
Using Lisp as a Markup Language

The LAML Approach

Kurt N�rmark

Department of Computer Science

Aalborg University

Fredrik Bajers Vej 7

DK-9220 Aalborg

Denmark

Email: normark@cs.auc.dk

Abstract

Lisp is widely known as an extremely versatile lan-

guage. In this paper we will demonstrate that Lisp

can be used as a powerful markup language for

WWW authoring and for provision of information

on the Internet. Using the LAML approach, as

introduced in this paper, we write textual docu-

ments directly in Lisp; Function calls serve as ap-

plications of tags, as known from the SGML family

of markup languages. The easy and uniform ac-

cess to abstraction is the main advantage of using

a programming language as a markup language.

In addition, the direct availability of a powerful

programming language allows the author to au-

tomate many trivial tasks in the writing process.

We describe a systematic mirroring of HTML in

Scheme, and we refer to a number of di�erent doc-

ument styles based on this mirroring.

1 Introduction

Authors and information providers using the In-
ternet need to deal with programming at several
di�erent levels. We distinguish between four cat-
egories of Internet programming each oriented to-
wards the presentation of WWW pages. The cat-
egories are displayed in �gure 1. As can be seen
from the �gure we have arranged the categories
on an axis according the degree of dynamics; dy-
namics is achieved by means of programming. The
program execution time is the main distinction be-

tween the categories in the �gure.

At one extreme we �nd the pure static ap-
proaches in which the information is written and
frozen at document creation time using a markup
language such as HTML [2]. No programming is
involved in this process. At the other extreme we
have the dynamic approaches in which the infor-
mation keeps changing until document read time.
The changes are mediated by a program which
executes in a browser (such as a Java applet, or a
Javascript program). In between these two ex-
tremes we have the two other categories called
generated and calculated pages respectively.

Calculated pages are frozen at document access

time. In this context document access refers to
the act of retrieving the document from a server.
CGI programming [6] is a typical and widespread
representative of this category.

Using generation the information presented is
created by a program which translates a high level
source description to a low level target format
(such as HTML). The result of the translation de-
pends on both the source description (the input)
and the translation program. The document gen-

eration time is quite naturally located in between
the document creation time and the document ac-
cess time. It is not intended that the generation
should take place every time the document is ac-
cessed.

Our interest in Lisp as an Internet programming
language started because we had an interest in
the category of calculation. More speci�cally we

1

Figure 1: Four categories of Internet Programming oriented towards presentation of WWW pages.

started using Lisp as an applicative and (mainly)
functional language for CGI programming pur-
poses. We saw this as a natural contrast to the
dominating use of imperative programming lan-
guages, such as Perl, C, and Shell script languages
in this domain. It turns out that it is perfectly fea-
sible and realistic to start a Lisp system, load some
libraries and a program, and execute the program
at document access time.

In this paper we will concentrate on the use of
Lisp in the category of generation. More speci�-
cally we will investigate to what degree Lisp can
be used as an alternative markup language for au-
thoring of information on the World Wide Web
(WWW). In the paper we will explore a number
of advantages of a generative approach based on a
high quality and powerful programming language
like Lisp.

It is interesting to notice that Lisp also has been
used in the dynamic category. Hickey el al. [7]

describe SILK, which is a Scheme implementation
done in Java. Using SILK it is possible to write
Applets in Scheme. Other similar systems in this
category (Skij, Kawa, and JaJa) are described in
this reference.

In the rest of the paper we are going to explore
the use of Lisp within the category of generation.
In section 2 we will describe the advantages of the
generative approach in comparison with the static
approach. In particular, we will address the ad-
vantages of using an applicative, functional pro-
gramming language for these purposes. In section
3 we will discuss the di�erences and similarities

between programming languages and markup lan-
guages. In section 4 we go on with a detailed ex-
amination of the use of Lisp as a markup language,
which can replace direct use of HTML or XML
for markup purposes. In this section we introduce
the idea of a Lisp Abstracted Markup Language

(LAML). Finally, in section 5 we present a brief
overview of the LAML applications crated to date
by the author of this paper.

