its sub-classes) and are parameterized with the type of
Link they host. The standard navigational behavior when a node receives the
message “anchorSelected ()” is to delegate the message to the corresponding
anchor, which in turn activates the corresponding link. In this way it should be
possible to re-define the standard Node or Anchor behavior so as to perform checks
before navigation proceeds.

 In an analogous way, links reflect relationships intended to be explored by
the final user and are also defined as views on relationships in the conceptual
schema.

 Links connect navigational objects and may be one-to-one or one-to-many.
The result of traversing a link is expressed by either defining the navigational
semantics procedurally as a result of the link's behavior or by using an object-
oriented state transition machine similar to Statecharts [Rossi 96d]. Access structures
(such as indices or guided tours) are also defined as classes and present alternative
ways for navigation in the hypermedia application. In object-oriented architectural
terms, the relationships among nodes and conceptual objects, and among links and
relationships in the schema, are expressed as instances of the Observer design
pattern (see “Observer” pattern in [Gamma 95]). The general syntax for defining a
node’s attributes is shown below (the syntax for links is similar).

 NODE name [FROM className: varName] [INHERITS FROM nodeClass]

 attri: type1 [SELECT name1] [FROM class1:varName1, classj: varNamej

 WHERE logical expression]

 attr2: type2 [SELECT name2]...

 ...,

 attrn: typen [idem]

 END

 Where

• name is the name of the class of nodes we are creating.

• className is the name of a Conceptual Class (from which the node is being mapped).

• nodeClass is the name of the super-class

• attri are the names of attributes for that class, typei the attribute’s types.

• namei are the subjects for the query expression and vari are mute variables used to express

logical conditions.

• -logical expression allows defining classes whose instances are a combination of objects

defined in the conceptual schema when certain conditions on their attributes and/or
relationships hold.

As an example, consider the online magazine example in Figure 2. With this
simple syntax we can define, for example, a Node Class Story , including as one of its
attributes the name and bio of the Person who wrote it and an anchor of a link to
that Person. Note that, in the Conceptual model, the Person’s name and bio are
attributes of Class Person. Considering Nodes and Links as views on the Conceptual
Classes allows one to create navigational objects opportunistically, according to user
profiles and tasks, without modifying the conceptual objects.

11

The example above will result in the following Node definition:

 NODE Story [FROM Story:St] [INHERITS FROM Person]

 author: String [SELECT Name] [FROM Person:Pr WHERE Pr Is Author of St]

 auhtor_bio: String [SELECT Bio] [FROM Person:Pr WHERE Pr Is Author of St]

 (other attributes “preserved” from the conceptual class Story}

 toAuthor: Anchor (Is Author of)

 END

Note that the value of the toAuthor attribute is an anchor that is
parameterized with the Link class Is Author of. When defining the interface
appearance of Node Class Story we can, for example, make the anchor appear as an
invisible button on top of the name of the author (attribute author). Though it may
seem that both attributes have the same behavior, only the anchor acts in response
to an interface event.

Figure 3 contains a navigational schema for the online magazine. Notice that
in this application it was decided that Persons (cf. Figure 2) should not appear, and
therefore the relevant information was included in class Story , as exemplified in the
previous paragraph. The same has been done to the Person who granted an
Interview, which is a sub-class of Story.

Q&A
Question: string
Answer: string

Essay
Illustration: [Photo+,Video]

Translation
Link to original
Comments

Interview
Interviewee:string [SELECT Name]

[FROM Person:Pr WHERE Pr
Grants St]

Recording: Sound
Illustration: [Photo,Video]

Story
Type: string
Title: string
Sub-title: string
Date: date
Summary: string
Author: string [SELECT Name] [FROM

Person:Pr WHERE Pr Is Author of St]
Author_Bio: string[SELECT Bio] [FROM

Person:Pr WHERE Pr Is Author of St]
Text: string
Distribution: {local, national}

Related to

Figure 3- Navigational Schema of the online Magazine. Notice that class Person does not
appear; the author’s attributes are now part of the Story. The same happens to
the Person who grants an Interview.

Well-designed hypermedia applications must take into account the way in
which the user explores the hypermedia space. Redundant information should be
judiciously used and we must be able to help the user to choose the way in which he
navigates in a consistent and controlled way. Unfortunately, nodes and links are not

12

enough to fulfill this goal, even if we allow compositions as in the Dexter model
[Gronbaek 94]. Though the usual solution to this problem is to implement orientation
tools, we also think that higher level architectural navigation primitives must be used
– this is the point where navigational contexts appear.

In OOHDM, the main structuring primitive of the navigational space is the
notion of navigational context (see [Schwabe94, Schwabe 95b, Barbosa 95] for a
more extensive discussion). A navigational context is a set of nodes, links, context
classes and other (nested) navigational contexts. It may be defined intensionally or
extensionally, by either defining a property that all nodes and links in the context
possess, or by enumerating its members. The definition of a context also includes a
traversal order of its elements, and the existence or not of associated access
structures.

Although any set definition is valid for defining a context, there are five
commonly occuring ways in which contexts can be defined:

1. Simple class based – Objects in this kind of context belong to the same
class C and are selected by giving a property P that must be satisfied by
all elements: Context = {e | P(e), e ∈ C}. A common case is when it

includes all instances of a class (P is identically true) – e.g., all stories.

2. Class based group - Is a set of contexts, each of which is a simple class
based context. It is specified by giving a parameterized property and
letting the parameter assume all possible values (in a finite enumerable
domain). For example, Stories by type is a group of contexts; its elements
are simple class based contexts, one for each possible value of type,
containing stories whose “Type” attribute equals type. Group =
{Contexttheme}, Contexttheme = {p | p.type=type, p ∈ Story}.

3. Link based – Objects in this kind of context are of the same class and are
selected when they belong to a 1-to-n relationship. For example, “all
Stories by Bob Woodward”. Context = {p | Is Author Of(Bob Woodward,
p), p ∈ Story. Note that a particular case of this type is the context

formed by all elements that are part of a composite object.

4. Link based group - Is a set of contexts, each of which is a link-based
context. It is specified by giving a 1-to-n relationship and forming the link
based contexts for each possible value of the source of the relationship.
For example, “Stories by Author”. Group = {ContextAuthor}, ContextAuthor =
{p | Is Author Of(Author, p), p ∈ Story}.

5. Enumerated - In this kind of context, elements are explicitly enumerated,
and may belong to different classes. A typical example is a Guided Tour.

In addition to its elements, there is another dimension along which context
are defined, relative to a navigation session. If the elements of a context can vary as a
consequence of the navigation by the user, the context is said to be dynamic. An
example of this type of context is the “history” maintained by many browsers;
another example is a “shopping basket”, which the reader builds while browsing
through objects (for example, books) in other contexts. Both are instances of
Enumerated Dynamic contexts. If the application allows the creation or modification

13

of objects (class instances), all context derived from these objects (classes) will be
dynamic as well; the same is true in the case of link creation and link-based contexts.

