A Suite of WWW-based Tools for Advanced Course
Management

Kurt Ngrmark
Department of Computer Science
Aalborg University
Denmark
normark@cs.auc.dk

Abstract

A collection of tools for creation of advanced and com-
prehensive course home pages is presented. The tools
cover the spectrum from course overview pages and hy-
pertext teaching materials to interactive services that
support the teaching activities during the course. From
the teacher’s perspective the tools allow for abstraction
from details and automation of routine work in the au-
thoring process. Seen from a student’s perspective the
comprehensive linking of course plans, teaching mate-
rial, and interactive services provides for a valuable or-
ganization of a large body of information.

1 Introduction

A course home page may in one extreme cover a single
page with a course overview. In the other extreme, a
course home page is a network of pages with a com-
plete set of courses resources, such as plans (including
a calendar and overviews in various details) teaching
materials (book or course notes, possibly in several edi-
tions), exercises, solutions to exercises, and interactive
services, such as synchronous and asynchronous tools
which mediate a dialogue between the students and the
teacher. The plans, teaching materials, and the inter-
active course services are often integrated via mutual
links.

In this paper we will describe an integrated suite of
WWW-based tools which, taken together, provide ex-
tensive and advanced support of a university course in
computer science.All the tools are built on the same
technical platform, using a technology called LAML [3]
which we have developed as part of this work.

In this paper we will concentrate on the course impact of
the tools, hereby emphasizing organizational and ped-
agogical issues. The technical issues involved are ad-
dressed in [4, 5].

In the following sections we will discuss and give an
overview of the tools we have made during the last two
years for the support of a course in object-oriented pro-
gramming (in Java). In section 2 we describe the overall
course plan system, which generates the ’home page’ as
such together with individual lecture pages. In section 3
we go on with an overview of the lecture note system via
which it is possible to create a multi-view, hypertext-
based teaching material. In section 4 and 5 we discuss
the interactive services used on the course. Together
with the conclusions we briefly point out some related
work.

2 The Course Plan System

As a fundamental premise, we have decided to base the
entire suite of tool on documents in pure HTML. This
is a contrast to using specialized formats (calling for
browser plugins), Java applets, or dynamic HTML such
JavaScript. By this decision our materials can seen from
any machine with a modern Internet browser without
having to download or install any additional software.

A typical course home page covers a network of WWW
pages which presents an overview of the course together
with detailed descriptions and presentations of individ-
ual lectures. A number of details may occur redun-
dantly on several pages. A course home page embod-
ies knowledge about the course constituents (such as
plenum sessions and exercises), course content (topics),
reading materials, training plans (such as exercises),
overall sequencing, and spatial/temporal details (sched-
ule and room allocation).

It is not efficient to deal with this body of information
in a collection of WWW pages, where also details about
layout, typography, and decoration are addressed. We
have made a course plan system which as input takes a
complete and clean course model, and outputs a set of

A 1]
2 A2 AN 2 4ag P
= = S

Fumectional Pragramming in Scleme
Session §

-

tak e

(L)
[

I Hriaman

Luriar

Erfrreenm '

P ——

o s

Figure 1: A snapshot of a demo course plan WWW
page.

pages representing the ’course home page’. The course
model separates relatively stable aspects of a course
(such as topics covered) from the more fluctuating as-
pects (such as room and time information). In that way
it becomes much easier to revise the course home page
from one year to the next. Figure 1 shows a snapshot
of a home page generated by the course plan system.

As one of the novel aspects of the course plan system, all
information about time stems from a single list of 'lec-
ture start times’ together with additional information
about the course model (involving details about the mu-
tual timing of exercises and the plenum lectures). The
system uses a central lecture description table which re-
lates particular lectures to topics, times, and rooms. In
addition, the table defines the sequencing among the
lectures. Several different overviews can be generated,
including listings of the course contents and calendar
presentations, which plot the lectures into a semester
overview calendar (with a possibility of merging cal-
endar entries of other courses, attended by the same
students). The generated pages share a common lay-
out, and they include a number of useful standard links
to course relevant resources. The lecture pages, which
deal with details such as literature and exercises, can be
processed individually. Alternatively, the complete set
of pages can be regenerated by executing a single com-
mand. In the current system the course model is repre-
sented and edited in a textual ’programmatic’ format.
We are considering a more user friendly (but probably
less powerful) supplementary interface based on WWW

forms.

3 The Lecture Note System

Many teachers use transparencies and slides during a
plenum lecture session. Such teaching material is of-
ten produced using presentation programs, for instance
Powerpoint. Most presentation programs were invented
before the advent of the World Wide Web and the In-
ternet. The presentation programs can produce WWW
presentable on-line documents, either via common doc-
ument formats (such as postscript or pdf), via vendor
supplied ’browser plug ins’, or as bitmapped graphics.
However, none of these secondary formats provides for a
smooth integration with the rest of the resources on the
Internet (for instance the course plan pages discussed
above) nor full utilization of the power of hypertext.