Examples of LAML generated WWW pages are
available from the LAML home page [10].

2 Generation of WWW pages

using a functional language

Generation of WWW pages involves a transforma-
tion from a high level source description to a lower
level target description. We will at the outset con-
centrate on a situation where the target language
is HTML.

Generation of HTML pages from a high level
description gives two substantial advantages com-
pared with the purely static approach:

1. Abstraction. By means of abstraction it is
possible isolate the WWW page author from
the details of HTML. This makes it possible
to take the source description to a higher and
more abstract level, at which a number of de-
cisions can be handled in the implementation
of the abstractions. Changes in a document,
as it appears in a browser window, can either

2

be performed by changing the high level de-
scription or by changing the implementation
of the abstractions which carry out the trans-
lation to HTML.

2. Automation. In the writing process the au-
thor has to deal with many time consum-
ing manual tasks, which have to be repeated
again and again. One of the key ways to bet-
ter author performance is to automate some
of these tasks by means of programmed solu-
tions. Because of the never ending demands
from new kinds of routine tasks we need to
make programming capabilities directly avail-
able to the author.

If we consider the use of HTML today, the idea
of abstraction is already represented at several dif-
ferent levels. In order to avoid unnecessary bind-
ings to particular means of presentating informa-
tion in an HTML document it is possible to use
style sheets, such as supported by CSS [3].
XML [1] is an interesting and much more pow-

erful alternative than HTML. XML provides for
abstraction in terms of high-level description of
documents. The presentation of an XML docu-
ment in a browser requires a presentation scheme
(known as a style sheet). XML is believed to be
the future markup language for the Internet. As
of today, however, XML has almost no practical
impact on authoring of WWW material.
It can be observed that neither CSS nor XML

provides any support of automation in the sense
that we introduced it above.
Because of the transformational nature of the

document generation it is natural to investigate
the use of a functional programming language.
As shown in the upper part of �gure 2 the input
will be a high level document description which by
means of a function is translated to HTML.
The main idea behind our work is to use a func-

tional programming language as the document
source language. Thus, instead of inventing a new
document source language, we intend to use an
existing programming language as the document
source language. This brings us to the situation
shown in the lower part of �gure 2. Quite natu-
rally, we intend to apply the abstraction mecha-
nisms of the programming language for document

Figure 2: Two possible transformation functions.

abstraction. More interesting, however, we can
use programmed solutions, in a broad sense, to
support automation. Because we use the program-
ming language as the document source language,
programmed solutions can be applied everywhere
in the document, and at any time in the author-
ing process. This is a unique opportunity which
we will discuss in more detail later in the paper.

The use of an existing programming language as
a document source language disquali�es most pro-
gramming languages because of the lack of lexical
and syntactic exibility. It is not easy to imagine
classical languages such as Pascal or C, or a new
language such as Java, in the role of a document
source language used for markup purposes. As we
will see in section 4 it is possible and attractive|
although not without problems|to use Lisp be-
cause of the exible and unique syntactic proper-
ties of the language.

As an additional argument in favor of our ap-
proach we can notice that using a programming
language as the document source language brings
the category of generated and calculated Inter-
net pages closer together. The program, which
servers as the document source in the generative
approach, can without very many changes be used
as a CGI program in the calculated category, cf.
�gure 1.

3 Markup languages versus pro-

gramming languages

Markup denotes \detailed stylistic instructions
written on a manuscript that is to be typeset"1.
It is possible to distinguish between a number of

1Quote from The American Heritage Dictionary of the
English Language.

3

<slide id = "LispAndMarkup">

<title>

Using Lisp as a Markup Language

</title>

<conceptList>

<concept name = "Lisp">

Lisp is multi paradigm programming language ...

</concept>

<concept name "Markup language">

A markup language is

</concept>

</conceptList>

<image location = "C:/images/img1.gif" caption = "Overview of ..."> </image>

<point>

The main point is that ...