Navigational contexts play a similar role as collections [Garzotto 94] and have
been inspired by the concept of nested contexts [Casanova 91]. Navigational contexts
organize the navigational space in consistent sets that can be traversed following a
particular order; they should be defined in such a way as to help the user to perform
his intended task.

In Figure 4 we show the Navigational Contexts Schema for the online
magazine; notice that the magazine (issue) is formed by stories that are grouped
according to several different criteria.

Story

by Author

by Section

by QueryMain
Menu

Index of
Sections

Highlights

Summary

Highlights

Authors Author
Index

by reference

Query
IndexQuery

Error! Bookmark not defined. Figure 4- Navigational Context Schema for the online
magazine application

We briefly explain the notation used in the diagram. Indices are indicated by
boxes with bold, dashed lines, such as the “Main Menu”. The simplest type of
context (sets of nodes) is denoted by

Highlights

Figure 5 - Notation for Simple Context

This indicates, in this example, a set of stories that are featured as
“highlights” of a given issue.

In many situations, there will be groups of contexts that encompass nodes of
the same class, according to different criteria. For example, Stories may be organized
according to the different sections or authors. We denote this by

14

Story

by Section

by Author

Figure 6: Notation for Context Group

In this case, we have two groups of contexts – one made out of contexts that
gather stories for each section and one that gather stories by each author. The black
box on the top left corner indicates that the group possesses an index to its
components. The definition of the context itself will specify the types of navigation
allowed inside the context; typical values are “sequential”, “circular sequential”,
“index” (where it is possible to navigate only from an index to an element and back),
or “index sequential”.

The absence of a dashed line between the groups indicates that it is
possible to switch automatically from a context in one group to a context in the other
group. This is not the case for context groups “by reference”, “by query”, and for
the simple context “highlights” , which are all separated by dashed lines in . This
means, for example, that if the reader is looking at a story in a given section, he will
be allowed to navigate to either “the next story in this section” or to “the next story
by the same author”. However, he would not be allowed to navigate “to the next
highlight” (which would not even make sense!).

The arrow going from “Story” back to itself indicates that stories may refer
to other related stories. If the reader is looking at a story, and then follows a link to a
related story, he will reach the context in which all related stories are grouped. At
this point, he must go back either to the original story, as indicated by the double
arrow, or to the summary index, as indicated by the arrow from “Story” to the “Index
of Sections”.

Nodes are enriched with a set of special classes (we call them InContext
classes) that allow a node to look different and present different attributes (including
anchors), as well as methods (behavior) when navigated within a particular context
(see Figure 7). For example, when traversing “Stories by Bob Woodward”, the
author’s bio might not be included as an attribute of the story, whereas it might be
included when traversing “Highlights” – see Figure 8. This enrichment follows closely
the structure of the Decorator Design Pattern [Gamma95].

15

Node

Decorator

Context
 node

Link

Figure 7-A node in a context is constructed from a basic node and a decorator.

Story
Type: string
Title: string
Sub-title: string
Date: date
Summary: string
Author: string [SELECT Name] [FROM

Person:Pr WHERE Pr Is Author of St]
Text: string
Distribution: {local, national}

Highlights

Author_Bio: string[SELECT Bio] [FROM
Person:Pr WHERE Pr Is Author of St]

Next: anchor(“next”, “Highlights”)
Previous: anchor(“previous, Highlights”)

Figure 8 Specification of InContext class for “Story” within “Highlights” contexts. In this
case, the author’s bio is only seen when a story is being accessed within the
“Highlights” context.

Notice that the “previous” and “next” links are also attributes that belong
to the InContext class for “Story” in the “Highlights” context. Other contexts, if they
have sequential navigation, would add their own separate “next” and “previous”
anchors.

2.3 Abstract Interface Design

Once the application’s navigational structure has been defined, we must
specify its interface aspects. This means defining the way in which different
navigational objects will appear, which interface objects will activate navigation and
other application functionality, and which interface transformations will take place
and when.

A clean separation between both concerns, navigational and abstract
interface design, allows building different interfaces for the same navigational model,
leading to a higher degree of independence from user-interface technology. In
addition, this separation allows a better understanding of the overall application
structure by clearly indicating which transformations in the interface are also
navigational transformations. It also indicates which are simply local interface
transformations that do not affect the state of the navigation and therefore do not
require accessing the web server.

Though it has been argued that the user interface aspect of interactive
applications (in particular web applications) is a critical component, modern
methodologies tend to neglect this aspect. They relegate the specification of the

16

interface to implementation-dependent tools, and therefore design decisions at this
level are seldom documented. Moreover, as implementing the interface of Web
applications is usually done by means of specialized HTML editors, many critical
aspects of the interface may be ignored.

In OOHDM, we use the Abstract Data View design approach for describing
the user interface of a hypermedia application [Cowan 95]. ADVs are objects in that
they have a state and an interface, where the interface can be exercised through
messages (in particular, external events generated by the user). ADVs are abstract in
that they only represent the interface and the state, and not the implementation.
ADVs have been used to represent interfaces between two different media such as a
user, a network or a device (a timer, for example) or as an interface between two or
more Abstract Data Objects (ADOs). ADOs are objects that do not support external,
user-generated events [Cowan 95]. From an architectural point of view, ADVs are
observers for ADOs, so the communication protocol among interface and application
objects follows the rules described in the Observer Design Pattern [Gamma 95].

An ADV used in the design of web applications can be viewed as an interface
object. It comprises a set of attributes (and nested interface objects) which define its
perception properties, and the set of events it can handle, such as user-generated
events. Examples of user-generated events are MouseClick, MouseDoubleClick,
MouseOn, etc.. ADVs can be easily implemented in object-oriented environments for
the Web (such as VisualWave, Classic Blend or Java’s ones) or may be translated to
HTML documents.

Attribute values may be defined as constants, thereby defining particular
styles of appearance such as position, color, or sound. The ADV interface model
allows treating these features in an abstract way, relegating them to the
implementation step. In general, the ADVs specify the organization and behavior of
the interface, but the actual physical appearance or the attributes, and layout of the
ADV on screen real estate is done in the Implementation phase.

A reserved variable, "perceptionContext", is used to indicate modifications
to the perception space (i.e. the set of perceivable objects at a given moment). When
we want to make some object perceivable we add it to perceptionContext, and
elements removed from perceptionContext are no longer perceivable.

In the context of OOHDM, navigational objects such as nodes, and indexes
will act as ADOs, and their associated ADVs will be used for specifying their
appearance to the user. We will use the term ADV for referring to interface classes
and objects. When necessary we will talk about ADV classes.

