An Elucidative Programming Environment for
Scheme

Kurt Ngrmark

Department of Computer Science
Aalborg University
Denmark
normark@cs.auc.dk

Abstract. In this paper we describe a programming environment for
Scheme that supports elucidative programming. Scheme is a program-
ming language in the Lisp family. Elucidative programming is a variant
of literate programming. Literate programming represents the idea of
structuring a program as fragments that are contained in an essay that
documents the program understanding. Elucidative programming is in a
similar way based on the ideas of documented program understanding,
but in contrast to literate programming, elucidative programming leaves
the program intact. The relations between the documentation and the
units of the program are defined without use of containment. In addi-
tion, the elucidative tools are oriented towards program presentation in
a WWW browser.

1 Introduction

Program development is based on understanding. The understanding is embod-
ied and encoded in the program. Unfortunately, it is not easy to recover the
understanding from the program. Consequently, a great amount of efforts are
used to reestablish the original understanding when the program needs updat-
ings of various kinds. The widespread interest is reverse engineering tools, which
flourish in program comprehension circles [30,1] is a clear evidence of this ob-
servation.

In this paper we recommend an investment in documented program under-
standing. The essential understanding, present among the people who write the
program, should be captured and related to the relevant program units. Seen
in perspective of the program life time it is simply not economical to forget the
program understanding, and to recover it repeatedly via detective work, which
is very difficult to support by effective tools.

The ideas about documented program understanding are not new. Literate
programming has been around for 15 years, without causing significant impact
on everyday software development practice. Part of the reason is that literate
programming’ is extreme in several directions:

! When we in this paper discuss the practical elaboration of literate programming
we have the WEB-like tools in mind [12,15,2,31,10]. However, the literate pro-

— It is based on the ideas of breaking the program into fragments that are
contained physically in the document which represents the program under-
standing. Thus, the program “lives in” the documentation. The concept of
a source file (which is familiar to most programmers) does not exists in the
literate programming paradigm.

— It mixes fragments of a text formatting language and fragments of a pro-
gramming language in one “ugly” and monolithic file, the value of which is
low in the development situation.

— It aims at documentation with literate value which can serve as technical
literature in the same way as scholarly papers.

It is our hypothesis that literate programming is beyond reach of the average
programmer. The ambition of literate programming is too high, the program
artifacts are too far from mainstream, and current programming environments
will suffer too much if adapted to the ‘literate ideas’ in a WEB-like elaboration.

With elucidative programming we keep the basic idea of documented program
understanding from literate programming. However, we re-orient the approach
in the following ways:

— The source program is left intact, without embedded or surrounding docu-
mentation.

— The program understanding is described in a document which is firmly re-
lated to named units in the source program.

— The documentation is targeted at the team of current and future program
developers. Hereby the documentation addresses, in a narrow way, the needs
of the programmers in the team that are going to maintain the program. We
are not interested in a program as a publication (article or book).

In this paper we will describe the tool impact of introducing elucidative pro-
gramming in an environment that supports the programming language Scheme
[11]. In that respect, we are concerned with two overall goals. First, we want
to orient the tools toward the medium of the Internet, WWW, and HTML.
We have witnessed the great success of documenting class library interfaces us-
ing this medium in the Java Development Kit [3]. We are eager to find out
whether program documentation of more internal nature can be made by simi-
lar means. Second, we want to integrate the support of elucidative programming
in an existing editing environment. With this goal programmers can continue
“programming as usual”, but now in a documentation enabled environment.

We are aware of several obstacles that need to be overcome in order for
elucidative programming to succeed. The obstacles rely on positive answers to
the following questions:

— Is it realistic to expect that programmers retain their program understanding
in a free style story or essay?

gramming paradigm may be supported by many other kinds of tools. When applied
appropriately, the tools in an elucidative programming environment may support
literate programming as well.

1. The internal documentation must be oriented towards current and future devel-
opers of the program.

2. The internal documentation is intended to address explanation which serves to
maintain the program understanding and to clarify the thoughts behind the
program.

3. The program source file must be intact, without embedded or surrounding doc-
umentation.

4. The programmer must experience support of the program explanation task in
the program editing tool.

5. The program “chunking structure” follows the main abstractions supported by
the programming language.

6. The documented program must be available in an attractive, on-line represen-
tation suitable for exposition in an Internet browser.

Fig. 1. Requirements for an elucidative programming environment.

— Is it possible to keep the documented program understanding up-to-date and
valuable during the life time of the program (in the maintenance phase of
the program).

We are not presenting substantial answers to these questions in the present
paper. However, these questions are central in our ongoing research, and future
papers from our group are expected to address these important issues.

In section 2 we will introduce the ideas and the concepts of elucidative pro-
gramming. In section 3 we present a concrete example of an elucidative Scheme
program. A discussion of the tools in the elucidative Scheme programming envi-
ronment follows in section 4. The paper ends with a description of related work,
status of the research, and conclusions.

