
Michelangelo Diligenti, Frans Coetzee, Steve Lawrence, C. Lee Giles, Marco Gori. Focused Crawling using Context Graphs, 26th
International Conference on Very Large Databases, VLDB 2000, Cairo, Egypt, pp. 527–534, 2000.

Focused Crawling Using Context Graphs

M. Diligenti†, F. M. Coetzee, S. Lawrence, C. L. Giles and M. Gori
�

NEC Research Institute, 4 Independence Way, Princeton, NJ 08540-6634 USA
†Dipartimento di Ingegneria dell’Informazione, Università di Siena

Via Roma, 56 - 53100 Siena, Italy�
diligmic,gori � @dii.unisi.it,

�
coetzee,lawrence,giles � @research.nj.nec.com

Abstract

Maintaining currency of search engine indices by
exhaustive crawling is rapidly becoming impossi-
ble due to the increasing size and dynamic content
of the web. Focused crawlers aim to search only
the subset of the web related to a specific cate-
gory, and offer a potential solution to the currency
problem. The major problem in focused crawl-
ing is performing appropriate credit assignment
to different documents along a crawl path, such
that short-term gains are not pursued at the ex-
pense of less-obvious crawl paths that ultimately
yield larger sets of valuable pages. To address
this problem we present a focused crawling algo-
rithm that builds a model for the context within
which topically relevant pages occur on the web.
This context model can capture typical link hierar-
chies within which valuable pages occur, as well
as model content on documents that frequently co-
occur with relevant pages. Our algorithm further
leverages the existing capability of large search
engines to provide partial reverse crawling capa-
bilities. Our algorithm shows significant perfor-
mance improvements in crawling efficiency over
standard focused crawling.

1 Introduction

The size of the publicly indexable world-wide-web has
provably surpassed one billion (109) documents [1] and as
yet growth shows no sign of leveling off. Dynamic con-
tent on the web is also growing as time-sensitive materials,

Permission to copy without fee all or part of this material is granted pro-
vided that the copies are not made or distributed for direct commercial
advantage, the VLDB copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Very Large Data Base Endowment. To copy otherwise, or to republish,
requires a fee and/or special permission from the Endowment.

Proceedings of the 26th VLDB Conference,
Cairo, Egypt, pp. 527–534, 2000.

such as news, financial data, entertainment and schedules
become widely disseminated via the web. Search engines
are therefore increasingly challenged when trying to main-
tain current indices using exhaustive crawling. Even using
state of the art systems such as AltaVista’s Scooter, which
reportedly crawls ten million pages per day, an exhaustive
crawl of the web can take weeks. Exhaustive crawls also
consume vast storage and bandwidth resources, some of
which are not under the control of the search engine.

Focused crawlers [2, 3] aim to search and retrieve only
the subset of the world-wide web that pertains to a spe-
cific topic of relevance. The ideal focused crawler retrieves
the maximal set of relevant pages while simultaneously
traversing the minimal number of irrelevant documents on
the web. Focused crawlers therefore offer a potential so-
lution to the currency problem by allowing for standard
exhaustive crawls to be supplemented by focused crawls
for categories where content changes quickly. Focused
crawlers are also well suited to efficiently generate indices
for niche search engines maintained by portals and user
groups [4], where limited bandwidth and storage space are
the norm [5]. Finally, due to the limited resources used by
a good focused crawler, users are already using personal
PC based implementations [6]. Ultimately simple focused
crawlers could become the method of choice for users to
perform comprehensive searches of web-related materials.

While promising, the technology that supports focused
crawling is still in its infancy. The major open problem
in focused crawling is that of properly assigning credit to
all pages along a crawl route that yields a highly relevant
document. In the absence of a reliable credit assignment
strategy, focused crawlers suffer from a limited ability to
sacrifice short term document retrieval gains in the interest
of better overall crawl performance. In particular, existing
crawlers still fall short in learning strategies where topically
relevant documents are found by following off-topic pages.

We demonstrate that credit assignment for focused
crawlers can be significantly improved by equipping the
crawler with the capability of modeling the context within
which the topical materials is usually found on the web.
Such a context model has to capture typical link hierarchies
within which valuable pages occur, as well as describe
off-topic content that co-occurs in documents that are fre-



quently closely associated with relevant pages. We present
a general framework and a specific implementation of such
a context model, which we call a Context Graph. Our algo-
rithm further differs from existing focused crawlers in that
it leverages the capability of existing exhaustive search en-
gines to provide partial reverse crawling capabilities. As a
result it has a rapid and efficient initialization phase, and is
suitable for real-time services.