</point>

</slide>

Figure 3: A fragment of text with XML-like descriptive markup.

di�erent markup systems [4]. However, the most
interesting and promising kind of markup is de-

scriptive markup. Using descriptive markup an
author speci�es the kinds and roles of individual
parts of a text, in a declarative way. Using other
kinds of markup the author focuses directly on
the appearance and formatting of the marked text
elements.

HTML [2] is a simple, non-extensible markup
language, which partly supports descriptive
markup and partly a more presentation speci�c
kind of markup. XML [1] is strictly oriented to-
wards descriptive markup. Furthermore, XML al-
lows de�nition of domain speci�c markup. Both
HTML and XML are in the SGML family of
markup languages.

In this section we will focus on the di�erences
between a markup language and a programming
language. Figure 3 shows a typical text fragment
with XML-like markup. The example shows an
outline of a slide document with a title, a de�ni-
tion of two concepts, an image, and a point. The
kinds of tags have to be de�ned in a Document
Type De�nition (DTD) which is a grammar-like
notation (not shown here). If we want a presenta-
tion of the document in a browser, a style sheet is

needed.

There is clearly a similarity between function
calls and tag applications. The XML attributes
(such as the id, name, and location in �gure 3)
and the textual content in between the start tag
and end tag correspond to actual parameters. The
attributes are passed as keyword parameters (as
supported by Common Lisp [8] for instance). The
textual contents in between start and end tags is a
rather special, but essential parameter to an XML
tag.

The lexical basis of a text document with
SGML/XML markup is di�erent from the lexical
basis of a program in a programming language. A
text document with markup is a (long) text string
in which certain tokens are inserted which need
interpretation during the various kind of process-
ing of the document. The textual document hosts

the markup. A program is structured entirely of
well de�ned tokens, some of which may be quoted
text strings. The program hosts the text strings

as well as literals of other types.

The tags are de�ned at the syntactic level
in XML via a grammatical formalism known as
DTDs. There is no integrated semantics involved.
For presentation purposes it is possible to de�ne

4

(slide

(string-append

(title "Using Lisp as a Markup Language")

(conceptList

(string-append

(concept "Lisp is a multi paradigm programming language..." 'name "Lisp")

(concept "A markup language is ..." 'name "Markup language")))

(image "" 'location "C:/images/img1.gif" 'caption "Overview of ...")

(point "The main point is ..."))

'id "LispAndMarkup")

Figure 4: The XML document fragment from �gure 3 translated to a Lisp form.

a style sheet, but this is a matter which is exter-
nal to the XML language. There is no immediate
programming capability available in the language
which allows for automation of routine tasks when
constructing or processing the document.

We will in the following section discuss how to
deal with textual markup, along the example given
above, in a Lisp programming language.

4 Using Lisp as a markup lan-

guage

We will now discuss how Lisp can be used as a
markup language. We start with a Lisp version
of the XML example shown in �gure 3 together
with a discussion of a number of syntactic varia-
tions of the Lisp calling form of tagging functions.
In section 4.2 we continue with a discussion of
semi-constant strings. In section 4.3 we describe a
systematic mirroring of HTML into tagging func-
tions in Scheme. Finally, in section 4.4 we discuss
the more semantic perspectives of using Lisp as a
markup language.

In the rest of this paper we will use the Scheme
[11] dialect of Lisp.2

2The latest version of Scheme is de�ned in Revised5 Re-

port on the Algorithmic Language Scheme which is available
from the Internet Scheme Repository [13].

4.1 An example with syntactic varia-

tions

The example shown in �gure 3 can be described
lexically and syntactically in Lisp. When we use
Lisp for markup purposes we talk about a Lisp

Abstracted Markup Language (LAML). To show a
concrete example to start with, �gure 4 shows a
possible LAML counterpart to �gure 3.