2 Elucidative Programming

To “elucidate” is to throw light on something complex and to make clear or plain,
especially by explanation.? We introduced the idea of elucidative programming
in an earlier paper [20]. In that paper we discussed elucidative programming
and literate programming in relation to each other, and we came up with six
requirements for an elucidative programming environment. These requirements
are summarized in figure 1.

2 This is the meaning of the verb “elucidate” according to The American Heritage
Dictionary of the English Language. As such we find that this term hits the flavor
of “explanation” that we go for when an understanding of a complicated program
has be to written down. The word “elucidate” is the most attractive among several
candidates such as “explain”, “expound”, and “explicate”.

Menu and index pane

Documentation Program
pane pane

Fig.2: The layout of panes in an elucidator.

2.1 User interface

From a user interface point of view, the central idea of the Elucidator is to present
the program and the documented program understanding as hypertext in two
relative large panes of a window, see figure 2. In that way the documentation
may be presented in a pane on the left half part (or top) of the screen and the
program in the right half part (or bottom) of the screen. A concrete example
can be seen in figure 4, which will be discussed in section 3 of this paper. The
proximity of documentation and program gained by this setup together with the
mutual navigation in between the two panes make up the main characteristics
of the user interface of an Elucidator.

2.2 Hypertext aspects

Seen as hypertext, the nodes of an elucidator are very coarse grained. The
entire documentation is a single node in which sectional units are embedded
into each other. Similarly, each source program file is represented in a node
where the units of the programs are composed and embedded according to the
rules of the programming language. In that respect, the elucidator runs counter
to other hypertext-based programming environments [22,21] where more frag-
mented models seem to dominate. The hypertext links are derived from relations
among program and documentation entities. This is explained in more details in
section 2.3.

2.3 Central model

From a modelling point of view, the program and the documentation are broken
into entities. At the program side, the entities are the overall building blocks
(named abstractions) of the program, such as classes, procedures, and functions.
At the documentation sides, the entities are sections and subsections of the
program explanation. As an integral part of the entity concept there must exist
a naming scheme which allows us to refer to the program entities from the
documentation, and vice versa.

In the Scheme environment, the most important program entities are top-
level define forms, such as the function definition

(define (multiplum-of a b)
(= 0 (remainder a b)))

If the define form is present in a file called file, the qualified name of this
form is file$multiplum-of. In the current Scheme elucidator we do not support
naming of more local definitions, although it would be straightforward (at least
in principle) to generalize the naming scheme to deal with local definitions as
well.

In addition, an arbitrary top-level form with a preceding sectional comment
may be defined as an entity in a Scheme program. A sectional comment identifies
one (or more) Scheme expressions. The following program fragment serves as an
example:

; ::error-handling::
; Here we handle errors in the input.
(if (not (input-data-ok?))
(begin
(write-page
"Error messages’’
(string-append
(font 4 red
"There where errors in your input") (p)
"Please try again!"
))
(exit)))

A Scheme comment line starts with a semicolon, and a sectional comment name
is enclosed in double colons. The Scheme form succeeding the sectional comment
can be referred to by the qualified name file$error-handling if the error han-
dling appears in file. It turns out that entities named via sectional comments
are necessary for the proper documentation of Scheme programs with imperative
constructs.

In the Scheme environment sections and subsections (called entries) in the
documentation are identified and named with specialized markup. Here is an
example of a section and an entry in that section:

.SECTION intro-section
.TITLE Introduction
.BODY

Introductory text.
.END

.ENTRY attack-plan
.TITLE The plan of attack
.BODY
Documentation describing the
plan of attack.
.END

The names of sections and entries appear just after the SECTION and ENTRY
keywords.

Program and documentation entities can be connected to each other by
means of a few natural relations, all of which are binary. If we assume that
P (together with P1 and P2) are program entities and D (together with D1 and
D2) are documentation entities we can describe the meanings of the relations in
the following way:

— The strong doc-prog relation:
An element (D,P) in the strong doc-prog relation represents that the program
entity P is explained in the documentation entity D.

— The weak doc-prog relation:
An element (D,P) in the weak doc-prog relation represents that the program
entity P is mentioned (without being explained) in the documentation entity
D.

— The prog-prog relation:
An element (P1,P2) in the prog-prog relation represents that P1 uses the
entity P2.

— The doc-doc relation:
An element (D1,D2) in the doc-doc relation represents that the documenta-
tion in D1 relies on the documentation in D2 seen from an elucidative point
of view.

In addition, there is a relation which we could call prog-lang, which relates an
instance of a Scheme language construct or standard procedure to its descrip-
tion in a hypertext version of the Revised Report on the Algorithmic Language
Scheme [11].

In an elucidator tool each element in one of the relations mentioned above are
represented by hypertext links. An element (D,P) in one of the doc-prog relation
gives rise to two links:

— a link source anchored in a position of the documentation entity D, and
destination anchored in the program entity P.