Different abstraction and composition mechanisms are used in the ADV
design approach; first ADVs may be composed by aggregation or composition of
lower-level ADVs, thus allowing the construction of user-interfaces with nested
perceivable objects. Suppose, for example, that we have an application about
paintings. Figure 9 shows how an ADV describing a painting could be made out of
three ADVs, containing an image, text, and a button. Furthermore, ADVs may be
organized in generalization/specialization hierarchies that provide a powerful
conceptual framework for defining hierarchies of interface objects. In Figure 10, we
show the use of inheritance in ADVs.

17

ADV Painting

ADV ImageField

ADV ButtonADV TextField

 Application

AnchoredText (is a TextField)

Description (is a Button)

Anchors: {Anchor}

Figure 9- ADVs can be aggregations Figure 10 - ADVs use inheritance

In Figure 10, AnchoredText is an Interface Object that adds a set of anchors
(implemented for example as hotwords) to the more general TextField. Meanwhile
Description is a specialized Button by adding a more customized behavior (not shown
in the Figure). When we implement our Web application using an environment
supporting certain particular kinds of interface objects, we may use them as the
primitive ADVs for producing our design specification.

In summary, ADVs, allow us to express:

• the way in which interface objects are structured using aggregation and
generalization/specialization as abstraction mechanisms. ADVs express the
static layout structure that implements the interface metaphor [Hannemann 93].
ADVs allow defining the interface appearance of navigational objects and other
useful interface objects (such as menu bars, buttons and menus).

• the way in which they are statically related with navigation objects. We use
Configuration Diagrams [Coleman 92] as a diagrammatic tool for expressing
these relationships.

• how they behave when reacting to external events; in particular how they
trigger navigation and which interface transformations occur when the user
interacts with the application. We use ADV-Charts [Carneiro 94], a derivative of
Statecharts, that adds both structural and behavioral nesting and a Petri-Net
like notation for expressing synchronization issues typical of multimedia data.
For reasons of space, will not elaborate ADV-Charts in this paper.

The modeling constructs we use during navigational and abstract interface
design are very similar – in fact, we use classes and objects with a formal connection
model. Consequently, we obtain a seamless transition between both activities,
allowing incremental construction of the navigational and abstract interface models.
At the same time, relevant design decisions are recorded using a notation that is
powerful and concise. In Error! Reference source not found.8 we show an ADV
corresponding to the design of the Portinari web site (http://www.portinari.org.br/) a
hypermedia application containing part of the work and documents related to
Candido Portinari, a famous Brazilian painter (see also Error! Reference source
not found.9).

18

Picture
name: String
iImage: Bitmap

ADV Painting

theme: String
date: String
techniqueText
comments: Text

References

People

ShowReferences

ShowPeople

 InContext Theme

Previous Next

Figure 11- ADV Painting in Portinari Web Site

ADV Painting contains some attributes describing certain aspects of the
painting and many nested ADVs such as Picture, References and People. In the
notation of Figure 11 References and People are not intended to be shown at the
same time and so their ADVs are overlapped. ADVs ShowPeople, ShowReferences are
active controls allowing to show one of the previously mentioned ADVs. ADV
InContext Theme implements the interface of the InContext Class Theme and
provides navigation controls inside the Navigational Context: Paintings of a Theme.
Similar ADVs must be specified for other Navigational Contexts such as Paintings of a
Technique.

While the above diagram shows the static nature of Painting’s interfaces, the
dynamics are described using ADV-charts. In a slight variation of Statecharts, we
specify that when ShowPeople is clicked, it sends the message display the list of
People associated with the painting, and the same occurs for ShowReference. Note
that this is a pure interface effect not involving navigating to another node.
Meanwhile, when the Previous interface object is clicked, it sends the message
anchorSelected (previous) to the corresponding ADO, in this case an InContext Object
that communicates with the corresponding anchor and thus we navigate to another
painting. Even when the implementation is not object-oriented, this communication
model is easy to implement in most platforms, as discussed in section 2.4.

To end this section we show in the real interface of Portinari web site and
how abstract interface objects are related with their implemented counterparts.

19

Picture
name: String
iImage: Bitmap

ADV Painting

theme: String
date: String
techniqueText
comments: Text

References

People

ShowReferences

ShowPeople

 InContext Theme

Previous Next

Figure 12 - ADVs and their relationship with “real” interface objects

2.4 Implementation

In this phase, the designer will actually implement the design. Up to now, all
models were deliberately constructed in such a way as to be independent of the
implementation platform; in this phase the particular runtime environment is taken
into account. We will concentrate on how OOHDM designs can be implemented in the
WWW, taking care not to fix a single alternative, since there are many possible
approaches through which this can be achieved.

When the implementation phase is reached, the designer has already
defined the information items that are part of the problem domain. He also has
identified how these items should be organized according to the user’s profile and
tasks; he has decided what the interface will look like, and how it will behave. In
order to implement all of this in the WWW environment, the designer has to decide
how the information items (both conceptual and navigation objects) will be stored. He
must also decide how the interface appearance and behavior will be realized using
HTML and possibly use some extensions. Notice that, in general, the actual
appearance will be defined by a graphics design professional that should be part of
the design team.

Although OOHDM is cast in terms of OO models, it does not require an OO
implementation environment; an implementation based on an OODMBS (O2) (but not
on the web) is described in [Milet 96]; Java-based implementations are under
development. Section 3 contains a brief description of other implementation
approaches.

2.4.1 Mapping Information Items

The information items (which correspond to the ADOs in the Abstract
Interface Model) may be stored in files or in a database. Due to the nature and
complexity of the types of applications for which OOHDM is most suited, we strongly
recommend using a database to store the Conceptual and Navigation objects. Since

20

the majority of DBMSs available on the market today are relational, a mapping of the
OO models onto equivalent relational models must be made. There are several
techniques and heuristics for doing this – see for example, [Keller 97]. The methods
associated with the classes are implemented as a set of procedures that access the
database to perform their computations.

To illustrate the type of design decisions, we will briefly discuss one
mapping alternative. Each class in the OO model to be implemented is mapped onto a
table, where each column stores an attribute, and each row corresponds to an object
of that class. A distinguished attribute may be used as a database key, or an internal
identifier, which corresponds to an object handle, can be generated and used as a
key.

For attributes whose type is not supported directly in the DBMS (e.g.
multimedia data), a separate auxiliary table must be implemented, and the object’s
attribute stores the Id of a row in the corresponding auxiliary table. Alternatively, it
stores the name of a file in the operating system, which contains the actual value.
Both alternatives have shortcomings; for instance, the first requires extra joins, and
the second is vulnerable to changes outside the control of the DBMS. Unfortunately,
this can only be avoided if the DBMS offers support for complex data types, as is
becoming more common in the latest generation of products reaching the market.