We have made an alternative to these presentation pro-
grams, which produces slides in HTML as the primary
format. The system, called LENO, processes a textual
input file in a particular format, and produces a set
of HTML pages. The practical processing procedure
is similar to old fashioned text formatting, using La-
TeX for instance. The input format, which is called
LAML (Lisp Abstracted Markup Language) [5] is sim-
ilar to XML, although different from XML when con-
sidering the details. From a technical perspective, the
LENO input is a program written in the functional pro-
gramming language Scheme using a particular library
of Scheme functions. As a consequence of this, we can
provide programmatic solutions to many routine tasks,
because a full-fledged programming language is avail-
able anywhere in a document, and any time during the
authoring process. For authors with a computer science
background this programmatic approach turns out to
be an interesting alternative to more conventional ap-
proaches, where abstraction and automation facilities
are rather limited.

LENO organizes a teaching material as hypertext, cen-
tered around annotated slides. The material can be
presented at three different levels of abstractions, one
of which uses a large font to ease readability using a
projector in an auditorium. The other views show the
annotations in a separate column of the screen, and
in an aggregated view including all slides in a lecture.
LENO supports direct inclusion of external, textual ma-
terial such as program source files. Partial inclusion of
a text file as well as superposition of colors on the in-
cluded text is also supported. The external material is
taken from the input file when the HTML files are gen-
erated. This facility prevents a proliferation of different
versions of the material. A trail facility makes it possible
to make special blends of slides from different lectures
without any replication of material. The trails are rep-
resented as HTML frame pages which refer to already

generated pages. Exercise pages, exercise solutions and
overviews of exercises are also integrated with LENO.
LENO makes it possible to open up for the exercise so-
lutions at appropriate points of time. As an advanced
feature, we can integrate the exercise part of the system
with synchronous and asynchronous tools for manage-
ment of the student’s work with exercises (see section
4). Finally, LENO supports flexible keyboard naviga-
tion from page to page in selected browsers (realized via
a simple JavaScript program). This turns out to be an
essential facility when LENO is used for presentation of
many slides during a lecture (but it also slightly com-
promises our ideas of using plain and simple HTML).

On the negative side, the graphical illustrations in
LENO are rather primitive, because they are based on
the image tag in HTML (which can present bitmapped
graphics in the gif or jpg formats). It is hard to avoid
scrolling of pages containing a single slide because of
variations among browsers, browser setup, and screens.
This is often a source of frustration. Similarly, paper
hardcopies of the material (printed from a browser) are
problematic. As a consequence of this we plan to make
a special printed edition via a bridge from LENO to a
conventional text formatting system such as LaTeX.

Based on our own experience with LENO we find that
the virtues from above outweigh the deficiencies.

4 Synchronous Exercise Management

Following each lecture, the students carry out some con-
crete and practical exercises. During the exercises the
students get help and advice from the teacher of the
course and a number of teaching assistants. Due to the
problem-oriented and project-organized teaching model
at Aalborg University [2] the students are located in
many small group rooms (with 6-7 students in each
room). In this particular course, there were 25 groups,
three teaching assistants, and the typical exercises in-
volved practical programming in Java.

It is a major challenge to manage an exercises session
which follows the setup described above. We do not
know which of the groups work actively on the exercises,
and it not trivial to ensure that a group of students get
help when it is needed. Furthermore, it is difficult to
evaluate the outcome of an exercise session.

In order to deal with these problems we have created a
WWW-based interactive exercise manager. The man-
ager presents itself as a small frame, which sticks to
the window in which the exercise formulation is shown.
Figure 2 shows an example. LENO (see section 3) can
be set up to generate the underlying frame set. The
exercise manager tool allows the students to send brief,
one-line messages of particular types to the teacher via
the WWW server.

| i |
e, et = PR - O [B B R "= T
Bed e By ik Tl dpeala Shiw el Sl L=
R e e . ¢S e sy e 3]
Lxerci P
| Exercise 1.3
Ciane comncepis
1
O Y YU SR WU Shp- PP [N g -
T HEE e Cord gy i
F——— — o
Exmcisn T nmpimpy e s (mid =200 3
i
| (Sebeivwe | Loemes allsses |
| =T —

Figure 2: A snapshot of the exercise manager as at-
tached to the bottom of a LENO generated
exercise formulation.

The students use the exercise manager to send a start
message when they start working on a particular exer-
cise. If they encounter a problem they send an exercise
question message together with a brief explanation of
the problem. When a group of students get help they
send a message of the type 'got help’. This makes the
previous questions disappear from the overviews, which
are regularly consulated by the teachers. Finally, the
students send an exercise finish message when they are
done with the exercise. As a variant, the students can
send a 'gave up’ message. The students are asked to ex-
plain the outcome of the exercise in the message field.