— a link source anchored in an icon just in front of the program entity P, and
destination anchored in the documentation entity D.

An element in the prog-prog relation relates an applied name occurrence to
its defining name occurrence. In order to be more precise, let us assume that
(P1,P2) is an element in the prog-prog relation, that P2 is named N, and that
(P1,P2) gives rise to a link L. L is source anchored at an applied occurrence of
N in P1. The destination anchor of L is a presentation of P2, which defines N.

An element (D1,D2) in the doc-doc relation gives rise to a cross reference link
from one place in the documentation to another section.

2.4 Source markers

The links derived from the relations described above can be used to connect
sections in the documentation with named abstractions and sections in a program

Documentation file Program file

strong anchor-.{

Legend: @ Source marker
"""" P Doc-prog link

Source marker connection

N
I:l Program/documentation entity

Fig. 3: The connection of a source marker in the documentation through the anchor
point of strong doc-prog relation instance to the corresponding source marker
in the program.

source file. However, in some explanations it is desirable to address finer details
in the program. Of that reason we have introduced the concept of source markers.
A source marker denotes a particular point in a program entity. Source markers
must appear in comment positions in order not to interfere with the syntactic
rules of the programming language. In order to minimize clutter in the program
comments we use a minimal two character notation ¢@<character>’ for source
markers in a Scheme program.

At the documentation side, source markers may be used when we explain
the program details next to a source marker in the program. A source marker
in the documentation is associated with the anchor of the link corresponding
to closest preceding strong doc-prog relation element. A source maker in the
documentation is the source anchor of a link which goes to the corresponding
sourcer marker in the program, and vice versa.

Figure 3 illustrates the connection of source markers in the documentation
and the program via an element in a strong doc-prog relation.

2.5 Organizational aspects

The concept of a documentation bundle is central seen from an organizational
point of view. The documentation bundle is described in a setup file which
enumerates the program files in the bundle. The documentation is either inlined
in the setup file as LAML expressions [18,19] or more typically imported from
a text file which uses the specialized markup discussed above. In addition, the
setup file is used to define a number of options which controls the kind and
amount of processing done by the elucidator tool.

The editor that supports elucidative programming is aware of all files in a
documentation bundle. The editor awareness is used to open, save, process, and
close all such files with single operations in the editor. We will describe the
editing tool of the elucidative Scheme environment in more details in section
4.2,

3 Example

Before the discussion of the tools in the elucidative Scheme programming envi-
ronment we will present a concrete example of an elucidative Scheme program,
and we will explain the process of its development. The example is intended to
illustrate the concepts introduced in the previous section. However, the reader
should be aware that the example is too small to illustrate the real needs and
challenges of documented program understanding “the elucidative way”. Fur-
thermore, we should be aware that elucidative programming is not targeted at
program publication in the same way as literate programming, cf. the first re-
quirement in figure 1. Thus, it is not really the intention to polish an elucidative
program. In that respect, the example given below may be somewhat misleading.
The elucidator of the example is available at the Internet address

http://www.cs.auc.dk/“normark/elucidative-programming/time-conversion/

The reader is encouraged to bring the example up in a browser while reading
this section of the paper.

The example is concerned with the development of a program that can de-
code the number of seconds elapsed since January 1, 1970, 00:00:00 to a year,
month, day, hour, minute, and second. Most computers can deliver an integer
representing this measure of time, and therefore the conversion forms a very
useful basis for a convenient and regular handling of time in terms of a number
of seconds.

Using the editor tool of the elucidative programming environment we create
the documentation bundle and the underlying directory structure, which hosts
an empty source file, an initial template of the documentation file, the setup file,
a directory for internal files, and a directory for HTML files. This is done by the
editor command make-elucidator. The editor prompts the user for all necessary
information and creates these files and directories automatically. Next the user
issues the command setup-elucidator which reads the documentation bundle
into editor buffers, and establishes the characteristic splited window view on the
documentation and the program (still empty, of course). Now the elucidative
programming process can start.

First we establish a little context around the problem. We discuss how to
possibly attack the problem. Two approaches are identified, and we happen
to go for a mixture of them in our solution. We shift between writing a piece
of documentation, and writing pieces of programs. In case a name exists in
the program it can be smoothly transferred to the documentation buffer. This
makes the writing about the program relatively easy and “secure”. We run the

e

k- t-RRRABIND AR

B | g ocna ﬂ-rﬁ
OoeE OEE == IEIIEI e
1 i 20 Dl Wi i
1 Ima emnens el S H
1.5 T s i i 27 Dl e Bt
< D paiam 34 Eallot f. ol inprilan

o b redace e profbem - Boelng i porwales] oeomde, e
B s, mmiy el i s, Bow] el © i ¢ Lkl e D
b by o o mon pew B moaid e w1 B e cmoath ne,