In section 2.2 it was stated that the Navigation Model is a view over the
Conceptual model. The designer has the option of reflecting this organization in the
databases corresponding to each model. In other words, he may define the database
containing the Navigation objects (nodes, links, etc...) as a view, supported by the
DBMS, of the database corresponding to the Conceptual model. In the case where
the DBMS does not directly support the view mechanism, or for efficiency reasons,
the designer has the option of computing the view by hand. In this case, he will only
implement the Navigation model, since it is the one the user will be accessing.
Evidently, this alternative has shortcomings in terms of schema evolution, which
become evident when the same Conceptual database is used as the basis for several
applications. This is the case, for example, when companies have sites in their
intranets, and part of these sites is visible (usually with a different interface) in the
WWW.

In addition to mapping class definitions into whatever database model
(relational, OO, etc...) being used, it is also necessary to implement “InContext”
classes, which function as decorators for objects within particular contexts. Typically,
this entails enriching the data model used in the database to account for the added
attributes, and defining control functions that make these attributes accessible in the
appropriate contexts. If the implementation is based directly on the file system,
these control functions will access additional files containing the contextual
information.

Once the databases are defined, they must be integrated in the WWW
environment. There are many ways in which this can be done [Hunter 95, Varela 95],
and we will not elaborate this further; it suffices to say that any of these techniques
may be employed. In this respect, the criteria for choosing the integration method are
the same as other applications, as discussed in the literature.

21

2.4.2 Implementing Contexts

Whereas the mapping of ADO’s into implementation objects is somewhat
obvious, the implementation of contexts is more complicated. The supporting
database model or set of files must also contain the context definitions. With the
exception of arbitrary contexts (whose specification is essentially an enumeration of
its members), other types of contexts include a query or function specification that
must be evaluated to compute the members of the context.

Navigation operations within contexts require keeping state information. For
example, to determine “what is the next story by this author” requires knowing
which story the user is currently looking at, which stories make up the referenced
context (“Stories by author”), and what is the ordering defined for that context.

In terms of the WWW, this means that either this state information is kept
within the database or file structure being used, or special control information is kept
on the side to represent the navigation state. In this case, any of the better known
techniques for keeping state in the WWW may be employed: passing state
information within URLs, from page to page; keeping state information in hidden
fields passed on from page to page; or using cookies. All of these techniques require
using CGI scripts to implement navigation, which poses no additional requirements
since CGI scripts are most likely already being used for database integration.

A different technique that has also been employed is to represent ADOs
using frames and Javascript. The ADVs are mapped onto framesets, and the root
frame contains variables that store both instance data for the ADOs, and context
information, as well as scripts to manipulate them. These scripts also implement
navigation operations within documents, which are stored in other frames in the
frameset. The advantage of this approach is that state maintenance is done entirely
within the client machine; the disadvantage is that it breaks down for large systems
as one reaches the limits in size for Javascript programs. It should be noted that this
technique to distribute computation to clients might also be used in combination
with the previously mentioned ones.

2.4.3 Implementation of the Interface

The actual interface organization and behavior is specified in the ADVs, and
the physical layout and appearance must be defined in this phase. Client interfaces
in the WWW may be implemented using several alternatives – plain HTML, HTML
with Javascript, HTML with plugins, HTML with Java, pure Java, etc... – but we will
concentrate on the first two.

The implementation of ADVs requires defining page layouts in HTML that
are consistent with the ADV specifications. In those cases when the values of instance
variables are computed at runtime, pages must be generated dynamically, based on
HTML templates previously specified by the designer. These templates usually
contain a mixture of HTML code and calls to functions in some scripting language. The
execution of these functions will retrieve or compute the instance data to fill in the
missing data that make up the final HTML page.

22

We have designed and implemented an environment based on the scripting
language Lua [Ierusalimschy 96] and on the CGILua environment [Hester 97] called
OOHDM-Web [Pontes97]1. This environment implements templates that are a mixture
of plain HTML and calls to functions in a library giving access to the Navigation
objects. These objects are stored in a relational database accessed via ODBC using
an approach similar to what has been described in section 2.4.1. Figure 13 contains a
schematic representation of the architecture of the OOHDM-Web environment. Other
commercial examples of the use of templates are Cold Fusion
[http://www.allaire.com] and StoryServer [http://www.vignette.com]; however, they
are not integrated with any methodology or model.

HTML Pages

Browser

Interface Appearance OOHDM Navigation SchemaOOHDM-Web
Environment

 - Tables describing navigation
classes

- Tables identifying contexts
- Tables describing contexts

Template mixing
HTML with
commands using
OOHDM-Web library
functions and CGI-
Lua HTTP Server

Figure 13- The structure of the OOHDM-Web Environment

As a brief illustration, consider the table in Figure 14, which would be a
simplified implementation of class Story in Figure 3.

Class Story

#key title text image
gov Governo aposta nos

pequenos
 bla bl bla

part participação é tímida no no no
balc Balcões SEBRAE bla no no

Figure 14 - A relational table implementing the class “Researcher”

In Figure 15, we show a screen of an index to the “Story by Section” context
(see 4). This screen is actually generated from the template shown in Figure 16

1 A more recent version is described in Schwabe, D.; Pontes, R. A.; Moura, I.;
“OOHDM-Web: An Environment for Implementation of Hypermedia Applications in
the WWW”, SigWEB Newsletter, Vol. 8, #2, June de 1999. Available at
http://www.inf.puc-rio.br/~schwabe/ papers/SigWeb-OOHDMWeb.pdf.

23

where one can see the function calls to the OOHDM-Web library functions ”Index”
and “Vertical”.

Dynamically
Generated

Figure 15 - Index of Stories by Section

In this example, the “Index” function call will generate a list of Story titles, in
alphabetical order, accessing the table in Figure 14, and display it using the function
“Vertical”. This function, in turn, generates a one-column HTML table where each
element of the list is in a separate row. It should be noted that in this example, the
designer had to define the contexts by creating the appropriate entries in the
database, populate the databases with class instances, and define the HTML
templates for presentation. The rest of the implementation is automatically generated
by functions in the OOHDM-Web environment.

24

$| Index {context =
‘Story_by_Section’,
anchor = ‘title’,
grouping_attribute =
‘image’ , funtion =
‘Vertical()’} |$

Figure 16 - An uninterpreted template for the page shown in Error! Reference source
not found.. Notice the call to OOHDM-Web library functions “Index” and
“Vertical”.

There are several implementation decisions that must be made regarding the
design of page layouts. We briefly discuss a few in order to illustrate the set of tasks
the designer must undertake. One of the first decisions to be made is whether
anchors will be inserted within the contents of nodes, or will be kept separate. The
first alternative usually requires insertion by hand; the second alternative is more
amenable for either automated or semi-automated processing of link authoring,

For example, many sites carrying news stories, such as CNET’s
http://www.news.com, or ZDNet’s AnchorDesk (http://www.anchordesk. com) show
links in a separate area , except for links to companies appearing within the text,
which are likely to be generated automatically. Some authors also argue that putting
anchors inside the text stimulates users to navigate away from the site, so this
technique encourages users to focus on the node’s contents before looking for other
places to go.