The outline of the paper is as follows: Section 2 pro-
vides a more detailed overview of focused crawling. Sec-
tion 3 describes the architecture and implementation of our
approach. Comparisons with existing focused crawling al-
gorithms on some test crawls are shown in Section 4, and
we conclude by discussing extensions and implications in
Section 5.

2 Prior Work in Crawling
The first generation of crawlers [7] on which most of the
web search engines are based rely heavily on traditional
graph algorithms, such as breadth-first or depth-first traver-
sal, to index the web. A core set of URLs are used as a seed
set, and the algorithm recursively follows hyper links down
to other documents. Document content is paid little heed,
since the ultimate goal of the crawl is to cover the whole
web.

a) Standard Crawling b) Focus Crawling

Figure 1: a) A standard crawler follows each link, typically
applying a breadth first strategy. If the crawler starts from
a document which is i steps from a target document, all the
documents that are up to i � 1 steps from the starting docu-
ment must be downloaded before the crawler hits the target.
b) A focused crawler tries to identify the most promising
links, and ignores off-topic documents. If the crawler starts
from a document which is i steps from a target document,
it downloads a small subset of all the documents that are
up to i � 1 steps from the starting document. If the search
strategy is optimal the crawler takes only i steps to discover
the target.

A focused crawler efficiently seeks out documents about
a specific topic and guides the search based on both the con-
tent and link structure of the web [2]. Figure 1 graphically
illustrates the difference between an exhaustive breadth-
first crawler and a typical focused crawler. A focused
crawler implements a strategy that associates a score with
each link in the pages it has downloaded [8, 9, 10]. The
links are sorted according to the scores and inserted in a

queue. A best first search is performed by popping the next
page to analyze from the head of the queue. This strategy
ensures that the crawler preferentially pursues promising
crawl paths.

The simplest focused crawlers use a fixed model of
the relevancy class, typically encoded as a classifier, to
evaluate the documents that the current document links
to (henceforth referred to as children) for topical rele-
vancy [2, 3, 11]. The classifier is either provided by the user
in the form of query terms, or can be built from a set of seed
documents. Each link is assigned the score of the document
to which it leads. More advanced crawlers adapt the clas-
sifier based on the retrieved documents, and also model the
within-page context of each hyperlink. In the most com-
mon adaptive crawlers decision directed feedback is used,
where documents that are marked as relevant by the clas-
sifier are also used to update the classifier. However, en-
suring flexibility in the classifier, without simultaneously
corrupting the classifier, is difficult.

A major problem faced by the above focused crawlers
is that it is frequently difficult to learn that some sets of
off-topic documents often lead reliably to highly relevant
documents. This deficiency causes problems in traversing
the hierarchical page layouts that commonly occur on the
web. Consider for example a researcher looking for pa-
pers on neural networks. A large number of these papers
are found on the home pages of researchers at computer
science departments at universities. When a crawler finds
the home page of a university, a good strategy would be to
follow the path to the computer science (CS) department,
then to the researchers’ pages, even though the university
and CS department pages in general would have low rele-
vancy scores. While an adaptive focused crawler described
above could in principle learn this strategy, it is doubtful
that the crawler would ever explore such a path in the first
place, especially as the length of the path to be traversed
increases.

To explicitly address this problem, Rennie and McCal-
lum [12] used reinforcement learning to train a crawler on
specified example web sites containing target documents.
The web site or server on which the document appears is re-
peatedly crawled to learn how to construct optimized paths
to the target documents. However, this approach places a
burden on the user to specify representative web sites. Ini-
tialization can be slow since the search could result in the
crawling of a substantial fraction of the host web site. Fur-
thermore, this approach could face difficulty when a hier-
archy is distributed across a number of sites.

An additional difficulty faced by existing crawlers is that
links on the web are uni-directional, which effectively re-
stricts searching to top-down traversal, a process that we
call “forward crawling” (Obtaining pages that link to a par-
ticular document is referred to as “backward crawling”).
Since web sites frequently have large components that are
organized as trees, entering a web site at a leaf can result
in a serious barrier to finding closely related pages. In our
example, when a researcher’s home page is entered, say

2



via a link from a list of papers at a conference site, a good
strategy would be for the crawler to find the department
member list, and then search the pages of other researchers
in the department. However, unless an explicit link exists
from the researcher’s page to the CS department member
list, existing focused crawlers cannot move up the hierar-
chy to the CS department home page.