el o o vl ol Vo P oo’ Sl oo, Lkl e e il o gl o e e g R B g B
i T e e | e e e 11 ddeye, e B0 b‘;’ﬂ' el o e
Febraary ki pormale 29 -daye, San dar i 25 e in g i Lo il o oy g ! SRS
Ein vy 1o S e eocrsalien mesbar of Se. el b ceeraionl -’P_:Tl-l-l-':-l'- -.--l-l-l--l-'u--lr-::l
[EPSREISTEFRE FTRRIFLT] SR, | SRR By [T g g s & P iyl
rriiyaee T broreen hom omerp - dapn-keorsmlmner - il Ay N R
mecoralt el e We I Sed o e dar-wcandne) sesbar of '.'l-w_l-'-"h--lh b e

ry chemplmg 1 b gty e iy (80 Thre ey, rulled = [PR S TIg—

o o e v Bl e B rarwalivss . sk <8 boarn b v - EFRne
18 ar b e e MY g e emamdn e e TP TR St 1 e 0083

w1t - 5l e, el ey s e - el i remai ormliond | St m Dot ! e e e i Py o _em—ds e
b o st). Foilly tha iomak o o -kt ok Pl ot s Ly~ 58 ‘.“""'"'_'qi"" Friony ol s s i L e
et e)y wyr o prcuemsl ree by borw e PEn-'\- b A —
e rmn d Finclacot. Scll wre it o B """',.-.,'“",..-"'._,L:::.' -
pamciges, o rome The P men ecdwe Bl o d ey, S, ey = i =

[B

Insrnen 10w bt pobeed e e o B prediwr Hosrsn o pall

it e el B vl ¢ o'y i s it et il

dgm1 iy i e, e oy e 83 de, seigeh ki prprepre _Hd
Feboraary M A aecdes wss, day comsn & ssraman Tebraay 21 SS| s

& 1= S —

Fig.4: A screen shot of the Scheme Elucidator.

elucidator regularly and refresh the editor in order to get access to a list of known
identifiers. We introduce concepts (such as normalization) in order to write about
the program in a concise and precise way. This sharpens our understanding of
the problem, and makes the solution easier to understand, hereby easing the
development of the program. We introduce source markers for program details
which we want to address in details in the explanations.

It takes longer time to produce an elucidative program than just to write
the Scheme source program. However, it is our firm belief that the quality of
the program is improved through this process. Several author’s of literate pro-
grams support this observation [13,24]. Furthermore it should be evident that
the construction of the documentation is an investment which, to some degree,
will pay off when we need to modify the program. Notice, however, that fu-
ture program modifications implies a substantial work on updating the program
understanding, as represented by the documentation.

.ENTRY days-hours-minutes-seconds

.TITLE Dealing with days, hours, minutes, and seconds

.BODY

Now we have reduced the problem to finding the normalized months,
days, hours, minutes and seconds from a rest second counter r
that is less than the number of seconds in a year. It would be natural
to find the month next, but doing so would call for yet another
counting process, because a month is an irregular time
interval (some months have 31 days, others 30, February has normally
28 days, but there is 29 days in leap years).<p>

It is easy to find the unnormalized number of days, and the normalized
hours, minutes, and seconds from r. This is done by quotient
and modulo calculations. The function

{ days-hours-minu } does that. We first find the
(non day-normalized) number of days by dividing r by
{seconds-in-a-day} (@a). The remainder, called {-n-rest-1} (@b) is
used to find the hour-normalized number of hours by division of
{-n-rest-1} by {seconds-in-an-hour} (@c). Again the remainder,
{-n-rest-2} (@d) is found, and this quantum is used to find the
minute-normalized number of minutes (Q@e). Finally the number of
seconds are found in the last modulo calculation (Of).

We use a sequential name-biding form {-let}* to find the results in a
sequential fashion. Still we are entirely within the functional
paradigm, of course. The function returns the list of days, hours,
minutes, and seconds.

.END

Fig. 5: An excerpt of the documentation source text.

Figure 4 shows a snapshot of a browser which presents the result produced
by the Elucidator.? The three frames in the browser correspond to the panes of
the basic layout, as illustrated in figure 2. The menu and index pane shows the
detailed table of contents of the documentation.

Figure 5 shows a portion of the documentation source, in order to illustrate
the specialized markup introduced for our purposes. Here we see the mixture
of specialized markup (roff-like ‘dot notation’ at the start of a line) and HTML
markup. The excerpt in this figure corresponds to section 2.2, as shown in figure
4.

4 Tools

There are two important tools in an elucidative programming environment. The
most central of these produces the presentation of the program and the doc-
umentation. This is the tool we call an elucidator. (In some contexts we will
also talk about the WWW pages produced by the elucidator, as presented in an
Internet browser, as an elucidator). The other tool is the editor. It is the quali-
ties of the editor tool that make it realistic and feasible to produce a program
and its related documentation. Without specialized editor support, elucidative
programming is probably out of reach for most programmers.

In the following two sections we will discuss the Elucidator tool and the
editing support of the Scheme Elucidator.