There are several ways to pass the textual con-
tents and the attributes as parameters to a Scheme
function. Figure 5 outlines the most relevant of
these. The issues behind the variations are the
following:

1. The sequencing between attributes and
the textual contents.
If we are going to mirror XML, the attributes
should come before the text contents.

2. The nesting of lists in the calling form.
Explicitly given formal parameters in the
function signature implies relatively deep
nesting in the calling form.

3. The division of text into several sub-
strings.
If we need to pass the textual contents as a
single parameter explicit string concatenation
is needed.

The example in �gure 4 uses variation number 3
from �gure 5. We clearly see the consequences of
explicit string concatenation, and the �gure also

5

Figure 5: Four syntactic variations of tagging functions.

illustrates the problem of separating the function
\tag" name and attributes (it is di�cult to �gure
out which attributes belong to which tag).
Using variation number 1 we would need to pass

empty attribute lists to many tag functions; This
is not attractive. Variation number 2 su�ers from
the same problem, but the problem in item 3 from
above is alleviated. Variation number 4 is quite
satisfactory from a calling point of view, but it is
rather di�cult to �gure out the role of each of the
actual parameters (parameter correspondence). If
we use this variation we need to rely on the type
of each of the actual parameters in order to locate
the attributes and the textual contents strings.
Some readers may argue that the discussion

above is of less importance because it just reects
minor syntactic issues. However, our choice re-
garding syntax is important because it a�ects the
appearance and the \convenience of writing" of
potentially large amounts of text.
The third issue mentioned above (the division

of text into several substrings) is not solved satis-
factorily in any of the variations in �gure 5. Let
us take a look at the Lisp counterpart to the fol-
lowing XML/HTML example3

<point>

A text with a

link

to a subsection

</point>

Using variation number 3 we get:

(point

(string-append

3The example will be rendered as \A text with a link to
a subsection" in most browsers.

"A text with a"

(a "link" 'href "subsection/sec.html")

"to a" (b "subsection")))

Variation number 4 avoids the string-append
form:

(point

"A text with a"

(a 'href "subsection/sec.html" "link")

"to a" (b "subsection"))

In either of the Lisp variations we see that the
implicit hosting string in the XML/HTML ver-
sion needs to be split into a number of substrings,
which must be passed individually to the relevant
Lisp functions. In a writing process, in which we
need to introduce an anchor or a textual emphasis
(such as in the example above) this string splitting

comes in very awkwardly.

4.2 Semi-constant strings

We have attempted a number of solutions to the
problem given above. First, take a look at the
following:

(point

"A text with a

(a "subsection/sec1.html" "link")

to a (b "subsection")

")

The intention here is to embed a number of strings
within each other, and more important, to al-
low for evaluation of Lisp forms within a string.
We could talk about a semi-constant string with
evaluated substrings. This corresponds to quasi
quoted lists in Lisp as supported by the backquote
facility found in many Lisp Systems (for instance

6

in Common Lisp [8] and Scheme). The semi con-
stant string should, of course, be processed such
that the a and the b functions are called. This pro-
cessing could be called for uniformly in the tagging
functions, such as point.
It is almost impossible to implement semi

constant-strings in Scheme. The reason is that
strings do not nest easily. The Scheme reader does
not return a string with nested strings, but rather
a strange sequence of forms, many of which do
not make sense. In the example from above, we
get the following sequence of sub-expressions, each
of which will be evaluated:

� the string "A text with a (a "

� the symbol subsection/sec1.html

� the string " "

� the symbol link

� the string ") to a (b "

� the symbol subsection

� the string ")"

Without di�erent characters for string-begin and
string-end it is almost impossible to embed strings
into other strings in such a way that the Lisp
reader can parse the string without ambiguities.
As an illustration of the problem, imagine if we
used the same character as both \start parenthe-
sis" and \end parenthesis" in Lisp. It would have
made life much easier if \begin quote" and \end
quote" were two di�erent ASCII characters.
We gave up the idea of dealing with semi-

constant strings in Scheme, and we now stick to
a fragmentation of the hosting string into sepa-
rate substrings. Compared to SGML-like markup,
the Scheme source causes aesthetic problems when
reading. However, with respect to writing the ex-
pressions, it is possible to �nd relatively good so-
lutions. The observation is here that the step from