A second type of decision has to do with dealing with screen real estate.
Quite frequently, the amount of information to be displayed is much bigger than
what is possible to show without cluttering the screen. In such situations, a common
solution is to use the “Information on Demand” design pattern (see [Rossi 97]),
whereby only the most important information is shown up front, and the rest is only
shown on demand by the user.

For more complex interface behavior, current basic browser capabilities are
somewhat limited. For example, the ADV-chart may specify that an anchor (active
ADV) be highlighted when it is the focus of attention, i.e. when it receives the
external event MouseOn; its reaction is to send itself the message highlight. To
achieve such effects, the browser functionality can be extended with functions in
Javascript; an example can be seen in http://www.reference.com/javascript. Similarly

25

and other extensions to browser functionality can be obtained using Java applets or
plugins such as Macromedia’s Flash or Shockwave. Many features may also
implemented using Cascading Style Sheets and Dynamic HTML, although only the
most recent generation of browsers supports it.

The use of templates for generating pages has many advantages. First, it is
more consistent with the modeling approach, reducing the gap between design steps.
Second, it makes it very easy to change the appearance of an entire application
without extensive recoding of individual pages. Third, it allows the incorporation of
other types of approaches that extrapolate plain HTML, such as the ones mentioned
in the previous paragraph.

The constant evolution of standards, highlights the need to factor out as
many design decisions as possible, to allow an application to change its
implementation of the interface, taking advantages of newly available functionalities.
This separation minimizes the amount of re-coding that must be done in the
implementation when new functionalities are used in the runtime environment, as a
consequence, for example, of new standards.

2.4.4 Statically versus Dynamically Generated Sites

The use of databases to store information items and context information, and
the use of templates, seem to indicate that applications using this approach must
necessarily be implemented as dynamically generated sites. These are sites where
pages do not exist as files, but are the result of computations triggered every time a
document is requested from the server. While this may often be the case, it is not
always true.

Take for example an application domain in which all the information items
are known before application deployment - in fact, most sites that are currently in the
WWW are of this kind. This means that, even if the data is stored in databases, these
databases do not change (or change very infrequently) over time. In this case, entire
sites defined using the approach described in the previous sub-sections may be
“compiled” before application deployment, pre-computing and generating static
pages and storing them in files that are directly accessed by the server. Accordingly,
all links are represented as static URLs, and it is not necessary to use any of the
mechanisms previously mentioned.

 This solution keeps the advantages in terms of application maintenance and
evolution, without paying the performance price. This approach is used in the
NetObjects Fusion tool [http://www.netobjects.com]

There are, of course, cases in which this approach is not feasible, either
because the data changes very frequently (e.g., a news site such as
http://www.news.com), or because it depends on user input (e.g., an online store
such as http://www.amazon.com). Even in such cases, it might be worthwhile to
partition the site into sub-sites, such that the dynamically generated part is in one
sub-site, and the rest, which can be static, is in another sub-site(s)

26

3. Using OOHDM

The models used in the four phases discussed in the previous section are
sufficient to allow the design of most web-based information systems. Nevertheless,
as with any method, there is additional knowledge that is gathered by designers in
practice, which is not part of the method itself. The research around OOHDM
includes several developments in this direction that are being carried out, but are not
reported here for reasons of space; we briefly outline them to give an overall picture
of OOHDM and related research.

One approach that has been recently used to capture design knowledge,
especially in the OO field, is the use of Design Patterns, which systematically name,
explain and evaluate important and recurrent designs in software systems. They
describe problems that occur repeatedly, and describe the core of the solution to
that problem, in such a way that we can use this solution many times in different
contexts and applications. Looking at known uses of a particular design pattern, we
can see how a successful designer solves recurrent problems. In this way, we claim
that using design patterns designers can profit from design knowledge that exists in
several communities, such as hypermedia or user interface design

We have been collecting design patterns suitable for hypermedia application
design [Rossi 97]. Our objective is to develop a system of inter-related patterns dense
enough to be able to express complete designs as the successive application of
patterns in this system. We have structured these patterns in three sub-groups,
namely architectural, navigation and interface patterns.

Architectural patterns give guidelines for implementing software substrates
for hypermedia applications. These patterns are quite similar to patterns in [Gamma
95], since they address problems such as decoupling navigation from other kinds of
behaviors, organizing hierarchies of link and node types, decoupling link activation
from the process of determining the link end-point. More details can be found in
[Rossi96a, Garrido 97].

Patterns in the navigation category help the organization of the navigational
structure of a hypermedia application to make it clear and meaningful for the
intended readers. They address recurrent problems whose solution determines the
degree of success of hypermedia applications. An interesting example of a navigation
pattern is the “Active Reference” pattern, whose goal is to provide a perceivable and
permanent reference about the current status of navigation. It combines an
orientation tool with an easy way to navigate to a set of related nodes, at the same or
higher position in the navigation structure. This pattern helps in building simple path
viewers currently not provided by current WWW browsers.

The “Active Reference” pattern has been used in many web-sites for
improving navigation. For example, in http://city.net/countries/ brazil/rio_de_janeiro,
there is a bar with a representation of the logical path from the root to the current
node. The reader has a simple way to understand where he is, where he can go next
while accessing data about a city, in this case Rio de Janeiro. See [Rossi 97] for a
complete description of this pattern.

27

Interface patterns are meant for hypermedia GUI designers. They are
abstract and therefore independent of the environment used for the implementation.
Graphical interface design is a complex task, concerned mainly with finding the right
combination of elements (both in quantity and in their spatial relations), in such way
that those elements interact for an effective presentation of the information.

Patterns in this group can be also applied outside the realm of hypermedia
applications, in the broader context of GUI design. For example the
“Information/Interaction decoupling” design pattern is aimed at solving the problem
of how to make the interaction between the application and the user clearer, at the
graphical interface of a node. This pattern is particularly useful in web sites when
pages are generated dynamically and we cannot define link anchors as hotwords
embedded in the text.

The “Information/Interaction Decoupling” pattern gives clear guidelines with
respect to the physical placement of navigation anchors. The “Behavioral Grouping”
design pattern helps the designer build an interface in such a way that the user can
easily understand the kind of operations he is allowed to perform in the interface.
This pattern solves the problem of organizing the interface when many different kinds
of transactional, navigation and interface functionalities must be provided
simultaneously. A deeper description of interface patterns can be found in [Garrido
97].