Our focused crawler utilizes a compact context repre-
sentation called a Context Graph to model and exploit hi-
erarchies. The crawler also utilizes the limited backward
crawling [13, 14] possible using general search engine in-
dices to efficiently focus crawl the web. Unlike Rennie and
McCallum’s approach [12], our approach does not learn the
context within which target documents are located from a
small set of web sites, but in principle can back crawl a sig-
nificant fraction of the whole web starting at each seed or
on-topic document. Furthermore, the approach is more ef-
ficient in initialization, since the context is constructed by
directly branching out from the good set of documents to
model the parents, siblings and children of the seed set.

3 The Context Focused Crawler
Our focused crawler, which we call the Context Focused
Crawler (CFC), uses the limited capability of search en-
gines like AltaVista or Google to allow users to query for
pages linking to a specified document. This data can be
used to construct a representation of pages that occur within
a certain link distance (defined as the minimum number of
link traversals necessary to move from one page to another)
of the target documents. This representation is used to train
a set of classifiers, which are optimized to detect and assign
documents to different categories based on the expected
link distance from the document to the target document.
During the crawling stage the classifiers are used to predict
how many steps away from a target document the current
retrieved document is likely to be. This information is then
used to optimize the search.

There are two distinct stages to using the algorithm
when performing a focused crawl session:

1. An initialization phase when a set of context graphs
and associated classifiers are constructed for each of
the seed documents

2. A crawling phase that uses the classifiers to guide the
search, and performs online updating of the context
graphs.

The complete system is shown in Figure 2. We now de-
scribe the core elements in detail.

3.1 Generating the Context Graphs

The first stage of a crawling session aims to extract the con-
text within which target pages are typically found, and en-
codes this information in a context graph. A separate con-
text graph is built for every seed element provided by the
user. Every seed document forms the first node of its as-
sociated context graph. Using an engine such as Google,

..

.
..
.

..

.
..
.

W
W
W

C1 C2 C3

Queue 1 Queue2 Queue 3 Queue 4

Class Decision

Set of Classifiers

Crawling Stage

Learning Stage

Back Crawl Stage
Contex

Graph

Engine
Crawl 

New Document

Actual Analized 
document

����

Figure 2: Graphical representation of the Context Focused
Crawler. During the initialization stage a set of context
graphs are constructed for the seed documents by back-
crawling the web, and classifiers for different graph layers
are trained. During the crawling stage the crawl engine and
the classifiers manage a set of queues that select the next
page on which to center the crawl.

a number of pages linking to the target are first retrieved
(these pages are called the parents of the seed page). Each
parent page is inserted into the graph as a node and an edge
is established between the target document node and the
parent node. The new nodes compose layer 1 of the context
graph. The back-crawling procedure is repeated to search
all the documents linking to documents of layer 1. These
pages are incorporated as nodes in the graph and compose
layer 2. The back-linking process is iterated, until a user-
specified number of layers have been filled. In practice the
number of elements in a given layer can increase suddenly
when the number of layers grow beyond some limit. In
such a case a statistical sampling of the parent nodes, up
to some system dependent limit, is kept. To simplify the
link structure, we also use the convention that if two docu-
ments in layer i can be accessed from a common parent, the
parent document appears two times in the layer i

�
1. As

a result, an equivalent induced graph can be created where
each document in the layer i

�
1 is linked to one and only

one document in the layer i.
We define the depth of a context graph to be the number

of layers in the graph excluding the level 0 (the node stor-
ing the seed document). When N levels are in the context
graph, path strategies of up to N steps can be modeled. A
context graph of depth 2 is shown in Figure 3.

By constructing a context graph, the crawler gains
knowledge about topics that are directly or indirectly re-
lated to the target topic, as well as a very simple model of
the paths that relate these pages to the target documents. As
expected, in practice, we find that the arrangement of the
nodes in the layers reflect any hierarchical content struc-
ture. Highly related content typically appears near the cen-
ter of the graph, while the outer layers contain more gen-
eral pages. As a result, when the crawler discovers a page

3



Document Representations of layer 2

Representation of the Target Document

Document Representations of layer 1

Target Example

Layer 1

Layer 2

����������������

��������������������

Figure 3: A context graph represents how a target docu-
ment can be accessed from the web. In each node a web
document representation is stored. The graph is organized
into layers: each node of layer i is connected to one (and
only one) node of the layer i � 1 (except the single node
in layer 0). There are no connections between nodes at the
same level. The seed document is stored in layer 0. A
document is in layer i if at least i steps (link followings)
are needed to reach the target page starting from that docu-
ment.

with content that occurs higher up in the hierarchy, it can
use its knowledge of the graph structure to guide the search
towards the target pages. Returning to our example of look-
ing for neural network pages, the context graph will typi-
cally discover a hierarchy where levels correspond to re-
searcher home pages, research group pages, and ultimately
department and university home pages.