(point

"A string with a link to a subsection")

to

(point

(string-append

"A string with a link to a "

(b "subsection")))

(define (generate-tag-function tag-name)

(lambda (contents . attributes)

(itag tag-name contents attributes)))

(define (itag name contents attributes)

(if (null? attributes)

(string-append "<" (as-string name) ">"

(as-string contents)

"</" name ">")

(let ((html-attributes

(linearize-attributes attributes)))

(string-append

"<" (as-string name) " " html-attributes ">"

(as-string contents)

"</" name ">"))))

Figure 6: Two of the central Scheme func-

tions which implement the mirroring of HTML in

Scheme.

and further on to

(point

(string-append

"A string with a "

(a "subsection/sec.html" "link")

" to a " (b "subsection")))

can be carried out by basically two editing com-
mands on the substrings \link" and \subsection",
which embed the selected strings into an LAML
form. These editing commands handle the split-
ting of the string into substrings, and (if neces-
sary) the outer string concatenation form. We
support such an editing command in the Emacs
text editor on bu�ers with LAML documents.

4.3 Mirroring HTML in Scheme

In order to establish a bottom layer on which to
build higher level abstractions, we have mirrored
HTML4 in Scheme.
The starting point of this task was a list of

HTML tags, separated into single tags and double
tags. Given these we generate, on a textual basis,
a sequence of de�ne forms, such as

(define html:a (generate-tag-function "a"))

4Our concrete starting point was the collection of HTML
tags described in the book WEB-master in a Nutshell [12].
It would be easy to mirror HTML version 3 or 4 [2] in a
similar way.

7

for the a anchor tag in HTML. The function
generate-tag-function is a higher-order func-
tion, the de�nition of which is shown in �gure 6
together with a helping function. In the current
implementation we do not check the grammatic
rules (valid syntactic composition of HTML forms
into each other, and the legality of the attributes).
However, it would be easy to add such checks
based on the Data Type De�nition of HTML (as
found in [2]).
Besides this systematic mirroring of HTML in

Scheme we have implemented a number of very
useful Scheme functions which generate HTML
fragments on an ad hoc basis. The table func-
tion is a good example. The expression

(table

(list

(map html:b (list "Col 1" "Col 2" "Col 3"))

(list "El 1" "El 2" "El 3")

(list "El 4" "El 5" "El 6")))

generates a table with three rows, the �rst of
which contains bold faced column headers (see �g-
ure 7). The exible use of lists in Lisp makes it
very easy and convenient to make various tables
in LAML.

4.4 Semantic perspectives

Given the basic set of LAML tagging functions
we are able to de�ne document styles in Scheme.
In this context a document style is a collection
of Scheme functions which de�nes the LAML
markup elements for documents in a particular
domain.

The key idea behind a document style is that
of abstraction. Instead of dealing with low level
markup (ala HTML) we encapsulate the de-
tails into functions that transform from a high
level document language to a low level language
(HTML) which can be presented in a browser.
The high level document language uses the syn-
tactic conventions of Lisp, or more speci�cally one
of the syntactic variations illustrated in �gure 5.

It is our experience that it is easy to de�ne new
LAML document styles. Using LAML it is possi-
ble to bring the ideas of XML to practical use to-
day within the category of generated WWW pages
(cf. �gure 1).

Figure 7: A simple table produced via LAML.

We see automation of routine tasks as a partic-
ular aspect of abstraction. The work we have in
mind is, for instance

� inclusion af materials from external �les

� checking the targets of all links

� escaping the lexical markup such that we,
e.g., are able to show literal HTML markup
elements in a browser.

By using the LAML framework we are able to pro-
gram Scheme functions which automate each of
these tasks, and almost any other routine tasks
which may be useful in future writing projects.