Although we have stated that Navigation Design should be done taking into
account user profiles and tasks, OOHDM itself does not provide, so far, any indication
on how this should actually be done. We have been investigating [Barroso 98] the
use of user-centered scenarios to help identify user classes and typical tasks to be
supported by the application.

The proposed method starts with a preliminary conceptual model drawn by
the designer from his understanding of the domain. Looking at scenarios described
by different classes of users, the designer builds partial navigation trails, and partial
Navigation Class schemas. After all scenarios have been analyzed, the designer
begins a process of merging partial trails and schemas, which culminates with a
Navigation Context diagram and an updated Navigation Class schema.

In the course of this research, we have extended OOHDM to incorporate a
security model to allow controlled access to objects. This model takes into account
user classes and contexts, and defines mechanisms for specifying certain kinds of
dynamic contexts that are built as a result of specified user actions.

Another important issue is building software environments for supporting the
method; we have followed two different approaches:

• We have built a CASE environment that allows a designer to describe the
conceptual, navigational and interface models using the OOHDM notation and
provides him with automated documentation about those models. He can next
generate implementation templates for different settings, such as Asymetrix’s
Toolbook or HTML. (See [Lyardet 96]).

• We have designed and implemented an object-oriented framework (OONavigator)
for enhancing object-oriented information systems, improving the access to their

28

information resources by adding a “navigational” front-end, seamlessly
integrating this navigation functionality with the application’s own computations.
In OONavigator, hypermedia concepts (nodes, links, indices, and contexts) are
modeled as components that are interleaved with application objects and their
interface. Application classes play the role of OOHDM conceptual classes, while
framework objects (nodes and links) comprise the navigational component of the
application. We have enriched the standard MVC interface paradigm [Krasner 88]
with anchoring facilities in such a way that nodes interfaces support the “point
and click” hypertext interface metaphor. The interface can be published in Web
browsers using tools like VisualWave. Using OONavigator, a designer can enrich an
object-oriented application with hypertext features by following OOHDM
guidelines. In this case the designer instantiates hypermedia and interface classes
(using a visual tool) and connects them to his application classes to allow
navigation through the application’s information space. (See [Garrido 96, Rossi
98a, Rossi98b])

4. Concluding Remarks

4.1 Related Work

As we previously said, methodologies for Web applications design are still in
their infancy (provided the Web also is); existing approaches tend to neglect either
the navigation or the behavioral aspects of Web applications.

In [Takahashi 97] the authors propose using an extension of RM [Izakowitz
95] as the supporting method for building web information systems. They enrich the
Entity-Relationship based model with scenarios showing the interactions among
entities, agents and products. While we find their proposal appealing, it suffers the
same problems of existing behavioral extensions to structured information models;
instead of using objects they build the application’s behavior in an artificial way by
separating static and dynamic models. Similar approaches for separating static from
dynamic and functional aspects, even in the context of object-oriented modeling
such as Rumbaugh’s OMT [Rumbaugh 91], have failed and have been discarded by
their proponents (see for example the UML notation in [OMG 00]). This happens
because they result in systems that are difficult to extend and maintain. From the
hypermedia point of view, our approach is stronger because it provides higher level
design primitives, such as Navigational Contexts, which allow a better organization of
the hyperspace. Besides, separating the user-interface design aspect of these
applications allows defining a language that we can share with interface experts. Our
interface design patterns are a step in that direction.

From an architectural point of view, separating concerns among conceptual,
navigational and interface objects helps to produce applications that are easier to
extend and/or maintain. This happens because relationships among objects in
different levels follow the kind of collaborations in well-proven design patterns (such
as the Observer),

In [Gellersen 97], an object-oriented support system for the development of
Web applications is proposed. Our methodology can be used as a design front-end
for this engineering tool. In addition, as we have discussed in this paper, the

29

underlying philosophy behind OOHDM is that it yields design artifacts that can be
implemented even using non object-oriented or hybrid tools.

Finally, as we mentioned previously, OOHDM provides a design dimension
that is usually neglected in object-oriented environments and methodologies: the
navigational design activity. Good object-oriented products for web applications,
such as VisualWave or ClassicBlend, can be used with modern methodologies such as
OOSE [Jacobson92] or UML [OMG 00]. However, they fail to consider navigation as a
design problem, and applications are built using the usual two level design partition
of the MVC model. The only difference is that interfaces are generated as a
combination of HTML and Java applets.

As another case in point, there are a number of more recent tools in the
market, such as NetObjects “Fusion”, that look at WWW based applications (“sites”)
as more than an unstructured collection of HTML pages. They allow the definition of
(visual) styles (templates) to be uniformly applied to pages in the site, which is a
step in the right direction. However, they still confuse the navigation topology with
the physical directory structure used to store the pages in the site. Therefore, a given
page can only have one “next” page (or one “parent” page), independently of the
way the reader has arrived in it.

We consider, similarly to [Bieber 97], that designing the hypermedia features
of a Web application is as critical as the behavioral ones and both must be
considered as “first class” problems. Furthermore, we firmly believe that interface
design must be done separately from navigation design.

4.2 Summary and future work

We have presented an object-oriented method for designing and
implementing web applications. OOHDM supports the design of applications ranging
from simple Web sites to more complex applications; it is also well suited as the
navigational design front-end for other object-oriented methods such as UML [OMG
00]. We have discussed the main issues involved in implementing OOHDM designs in
the WWW, showing the main decision items and discussing alternatives.

We have designed and implemented many web applications, ranging from
simple ones to quite elaborate ones where pages are generated dynamically
depending on the context in which they are accessed, and retrieving data from
databases. The use of OOHDM and the design patterns has reduced the overall
development time, and has allowed us to discuss designs before actually having
running implementations. Another benefit of the OOHDM models has been improving
communication both with clients and with other non-computer science professionals
such as graphics designers and marketing specialists that are part of the design
team.

We are now pursuing several lines of research, as outgrowth or continuation
of the research reported here:

• development of a rich and dense set of design patterns that will allow complete
designs to be expressed almost entirely in terms of pattern compositions and
instantiations;

30

• development of a direct manipulation language that will allow rapid prototyping
of interface specifications for HTML documents;

• design and implementation of a set of tools that will constitute a development
environment based on OOHDM, for web-based applications, so that designers are
able to deal with entire sites at the more appropriate level of abstraction; a first
component in this environment is OOHDM-Web, mentioned in section 2.4.1;

• design and implementation of a Java-based substrate to support direct
implementation of OOHDM designs;

• extension of OOHDM to incorporate user models and tasks, a security model and
definition of dynamic contexts;

• extension of OOHDM to support groupware, and investigation on support for
distributed group authoring using OOHDM.

Further reference to OOHDM and related work can be found at
http://www.telemidia.puc-rio.br/oohdm/oohdm.html.