3 For a better presentation, please consult the on-line version of the example at
http://www.cs.auc.dk/~normark/elucidative-programming/time-conversion/

; This is just an example (comment 4 "This is just an example ")

;; The function f adds a constant (comment 2 "The function f adds a constant
; c to its first parameter c to its first parameter ")

(define (f a c)
(+ a c) ; The result (define (f a c)
) (+ a ¢) (comment 1 "The result ")
)

;; This function just calls f
(define (g a) (comment 2 "This function just calls f ")

(f a 5))
(define (g a)
(f a 5))

Fig. 6: An illustration of the pre-processing of comments.

4.1 The elucidator tool

The elucidator is composed by two major components: an abstractor and a syn-
thesizer. In turn, both the abstractor and the synthesizer has a documentation
part and a program part.

The program abstractor parses a Scheme program in order to identify the
relevant program entities. Similarly, the documentation abstractor localizes the
documentation entities. Both abstractors are relatively easy to construct due
to parser-friendly syntactic basis of Lisp, and due to the simple nature of the
documentation markup. The result of the program abstraction process is lists of
defined name occurrences tagged with additional information, such as source file
belongings. The list is stored in a file in the internal directory of the elucidator.
As a processing option it is possible avoid parsing files which are rarely modified;
The lists of definitions in such program source files are taken from the internal
files produced by an earlier elucidation process.

Sectional comments which identify subsequent sections of Scheme forms cause
a number of problem in the parsing process. The reason is that Scheme com-
ments, like comments in most other programming languages, are lexical ele-
ments. As such they disappear before a conventional parsing starts. It would, of
course, be possible to use a specialized parser which reads the comments. As an
alternative, we run the programs through a pre-processor that converts lexical
comments to syntactical comments.* The result of the pre-processing is stored in
temporary files in an internal directory of the elucidator tool. Figure 6 illustrates
the source-to-source transformation done by the pre-processor.

The program synthesizer decorates the source programs with HTML tags.
The HTML a tags are the most important because they represent the entity
relations and links discussed in section 2, including the anchor points of the
source marker. A few icons are added in front of top level definitions. The yellow
left arrow icons are the most important because they connect top-level define

% We use the pre-processor of the SchemeDoc tool from the LAML software package
[17]. Like JavaDoc, SchemeDoc extracts interface comments of definitions. They
serve as interface documentation of library collections, and like in Java, they are
rendered as HTML files for exposition in an Internet browser.

forms to the places where they are discussed (using strong doc-prog relations)
or mentioned (using weak doc-prog relations) in the documentation. Using these
it is easy to identify the places in the documentation where a given Scheme
definition is explained. The program synthesizer also decorates the program text
with colors and font faces. This decoration is mainly done in order to visualize the
navigational role of names and other program constructs in the Scheme program.

The program synthesis process is implemented by reading the program source
text char by char, while simultaneously traversing the parse tree of the pre-
processed program. The information in the parse tree makes it possible to look
ahead in the character input stream. As an example, the possibility of looking
ahead is crucial for the insertion of destination anchors (a name tags) in front
the comment which defines the interface of the Scheme functions.

The documentation synthesizer transforms the specialized markup and the
source markers to HTML markup. This is implemented by means of a state ma-
chine. The state machine applies the knowledge established by the abstractors
to target the doc-prog links to the program, and the doc-doc links to other sec-
tions in the documentation. Structural links between sections and entries of the
documentation are also inserted in this phase.

Based on the result of the abstraction process the elucidator tools makes a
number of useful indexes:

— An index of the definitions in the program

— A cross reference index of the names in the program (only names that are
bound at top-level).

— A table of contents of the documentation (in two different depths).

All indexes are presented in the ‘Menu and index pane’, cf. figure 2. The entries in
the indexes are anchors for links to the appropriate entities in the documentation
or the program. The cross reference index maps names to all the definitions, in
which they are applied. As a convenient shortcut, a definition of (say N) in the
synthesized program is prefixed with an icon® which allows navigation to the
name N in the cross reference index. Using these shortcuts it is relative easy
to follow a selected chain of function calls, from the details towards the overall
program structures (upwards in a possible procedure calling chain).

The Scheme Elucidator creates a fixed number of HTML files, which present
the files from a documentation bundle. All the bindings are done at “elucidation
time”. As an alternative, the bindings may occur at a later time, and ultimately
at “browse time”. Using the latter approach, a program at the WWW server
(a CGI program or a Java servlet, for instance) may synthesize the information
from a repository, which is common for all tools in the elucidative programming
environment. The Java Elucidator, which we briefly touch on in section 6, is
oriented towards this approach.

® The small green triangular icons in front of the top-level definitions brings us to an
entry in the cross reference index.

4.2 The editor tool

The editor tool of the elucidative Scheme programming environment presents
the documentation and a selected program file in a splited window, in a similar
way as the Elucidator. We use a customized version of the Emacs editor. The
customization is programmed in Emacs Lisp.