Once context graphs for all seed documents have been
built, the corresponding layers from the different context
graphs are combined, yielding a layered structure that we
call the Merged Context Graph.

3.2 Learning Classifiers for the Context Graph Ele-
ments

The next stage in initialization builds a set of classifiers for
assigning any document retrieved from the web to one of
the layers of the merged context graph, and for quantifying
the belief in such a classification assignment.

The classifiers require a feature representation of the
documents on which to operate. Our present implemen-
tation uses keyword indexing of each document using a
modification of TF-IDF (Term Frequency Inverse Docu-

ment Frequency). TF-IDF representation [15] describes a
document as a vector relative to a basis of phrases that de-
fine a vocabulary V . Each element in the vector represents
the frequency of occurrence of the phrase in the document,
weighted according to the discrimination implied by the
presence of the phrase within a reference corpus. This dis-
crimination is approximated by the phrase frequency in the
reference corpus. If two phrases have the same number of
occurrences in a document, the TF-IDF value of the less
common phrase will be higher. The TF-IDF score ν

�
w � of

a phrase w is computed using the following function:

ν
�
w ��� f d � w �

f d
max

log
N

f
�
w � (1)

where f d � w � is the number of occurrences of w in a docu-
ment d, f d

max is the maximum number of occurrences of a
phrase in a document d, N is the number of documents in
the reference corpus and f

�
w � is the number of documents

in the corpus where the phrase w occurs at least once.
We implement TF-IDF using the following steps. All

the documents in the seed set, as well as optionally, the
first layer, are concatenated into a single master document.

1. All stop-words such as “by”, “and”, or “at” are re-
moved from the master document

2. Word stemming is performed to remove com-
mon word transformations, such as plurals or case
changes [16];

3. TF-IDF computation is performed using a reference
corpus derived from an exhaustive web crawl.

The resulting set of phrases form the vocabulary V . When
a document is retrieved, the TF-IDF score for phrases in
V that occur in the document are computed and placed in
a vector. We then truncate the vector representation to in-
clude only the forty highest scoring components by zeroing
out the remaining components. This processing, yielding a
representation which we will refer to as reduced TF-IDF
representation, ensures numerical stability and high speed
of the classifiers.

Given a representation procedure, we next construct the
classifiers. Our goal is to be able to assign any web doc-
ument to a particular layer of the merged context graph.
However, if the document is a poor fit for a given layer, we
wish to discard the document, and label it as one of the cat-
egory “other”. The major difficulty in implementing such
a strategy using a single classifier mapping a document to
a set of N

�
2 classes corresponding to the layers 0 	 1 	�
�
�
 N

and a category “other”, is the absence of a good model or
training set for the category “other”. To solve this prob-
lem we use a modification of the Naive Bayes Classifier
for each layer. This classifier architecture provides reason-
able performance, high speed, meets the requirement of our
system that a likelihood estimate be provided for each clas-
sification, and is well studied [17, 18, 12].

Assume that we have a document di represented by the
vector corresponding to the reduced TF-IDF representation

4



relative to the vocabulary V . Documents from class c j, de-
fined to correspond to layer j, are assumed to have a prior
probability of being found on the web which we denote
P
�
c j � . The probability that a vector element wt occurs in

documents of class c j is P
�
wt

�
c j � . To classify a page, we

first wish to find the class c j such that P
�
c j

�
di � is maxi-

mized. The solution is given by Bayes rule

P
�
c j

�
di � ∝ P

�
c j � P

�
di

�
c j � ∝ P

�
c j � P

�
wdi � 1 
�
�
 wdi � N

�
c j � (2)

where wdi � k is the k-th feature of the document di. The
Naive Bayes assumption ignores joint statistics and for-
mally assumes that given the document class the features
occur independently of each other, yielding the final solu-
tion

P
�
c j

�
di � ∝ P

�
c j � P

�
di

�
c j � ∝ P

�
c j �

Ndi

∏
k � 1

P
�
wdi � k

�
c j � (3)

where Ndi indicates the number of features in the document
di. If N denotes the maximum depth of the context graphs,
then N