5. References

[Alexander77] Alexander, S. Ishikawa, M. Silverstein, M. Jacobson, I. Fiksdahl-King
and S. Angel: "A Pattern Language". Oxford University Press, New
York 1977.

[Barroso 98] Barroso, N.G.; “User centered design of hypermedia applications”,
MSc thesis, Dept. of Informatics, PUC-Rio, 1998 (in Portuguese)

 [Banerjee87b] J. Banerjee et al, “Data model issues for object oriented applications",
ACM TOIS 5, 1987.

[Barbosa 95] S. Barbosa de Oliveira : “Modeling and Specification of Navigation in
Hypermedia Applications”, Master Dissertation, PUC-RIO, 1995, (in
Portuguese).

[Beck97] K. Beck: “Smalltalk Best Practice Patterns”. Prentice Hall, NJ, 1997

[Bieber97] Bieber, M; Vitali, F.;"Toward Support for Hypermedia on the World
Wide Web" IEEE Computer 30(1), January 1997. Also availabale at
http://www.cs.unibo.it/~fabio/bio/papers/1997/IEEEC97/January/IE
EEC0197.html

[C Blend96] Classic Blend. Applied Reasoning Systems, 1996.
http://www.arscorp.com .

[Carneiro 94] Carneiro, L.M.F.; Coffin, M.H.; Coewan, D.D.; Lucena, C.J.P.L;
“ADVCharts: a Visual Formalism for Highly Interactive Systems”, in
M.D. Harrison, C. Johnson, eds, Software Engineering in Human-
Computer Interaction, Cambridge University Press, 1994.

[Coleman92] D. Coleman; F. Hayes; S. Bear, “Introducing Objectcharts or How to
use Statecharts in Object-Oriented Design”, IEEE Transactions on

31

Software Engineering, 18(1), 9-18, January 1992.

[Cowan93] D. D. Cowan; R. Ierusalimschy; C.J.P. Lucena; T.M. Septien, “Abstract
Data Views”, Structured Programming, 14(1):1-13, January 1993.

[Cowan95] D. D. Cowan; C. J. P.Lucena, “Abstract Data Views, An Interface
Specification Concept to Enhance Design for Reuse”, IEEE
Transactions on Software Engineering, Vol.21, No.3, March 1995.

[Gamma95] Gamma, R. Helm, R. Johnson and J. Vlissides: "Design Patterns:
Elements of reusable object-oriented software", Addison Wesley,
1995.

[Garrido96] A. Garrido, G. Rossi: “A framework for extending object-oriented
applications with hypermedia functionality”. The New Review of
Hypermedia and Multimedia, pp. 25-42. 1996,

[Garrido97] A. Garrido, G. Rossi, and D. Schwabe: “Patterns Systems for
Hypermedia”. Submitted to PLoP’97, Pattern Language of Program,
1997.

[Garzotto93] Garzotto, D. Schwabe and P. Paolini: “HDM - A Model Based
Approach to Hypermedia Application Design”. ACM Transactions on
information Systems, 11 (1), Jan. 1993, pp. 1-26.

[Garzotto94] Garzotto, L. Mainetti and P. Paolini: “Adding Multimedia Collections
to the Dexter Model”. In Proc. ECHT’94-ACM Conference on
Hypermedia Technology. Edinburgh, UK, Sept. 1994.

[Garzotto96] Garzotto, L. Mainetti and Paolo Paolini: “Information reuse in
hypermedia applications”. Proceedings of Hypertext’96, Washington,
1996, pp. 93-104.

[Gellersen97] H. Gellersen, R. Wicke, M. Gaedke: “WebComposition: An Object-
Oriented Support System for the Web Engineering Lifecycle”
Electronic Proceedings of The Sixth International WWW Conference,
Santa Clara, USA, April, 1997.

[Gronbaek94] Gronbaek: "Composites in a Dexter-Based Hypermedia framework".
Proceedings of the ACM European Conference on Hypertext,
(ECHT'94), Edinburgh 1994, pp. 59-69.

[Halasz94] Halasz e M. Schwartz: "The Dexter Hypertext Reference Model".
Comm., of the ACM, February 1994, pp. 30-39.

[Hardman 93] L. Hardman; D. Bulterman; G. Van Rossum, “Links in Hypermedia, the
Requirements for Context", Proceedings Hypertext'93, ACM, pp. 183-
191.

 [Hannemann93] J. Hannemann, M. Thuring, “What matters in developing interfaces
for hyperdocument presentation?”, Workshop in Methodological
Issues on the Design of Hypertext-based User Interfaces, Darmstadt,
Germany, July 1993.

32

[Harrison93] W. Harrison and H. Ossher. “Subject-Oriented Programming (a
critique of pure objects). In Proceedings of the Conference on Object-
Oriented Programming Systems, Languages and Applications
(OOPSLA’93), pp. 411-428, Washington, September 1993.

[Hester 97] A.M. Hester; R.C.Borges; R. Ierusalimschy; “CGILua: A Multi-
Paradigmatic Tool for Creating Dynamic WWW Pages”, Proceedings of
the XI Brazilian Software Engineering Symposium (SBES’97) pp.347-
360, Fortaleza, Brazil, 1997 (available at http://www.tecgraf.puc-
rio.br/~anna/cgilua/ cgilua.ps.gz)

[Hunter 95] A. Hunter, I. Ferguson, S. Hedges: “Swoop: An application generator
for Oracle/WWW Systems”. Proceedings of the Fourth International
World Wide Web Conference. pp. 185-194, 1995.

[Ierusalimschy 96] R. Ierusalimschy, L. H. de Figueiredo and W. Celes, "Lua - an
extensible extension language", Software: Practice & Experience 26
#6 (1996) 635-652. (see also http://www.tecgraf.puc-rio.br/lua/).

 [Izakowitz95] Izakowitz, E. Stohr and P. Balasubramaniam: "RMM: A methodology
for structured hypermedia design". Comm. of the ACM, October
1995, pp. 34-44.

[Jacobson 92] Jacobson, I; Christerson, M.; Jonsson, P., Övergaard, G.; “Object
Oriented Software Engineering - A Use Case Driven Approach”,
Addison Wesley, 1992.

[Keller 97] Keller, W.; “Mapping Objects to Tables – A Pattern Language”, Proc.
Of European Conference on Pattern Languages of Programming
Conference (EuroPLOP)’’97, Bushman, F. and Riehle, D.; (eds), Irsee,
Germany, 1997.
(http://www.sdm.de/g/arcus/publicat/index.phtml#Mapping_Object
s_To_Tables)

[Kim 94] W. Kim, "Advanced Database systems", ACM Press, 1994.

[Kirste93] T. Kirste: "Some issues of defining a user interface with general
purpose hypermedia toolkits". Workshop in Methodological Issues on
the Design of Hypertext-based User Interfaces, Darmstadt, Germany,
July 1993.