The editor offers navigation possibilities which are similar to the facilities in
the browser discussed above. More specifically, the following kinds of navigation
are supported via a generic elucidator-goto command in the editor:

— navigation from a program name N in the documentation to the definition
of N in a program.

— navigation from a defining, top-level name occurrence N in a program to a
section in the documentation that explains N.

— navigation from an applied name occurrence N in a program to the corre-
sponding defining name occurrence.

— navigation from one section to another in the documentation via a doc-doc
cross reference link.

Navigation steps are stacked in order to provide for convenient backing up to
previous locations (using the elucidator-back edit command). The navigation
made possible by elucidator-goto and elucidator-back is more powerful
than plain text searching, because it may move the focus from one Emacs buffer
to another. Currently the editor does not support direct navigation between
pairs of source markers.

As it can be seen in figure 5 anchored links a represented by specialized
markup in the documentation. As an example, {multiplum-of} refers to the
place of the definition of the function multiplum-of. The editor supports the cre-
ation of this markup, in particular the entering of names such as ‘multiplum-of’.
The name may either be taken and transferred from a program window, or it
may be entered by means of Emacs completion (just type the first few letters of
a name and Emacs will finalize it). Both of these creations are supported by the
editor command prog-ref. In a similar way, doc-ref supports the creation of
cross reference links between sections in the documentation.

The editor shows the documentation in raw and undecorated form, without
any special rendering of the elucidator-specific markup nor the HTML markup.
Therefore, it is much more pleasant to explore an elucidative program in an
Internet browser than in Emacs. In the development situation, it is attractive
to use both an editor and a browser. The core navigational functionalities are
overlapping. The editor is more flexible with respect to searching than both
Netscape and the Internet Explorer. The browser provides more elaborate and
more user friendly navigation.

The editor depends on information from the elucidator tool. As explained
in section 4.1 the elucidator saves the information, which is extracted by the
abstractors. This information is used by the editor to support both navigation
and flexible creation of links. When the elucidator finishes its processing, the

editor command refresh-elucidator updates the editor’s knowledge about
the documentation bundle.

The editor offers a number of other convenient commands specific to the
Scheme elucidator. The editor knows the files of a documentation bundle. At
any given point in time, one of the program files is in focus. The command
show-program brings another program in focus. The command reset-eluci-
dator establishes a split-window, with documentation in the upper part and a
program in the lower part. The reset-elucidator command is very useful if
Emacs has been used for other and perhaps non-related purposes, such as mail
reading or plain file editing.

We find that the use of Emacs is a better alternative than proposing a new
and special editing tools, targeted exclusively at the creation of elucidative pro-
grams. It seems to be a general experience that programmers are reluctant to
use brand new program construction tools.

In the ideal situation, however, the elucidative editing tool should be part of
an existing integrated development environment. In that situation, support of
elucidative programming would be implanted into an existing and more complete
environment, which hereby would be documented enabled.

5 Related Work

The field of literate programming is the foundation of our work on Elucidative
programming. Literate programming was coined by Knuth in 1984 [13] as a re-
sult of major software undertakings with the TeX text formatting system [14].
Knuth’s research group implemented the WEB system [12,15] as a set of tools
(weave and tangle) which supports literate programming. After that a num-
ber of similar systems appeared [2,31,10]. The main variations stem from the
programming and documentation languages supported. Some systems, such as
Noweb and Nuweb are programming language independent. There exists a pub-
lished annotated bibliography of literate programming [27]. However, the most
complete and up-to-date bibliography is available via Nelson H. F. Beebe’s home
page on the Internet.5 In our earlier paper on elucidative programming [20] we
refer to a number of small examples of literate programs (mainly from The Com-
munications of the ACM in the late eighties) and to other literate programming
approaches than WEB-systems.

In the Scheme world there exists a couple of systems, Scheme WEB and
SLaTeX, that somehow represent a bridge to the world of literate programming.
See the Scheme repository [32] for details on these.

Sametinger and colleagues at Johannes Kepler University of Linz, Austria,
have developed the DOGMA programming environment for C++ [26]. The
DOGMA project has in the same way as the elucidative programming project
gained inspiration from literate programming. Both systems are based on rela-
tions between documentation units and program units. The relations are used

6 http://www.math.utah.edu/pub/tex/bib/litprog.html.

to make relevant documentation appear when documented program units are
in focus. It is worth mentioning that Samtinger et al. have developed a notion
of object-oriented documentation for DOGMA [25]. Using these ideas, object-
oriented concepts (such as inheritance) is used on sections of documentation,
which are attached to classes in C++. DOGMA is a complete and integrated
programming environment for C++, including a residential text editor. As a con-
trast, the elucidative programming environments that we have developed consist
of two separate and partly overlapping tools (an editor and a browser, which is
powered by the elucidator) with a relatively simple integration in between them.
In particular, we rely on an external editor (Emacs) which is customized to
support an elucidative programming process. This may seem to be of minor im-
portance; Nevertheless, we believe that most programmers are conservative in
adopting new editing environments, and as such our less integrated environment
may turn out to be a good, pragmatic alternative to a system like DOGMA.