The students are encouraged to use the exercise man-
ager via three different incentives. First, the students
cannot ask for help via the system before they have
sent a start message; Second, when the students send a
question via the system, a teaching assistant will strive
to visit the students within a few minutes; And third,
the students get access to the teacher’s solution (via
‘opening of a link’) when they claim to have solved the
exercise successfully.

From a teacher perspective the exercise manager pro-
vides various useful overviews. As an example, the
teacher can get access to a list of groups that are active
at a given point of time. Similarly, the teacher, who
services particular groups, can get a concise overview of
the groups who need help. Only the latest, non-serviced
questions are shown in the overview, and only messages
from the particular groups, to which the teacher is al-
located, are shown. As of now, the teachers use the
student’s browser to access the list of groups that have

asked for help. One could alternatively imagine that
the teachers would use mobile equipment. The exercise
manager can also generate a status report, in which
the questions and feedback from the groups can be sur-
veyed. We can also evaluate the waiting times for help,
and the level of activity in the individual groups.

The successful use of the exercise manager requires dis-
cipline from both the students and teachers. One should
also be aware that there may be elements of ’big brother
watches you’ using the system. However, the experi-
ences until now is quite positive and encouraging. The
students experience that they more often get timely help
when they need it. Using the messages submitted to
the system, it is possible to plan future modifications of
the exercise programme, and to spot recurring problems
that need to be addressed in a future plenum session on
the course.

Until now, the messages from the exercise manager are
one-way, from the students to the teacher. As an obvi-
ous generalization one could imagine a two-way com-
munication using the system. The exercise manager
was designed to alleviate some concrete problems with
exercises in many small rooms. We believe, however,
that some of ideas of synchronous exercise support via
WWW tools can be used in other settings, for instance
in more classical lab sessions in a distributed environ-
ment.

5 Asynchronous Activity Management

The exercise manager, described in the previous section,
is a synchronous tool designed to be used by on-campus
students. We are also supporting an asynchronous tool,
IDAFUS [6], for activity management, which is targeted
at open university students. The typical activities sup-
ported by IDAFUS are exercises and discussion forums.
The dialogue mediated by IDAFUS may be public, lim-
ited to a group of students, or it may be private between
a teacher and a student. IDAFUS allows ’just in time’
solutions to exercises in terms of automatically released
contributions from the teacher when the student sub-
mits his or her solution.

Contributions in IDAFUS are presented together with a
photo of the contributing student or teacher. This has
turned out to be very important in relation to seminars
or lectures. Students who have been using the system
a lot are easily recognized during subsequent classes or
seminars.

6 Conclusions and Related Work

We will here briefly compare our suite of tools with
similar tools. First it should be noticed that our
tool set is less coherent and less complete than com-

mercial counterparts such as WebCT [1] and Luvit
(www.luvit.com). Second, our approach is radically
different from the systems that feature quizzes, tests,
and multiple choice questions. Examples of such
systems are Hot Potatoes from Half Baked Software
(web.uvic.ca/hrd/hotpot/), QuizSite from Indiana Uni-
versity (www.best.indiana.edu/qs2000/), and Question
Mark’s Perception (www.qmark.com). In our educa-
tional system we do not have traditions for ’black and
white’ testing techniques, as promoted by these three
systems.

In summary, we have in this paper presented a suite
of tools for management of WWW support of a uni-
versity course in computer science. Taken as a whole,
the tools make it possible to produce and maintain a
large body of material which it would be almost im-
possible to manage without tool support. Our material
for the object-oriented programming course consists of
more than 1000 HTML pages, each with a number of
internal links, and a considerable amount of links to
external targets. In addition we have presented a cou-
ple of tools for synchronous exercise management and
asynchronous activity management.

The course plan tool and the LENO system are available
as free software from the LAML home page [3].

References

[1] Goldberg, M. W., and Salari, S. An update on
WebCT - a tool for the creation of sophisticated
web-based learning environments. In NAUWeb’97
- Current Practices in Web-Based Course Develop-
ment (June 1997).

[2] Kjersdam, F., and Enemark, S. The Aalborg exper-
iment — project innovation in university education.
Aalborg University Press, Niels Jernesvej, DK-9220
Aalborg, Denmark, 1994.

[3] Ngrmark, K. The LAML home page. http://www.-
cs.auc.dk/~normark/laml/, 1999.

[4] Ngrmark, K. Programming World Wide Web Pages
in scheme. Sigplan Notices 84, 12 (December 1999).
Also available via [3].

[5] Ngrmark, K. Using Lisp as a markup language—the
LAML approach. Presented at the European Lisp
User Group Meeting, Amsterdam. Available via [3].

[6] Ngrmark, K. The IDAFUS home page. http:-
//www.cs.auc.dk/~normark/idafus/, 2000.