5 Status and conclusions

We have de�ned LAML document styles that sup-
port authoring of

� course home pages,

� lecture notes (slides, annotated slides, and ag-
gregated slides),

� simple scienti�c papers,

� software library manuals (similar to Javadoc
[5]), and

� literate Scheme programs using a variant of
literate programming called elucidative pro-

gramming.

We have used the LAML lecture notes style to au-
thor more than 400 annotated slides for a course
on object-oriented programming. The manual
style has been used to document most of the
LAML software at the programmatic interface

8

level. In addition we made a WWW based cal-
endar tool and a distance education tool (via CGI
programming in Scheme) both using the LAML
approach.

It is our experience that the advantages in the
areas of abstraction and automation (as discussed
in section 4.4) outweigh the syntactic di�culties
of using Lisp for markup of textual documents (as
discussed in section 4.1 and 4.2).

Given the current state of the software, LAML
authoring is probably most attractive to Scheme
programmers. This is mainly because systematic,
high level error handling has not yet been imple-
mented in the various document styles. Also, in
order to take advantage of automation of routine
tasks, the author must be able to de�ne Scheme
functions by himself or herself. However, by uti-
lizing advanced LAML-oriented editor commands
(as available in Emacs) it is our judgement that
the LAML approach can used by many authors,
who otherwise would write directly in HTML or
XML (at least when the software is brought to
a state where high level error reporting is sup-
ported).

Examples of documents generated via LAML
tools, and a subset of the LAML software
is available from the LAML home page on
http://www.cs.auc.dk/�normark/laml/.

An accompanying paper called Programming

World Wide Web Pages in Scheme [9] describes
our work with LAML at a more general, and less
Lisp speci�c level.

References

[1] World Wide Web Consortium. Extensible
markup language (xml) 1.0, February 1998.
http://www.w3.org/TR/REC-xml.

[2] World Wide Web Consortium. HTML 4.0 spec-
i�cation, April 1998. http://www.w3.org/TR/-
REC-html40/.

[3] World Wide Web Consortium. Cascading
style sheets, level 1, January 1999. http://-
www.w3.org/TR/REC-CSS1.

[4] James H. Coombs, Allen H. Renear, and Steven J.
DeRose. Markup systems and the future of schol-
arly text processing. Communications of the
ACM, 30(11):933{947, November 1987.

[5] Lisa Friendly. The design of distributed hyper-
linked programming documentation. In Sylvain
Frass, Franca Garzotto, Toms Isakowitz, Jocelyne
Nanard, and Marc Nanard, editors, Proceedings of
the International Workshop on Hypermedia De-
sign (IWHD'95), Montpellier, France, 1995.

[6] Shishir Gundavaram. CGI Programming on the
World Wide Web. O'Reilly and Associates, Inc.,
1996.

[7] Timothy J. Hickey, Peter Norvig, and Ken-
neth R. Anderson. Lisp - a language for in-
ternet scripting and programming. In Pro-
ceedings of the lisp user group meeting. Franz
Inc., November 1998. http://www.franz.com/-
elugm99/conference/past.html.

[8] Guy L. Steele Jr. Common Lisp, the language,
2nd Edition. Digital Press, 1990.

[9] Kurt N�rmark. Programming World Wide Web
Pages in scheme. 1999. Submitted to ACM Sig-
plan Notices. Available via http://www.cs.auc.-
dk/�normark/laml/.

[10] Kurt N�rmark. The WWW home page of
the LAML project. http://www.cs.auc.dk/-
�normark/laml/, 1999.

[11] J. Rees and W. Clinger. Revised3 report on the
algorithmic language Scheme. Sigplan Notices,
21(11), 1986.

[12] Stephen Spainhour and Valerie Quercia. Web-
master in a nutshell: A desktop quick reference.
O'Reilly and Associates, 1996.

[13] John Zuckerman. The internet
scheme repository. http://www.cs.indiana.edu/-
scheme-repository/home.html.

9