�
1 discriminant functions P

�
c j

�
di � are built corre-

sponding the layers j � 0 	 1 	�
�
�
 N.
The discriminant functions allow for a given page di to

first be assigned to one of the layers of the merged context
graph, by finding the layer j � for which the discriminant
function P

�
c j

�
di � is maximized. Subsequently, by comput-

ing the likelihood function P
�
c j � �

di � for the winning layer
j � , and comparing this likelihood to a threshold, it is possi-
ble to discard weakly matching pages. These pages are ef-
fectively marked as “other”, which avoids the need for con-
struction of an explicit model of all documents not in the
context graph. In effect, we build a set of parallel two-class
Naive Bayes classifiers, one for each layer, and select the
winning layer by maximizing the a-posteriori likelihood of
the layer based on the context graph.

In training the classifiers, the documents that occur in
layer j of all of the seed document context graphs are com-
bined to serve as a training data set D j. The phrase prob-
abilities P

�
wt

�
c j � are computed on the sets D j by counting

the occurrences of the feature wt and then normalizing for
all the words in the documents of class c j:

P
�
wt

�
c j ���

1
�

∑di � D j
N
�
wt 	 di � P

�
c j

�
di ��

V
� �

∑di � D j ∑ � V �s � 1 N
�
ws 	 di � P

�
c j

�
di �

(4)

where N
�
wt 	 di � is the number of occurrences of wt in the

document di and
�
V

�
is the number of phrases in the vocab-

ulary V [17, 18, 12].
The parameters P

�
c j � can be calculated by estimating

the number of elements in each of the layers of the merged
context graph. While useful when the layers do not contain
excessive numbers of nodes, as previously stated practical
limitations sometimes prevent the storage of all documents
in the outermost layers. In these cases the class probabili-
ties P

�
c j � are set to a fixed constant value 1 � C, where C is

the number of layers. This corresponds to maximum likeli-
hood selection of the winning layer. In our experience, per-
formance is not severely impacted by this simplification.

The classifier of layer 0 is used as the ultimate arbiter
of whether a document is topically relevant. The discrimi-
nant and likelihood functions for the other layers are used
to predict for any page how many steps must be taken be-
fore a target is found by crawling the links that appear on a
page.

3.3 Crawling

The crawler utilizes the classifiers trained during the con-
text graph generation stage to organize pages into a se-
quence of M � N

�
2 queues, where N is the maximum

depth of the context graphs. The i-th class (layer) is asso-
ciated to the i-th queue i � 0 	 1 	�
�
�
 N. Queue number N

�
1

is not associated with any class, but reflects assignments
to “other”. The 0-th queue will ultimately store all the re-
trieved topically relevant documents. The system is shown
graphically in Figure 2.

Initially all the queues are empty except for the dummy
queue N

�
1, which is initialized with the starting URL of

the crawl. The crawler retrieves the page pointed to by the
URL, computes the reduced vector representation and ex-
tracts all the hyperlinks. The crawler then downloads all
the children of the current page. All downloaded pages
are classified individually and assigned to the queue corre-
sponding to the winning layer, or the class “other”. Each
queue is maintained in a sorted state according to the like-
lihood score associated with its constituent documents.

When the crawler needs the next document to move to,
it pops from the first non-empty queue. The documents
that are expected to rapidly lead to targets are therefore
followed before documents that will in probability require
more steps to yield relevant pages. However, depending on
the relative queue thresholds, frequently high-confidence
pages from queues representing longer download paths are
retrieved.

The setting of the classifier thresholds that determine
whether a document gets assigned to the class denoted
“other” determines the retrieval strategy. In our default im-
plementation the likelihood function for each layer is ap-
plied to all the patterns in the training set for that layer.
The confidence threshold is then set equal to the minimum
likelihood obtained on the training set for the correspond-
ing layer.

During the crawling phase, new context graphs can peri-
odically be built for every topically relevant element found
in queue 0. However, our focused crawler can also be con-
figured to ask for the immediate parents of every document
as it appears in queue 0, and simply insert these into the ap-
propriate queue without re-computing the merged context
graph and classifiers. In this way it is possible to contin-
ually exploit back-crawling at a reasonable computational
cost.