 [Krasner 88] G. Krasner, S. Pope. " A cookbook for using the model-view-controller
user interface paradigm in Smalltalk-80". Journal of Object-Oriented
programming, 1(3), pp. 26-49, August/September, 1988.

[Lange94] D. Lange. “An Object-Oriented Design Method for Hypermedia
Information Systems”. Proceedings of the 27th. Annual Hawaii
International Conference on System Science, Hawaii, Jan., 1994.

[Lyardet 96] F. Lyardet and G. Rossi "Enhancing productivity in the development of
hypermedia applications". Proceedings of the 7th workshop on the
next generation case tools, Heraklion, Crete, Greece, May, 1996.

33

[Mere96] M.C. Meré, G. Rossi: “Specifying navigational transformations in
hypermedia. A temporal logic framework”. In Bodo Urban (ed)
Multimedia’96. pp. 20-31. Springer Computer Science, Springer
Verlag New York, 1996.

[Milet 96] J.Renato Milet; D. Schwabe; R. S. G. Lanzelote, “Hypermidia
Application Authoring Using Object Oriented Databases”, Proc. of the
XI Brazilian Symposium on Databases (SBBD), SBC, São Carlos, Oct.
1996 (in Portuguese).

 [Nielsen90] J. Nielsen: “Hypertext and Hypermedia”. Academic Press, 1990.

[OMG 00] [OMG] UML Specification: http://www.omg.org/technology/
documents/formal/ unified_modeling_language.htm

[Pontes 97] Pontes, R.C.A., “An Environment to Support Hypermedia Applications
in the WWW”, MSc thesis, PUC-Rio, 1997 (in Portuguese).

 [Rossi95a] G. Rossi; D. Schwabe; C.J.P. de Lucena; D.D. Cowan, “An Object-
Oriented Model for Designing the Human-Computer Interface of
Hypermedia Applications”, Proc. of the International Workshop on
Hypermedia Design (IWHD'95), Springer Verlag Workshops in
Computing Series, forthcoming. (available at <ftp://ftp.inf.puc-
rio.br/pub/docs/techreports/ 95_07_rossi.ps.gz>).

 [Rossi96a] Rossi, A. Garrido and S. Carvalho: "Design Patterns for Object-
Oriented Hypermedia Applications". Pattern Languages of Programs
2, Vlissides, Coplien and Kerth eds., Addison Wesley, 1996.

[Rossi96b] Rossi, D. Schwabe and A. Garrido: "Towards a Pattern Language for
Hypermedia Applications". Proceedings of the 3rd. Annual
Conference on Pattern Languages of Programs, Monticello, Illinois,
September 1996.

[Rossi96c] G. Rossi, M.C. Meré: “A Temporal Logic framework for representing
knowledge about navigation in hypermedia applications”.
Proceedings of the Workshop on Knowledge Representation for
Interactive Multimedia Systems in the European Conference on
Artificial Intelligence (ECAI’96), pp. 66-71. G. Vouros (editor),
Budapest, 1996.

[Rossi96d] G. Rossi: “An Object-Oriented Method for Designing Hypermedia
Applications”. PHD Thesis, Departamento de Informática, PUC-Rio,
Brazil, July 1996 (in Portuguese).

[Rossi97] G. Rossi, D. Schwabe and A. Garrido: “Design Reuse in Hypermedia
Applications Development” Proceedings of ACM International
Conference on Hypertext (Hypertext’97), Southampton, April 7-11,
1997, ACM Press.

[Rossi 98 a] G. Rossi, A. Garrido and D. Schwabe: "Navigating between Objects:
Lessons from an Object-Oriented Framework Perspective", to appear
in ACM Computing Surveys.

34

 [Rossi 98 b] G. Rossi and A. Garrido: "Capturing Hypermedia Functionality in an
Object-Oriented Framework", to appear in Object-Oriented
Frameworks, Wiley 1998.

[Rumbaugh91] Rumbaugh, M. Blaha, W. Premerlani, F. Eddy and W.Lorensen:
"Object Oriented Modeling and Design", Prentice Hall Inc. 1991.

[Schmidt95] D. Schmidt: "Using Design Patterns to develop reusable object-
oriented communication software" Comm. of the ACM, October 1995,
38(10), pp. 65-74.

[Schwabe94b] D. Schwabe; S. D. J. Barbosa, “Navigation Modeling of Hypermedia
Applications”, Technical Report MCC 42/94, Departamento de
Informática, PUC-Rio, 1994 (available at <ftp://ftp.inf.puc-
rio.br/pub/docs/techreports/ 94_42_barbosa.ps.gz>)

[Schwabe95a] D. Schwabe and G. Rossi, “Building Hypermedia Applications as
Navigational Views of Information Models”, Proc. of the Hawaii
International Conference on System Sciences, Hawaii, Jan. 1995.
(available at <ftp://ftp.inf.puc-rio.br/pub/docs/techreports/
94_41_schwabe.ps.gz>)

[Schwabe 95b] D. Schwabe and G. Rossi:, “The Object Oriented Hypermedia Design
Model”, Comm. of the ACM, Vol. 38, #8, pp45-46 Aug. 1995.
(available at <http://irss.njit.edu:5080/cgi-
bin/bin/option.csh?sidebars/schwabe.html>).

[Schwabe96] Schwabe, G. Rossi and S. Barbosa: "Systematic Hypermedia Design
with OOHDM". Proceedings of the ACM International Conference on
Hypertext (Hypertext'96), Washington, March 1996.

[Takahashi 97] K. Takahashi, E. Liang: “Analysis and Design of Web-based
information systems” Electronic Proceedings of The Sixth International
WWW Conference, Santa Clara, USA, 1997.

 [Varela 95] C. Varela, D. Nekhayev, P. Chandrasekharan, C. Krishnan, V.
Govindan, D. Modgil, S. Siddiqui, , D. Lebedenko, M. Winslett: “DB:
Browsing Object-Oriented Databases over the Web”. Proceedings of
the Fourth International World Wide Web Conference. pp. 209-220,
1995.

[Vives 97] Francisco Vives, Pablo Zanetti, Alejandra Garrido "Adding Hypermedia
Functionality to Object Oriented Applications". To be presented in the
4th International Conference. Hypertexts and Hypermedia: Products,
Tools and Methods. 25th & 26th September 1997. Paris, France.

[Vwork96] The Visual Work Programming Environment. Parc Place-Digitalk, 1996.

[Vwave96] The VisualWave Programming Environment. Parc Place Systems. In
http://www.parcplace.com/products/vwave/vwv_prod.htm.

[Wirfs-Brock90]R. Wirfs-Brock, B. Wilkerson, and L. Wiener: “Designing Object-
Oriented Software”. Prentice Hall, Englewood Cliffs, NJ, 1990.

35