In our current work on elucidative programming we use the World Wide
Web and the Internet as a medium for program documentation. JavaDoc [3] is
the main inspiration with respect Internet mediated program documentation.
JavaDoc makes it possible to extract interface documentation from comments
in Java programs that are marked in a special way and follow special conven-
tions. The extracted interface documentation is organized as a set of interrelated
WWW pages. JavaDoc documentation is particularly useful for documentation
of class libraries, and as such it is oriented towards program reusability. Elucida-
tive program documentation is targeted at the team of programmers who are
responsible for further development and maintenance of particular applications.

Work on program understanding can be categorized in at least two different
groups: Prevenient and posterior approaches. Our work represents the preve-
nient approach. As discussed in this paper the idea is to document the program
understanding before, or side by side with the development of the program. We
hypothesize that interleaved documentation and program develop processes im-
prove the quality of our programs. Furthermore, we see the documented program
understanding as an investment that pays off during the maintenance phase.
However, we are aware that the prevenient approach is somewhat idealistic, and
that mainstream program development takes place without much emphasis on
pro-active documentation of the program understanding. The posterior approach
deals with extraction of program understanding from existing programs. A vari-
ety of different “reverse engineering” tools have been proposed for such endeavors
(for an overview, see [30]). Because of the relative dominance of the posterior
approach there is much literature on this branch of program understanding. The
IEEE International Workshop on Program Comprehension is the main forum
for reverse engineering papers [4-9].

A few years ago our work was focussed on hyper structured programming
environments. We carried out a number experiments with a system called Hy-
perPro. The main contribution of this work was the notion of rich hypertext,
and in particular the possibilities of defining flexible interaction schemes on rich
hypertexts [21,23]. The work on elucidative programming steps away from a fine

grained hypertextual representation of the underlying programs and documen-
tation. In our current tools we deal with traditional and coarse grained program
source files. As such, our current work is much more pragmatic than the work
on HyperPro.

Kasper @sterbye’s work on literate Smalltalk programming [22] was an im-
portant part of the HyperPro project. Like in HyperPro, @sterbye’s Smalltalk
environment was based on a fine grained representation of classes, methods, and
textual documentation. The work by Reenskaug and Skaar [24] is also about
literate programming support for Smalltalk.

It is natural to study the needs for program documentation in relation to
both the analysis and design phases of the software development process. UML
is the dominating ‘language’ for description of analysis and design artifacts. The
work by Vestdam et al. (from our group) describes a contribution to a CASE
system which introduces the idea of documentation threads [29]. Documentation
threads may involve elements from UML diagrams, program fragments, as well
as pieces of documentation.

6 Status and conclusions

We have described the ideas and concept of an elucidator tool for Scheme. In
addition, we have outlined the facilities of the editor that supports the creation
and modification of elucidative Scheme programs.

The idea of dividing a window (or screen) in a documentation pane and a
program pane, in between which mutual navigation takes place, is central to
the elucidator. A complicated programming situation is often characterized by
juggling with many aspects of the program at the same time. Often it is difficult
and demanding to mobilize sufficient concentration on all these aspects (pieces
of the program). In this situation the documentation pane may be used to keep
a number of program parts together (by means of links) in a way, which makes
it easier and safer to handle a complex programming task.

The Scheme Elucidator is in local use at Aalborg University. The most sub-
stantial elucidative program documents the development of the tool itself. This
program can be seen on the elucidative programming home page together with
a number of smaller examples [16].

A group of master thesis students at Aalborg University have developed an
elucidator for Java [28]. The Java elucidator follows the same principles as the
Scheme elucidator. However, Java is a more difficult and challenging language to
support than Scheme. This implies, for instance, that a more elaborate naming
scheme is needed to address program entities from the documentation. From an
implementation point of view the Java elucidator is also more advanced than
the Scheme elucidator described in this paper. The Java elucidator stores the
result of the abstracting processes in a relational database (whereas the Scheme
environment uses lists of names stored in files). Furthermore, the Java elucida-
tor generates the HTML pages by demand on the WWW server (the Scheme
elucidator generates a set of static HTML pages). More information about the

Java elucidator can be found on the elucidative programming home page referred
above.

The work on the Scheme and Java elucidators raises several interesting ques-
tions. First, is it possible to convince and discipline programmers to document
their program understanding? Second, is it possible to convince the managers
of program development projects to invest in an improved program quality, by
means of documented program understanding “the elucidative way”. Third, can
the documented program understanding of an elucidative program be maintained
with reasonable means? And finally, can we develop practical documentation
patterns that will allow average programmers to write good elucidative docu-
mentation of their programs? In the next couple of years we hope to find good
answers to these questions.

The Scheme Elucidator is available as free software from the LAML home
page on the Internet [17].

References

1. Ted J. Biggerstaff, Bharat G. Mitbander, and Dallas Webster. The concept assign-
ment problem in program understanding. In Proceedings of the 15th international
conference on Software Engineering, pages 482-498. ACM, May 1993.

2. Preston Briggs. Nuweb, A simple literate programming tool. Technical report,
Rice University, Houston, TX, USA, 1993.

3. Lisa Friendly. The design of distributed hyperlinked programming documentation.
In Sylvain Frass, Franca Garzotto, Toms Isakowitz, Jocelyne Nanard, and Marc
Nanard, editors, Proceedings of the International Workshop on Hypermedia Design
(IWHD’95), Montpellier, France, 1995.

4. TIEEE. Proceedings of the Second Workshop on Program Comprehension, July 1993.

5. IEEE. Proceedings of the third Workshop on Program Comprehension - WP(C’94.
IEEE Computer Society Press, November 1994.

6. IEEE. Proceedings of the fourth Workshop on Program Comprehension. IEEE
Computer Society Press, March 1996.

7. IEEE. Fifth International Workshop on Program Comprehension. IEEE Computer
Society Press, March 1997.

8. IEEE. Sizth International Workshop on Program Comprehension. IEEE Computer
Society Press, June 1998.

9. IEEE. Seventh International Workshop on Program Compresension. IEEE Com-
puter Society Press, May 1999.

10. Andrew L. Johnson and Brad C. Johnson. Literate programming using noweb.
Linuz Journal, 42:64—69, October 1997.

11. Richard Kelsey, William Clinger, and Jonathan Rees (editors). Revised® report
on the algorithmic language Scheme. Higher-Order and Symbolic Computation,
11(1):7-105, 1998.

12. Donald E. Knuth. The WEB system of structured documentation. Technical
Report STAN-CS-83-980, Department of Computer Science, Stanford University,
September 1983.

13. Donald E. Knuth. Literate programming. The Computer Journal, May 1984.

14. Donald E. Knuth. The Texbook. Addison-Wesley Publishing Company, 1984.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

Donald E. Knuth and Silvio Levy. The CWEB System of Structured Documenta-
tion, Version 3.0. Addison Wesley, 1993.

Kurt Normark. The elucidative programming home page. http://www.cs.auc.dk/-
~normark/elucidative-programming/, 1999.

Kurt Ngrmark. The LAML home page. http://www.cs.auc.dk/~normark/laml/,
1999.

Kurt Ngrmark. Programming World Wide Web Pages in Scheme. Sigplan Notices,
34(12):37-46, December 1999. Also available via [17].

Kurt Ngrmark. Using Lisp as a markup language—the LAML approach. In Euro-
pean Lisp User Group Meeting. Franz Inc., 1999. Available via [17].

Kurt Ngrmark. Requirements for an elucidative programming environment. In
Eight International Workshop on Program Compresension. IEEE, june 2000. Can
be found via [16].

Kurt Ngrmark and Kasper Osterbye. Rich hypertext: A foundation for improved in-
teraction techniques. International Journal of Human-Computer Studies, (43):301—
321, 1995.

K. Osterbye. Literate Smalltalk programming using hypertext. IEEE Transactions
on Software Engineering, 21(2):138-145, February 1995.

Kasper Osterbye and Kurt Ngrmark. An interaction engine for rich hypertexts. In
European Conference on Hypermedia Technology 1994 Proceedings, pages 167-176.
ACM Press, September 1994.

Trygve Reenskaug and Anne Lise Skaar. An environment for literate Smalltalk
programming. Sigplan Notices, 24(10):337-345, October 1989.

J. Samtinger. Object-oriented documentation. Journal of Computer Documenta-
tion, 18(1):3-14, January 1994.

J. Samtinger and S. Schiffer. Design and implementation aspects of an experimental
C++ programming environment. Software Practice and Ezperience, 25(2):111-128,
February 1995.

L. M. C. Smith and M. H. Samadzadeh. An annotated bibliography of literate
programming. Sigplan Notices, 26(1):14-20, January 1991.

Sgren Staun-Pedersen, Max R. Andersen, Vathanan Kumar, Kristian L. Sgrensen,
and Claus N. Christensen. The elucidator - for Java. Preliminary master thesis
report, Janunary 2000. Available from http://dopu.cs.auc.dk.

Thomas Vestdam. Pulling threads through documentation. In Mughal and Op-
dahl, editors, Proceedings of NWPER’2000 - Nordic Workshop on Programming
Environment Research, May 2000.

Richard C. Waters and Elliot Chikofsky. Reverse engineering: Progress along many
dimensions. Communications of the ACM, 37(5):22-25, May 1994.

Ross Williams. FunnelWeb user’s manual. Technical report, University of Adelaide,
Adelaide, South Australia, Australia, 1992.

John Zuckerman. The internet Scheme repository. http://www.cs.indiana.edu/-
scheme-repository/home.html.