4 Experimental Results

The core improvement of our focused crawler derives from
the introduction of the context graph. We therefore com-

5



0 2000 4000 6000 8000 10000 12000
Number of Dowloads

0

50

100

150

200

250

300

350

400

R
et

rie
ve

d 
T

ar
ge

t D
oc

um
en

ts
�

Context−Focused Crawler
Focused Crawler
Breadth−First Crawler

Figure 4: Both the Context Focused Crawler and the stan-
dard focused crawler are orders of magnitude more ef-
ficient than a traditional breadth-first crawler when re-
trieving “Call for Papers” documents. The Context Fo-
cused Crawler outperforms the standard crawler, retrieving
50 � 60% more “on-topic” documents in a given period.

pare the efficiency of our Context Focused Crawler to two
crawlers:

� a breadth-first crawler, using the classifier constructed
by the Context Focused Crawler on the seed set;

� a traditional focused crawler which does not use the
context to search targets. This crawler evaluates all
children of the current document using the same clas-
sifier used by the Context Focused Crawler for the
seed set, and schedules crawls based on the document
with the highest score.

As a test set we performed a focused crawl for confer-
ence announcements, and, in particular, for the “Call for
Papers” section. We used ten examples as a seed set and
constructed ten context graphs of depth four. We limited
the number of documents in a single layer of the context
graph to 300 . The resulting data was used to learn the 5
Naive Bayes classifiers associated with the five queues.

To evaluate our algorithm we used the accepted metric
of measuring the fraction of pages that are on-topic as a
function of the number of download requests. The results
are shown in the Figure 4. Both of the focused crawlers
significantly outperform the standard breadth-first crawler.
However the Context Focused Crawler has found on av-
erage 50-60% more on-topic documents than the standard
focused crawler on the “Conference” task.

The ability of the crawlers to remain focused on “on-
topic” documents can also fruitfully be measured by com-
puting the average relevance of the downloaded documents.
The relevance of a document is equated to the likelihood
that the document has been generated by the Naive Bayes
model of the seed set. In Figure 5 we show the average
relevance using a sliding window of 200 downloads. In

200 2200 4200 6200 8200 10200 12200
Number of Downloads

10
−110

10
−100

10
−90

10
−80

10
−70

10
−60

10
−50

10
−40

10
−30

10
−20

R
el

ev
an

ce
��

Context Focused Crawler
Focused Crawler
Breadth−First Crawler

Figure 5: The average relevance of the downloaded docu-
ments computed using a sliding window of 200 downloads,
illustrating the improved capability of the Context Focused
Crawler to remain on-topic.

each case the Context Focused Crawler maintains a signif-
icantly higher level of relevance than either of the other
two crawlers, reflecting the ability of the crawler to use off-
topic paths to find new sets of promising documents.

Our experiments showed that the overhead due to the
initialization stage is negligible, especially when the over-
all higher efficiency of the crawler is taken into account.

The improvement that results from querying for the par-
ents of every on-topic document when it is discovered can
be seen in Figure 6. This approach shows bursts of rapid re-
trieval when back-crawling from a target document yields
a hub site. We note that for general use we ration the num-
ber of back-link requests to avoid over-taxing the search
engines.

Figure 7 shows a different category, “Biking”, for which
our focused crawler showed the least average performance
improvement over standard focused crawling (although it
still significantly outperforms the standard crawler over
most of the trial). We found that such difficult categories
are those where target content is not reliably co-located
with pages from a different category, and where common
hierarchies do not exist or are not implemented uniformly
across different web-sites. It is therefore to be expected
that the context graph provides less guidance in such cases.
However, due to our architecture design, and as illustrated
by Figure 4 and Figure 7, the performance will at worst
approach that of the standard focused crawling approach.

5 Discussion

We presented a focused crawler that models the links and
content of documents that are closely linked to target pages
to improve the efficiency with which content related to a
desired category can be found. Our experiments show that
the Context Focused Crawler improves the efficiency of tra-
ditional focused crawling significantly (on average about

6



0 1000 2000 3000 4000 5000
Downloads

0

30

60

90

120

150

180

210

240

O
n−

to
pi

c 
re

tr
ie

ve
d 

do
cu

m
en

ts
Context Focused Crawler 
Context Focused Crawler With BackLinks

Figure 6: Performance of Context Focused Crawler as
compared to Context Focused Crawler with BackLinks,
where parents of each on-topic document are obtained from
the search engines immediately after the document is dis-
covered. The task is retrieval of “Call for Papers” docu-
ments on the web.

50-60%), and standard breadth-first crawling by orders of
magnitude.

The major limitation of our approach is the requirement
for reverse links to exist at a known search engine for a
reasonable fraction of the seed set documents. In practice,
this does not appear to be problem. However, even when no
seed documents have yet been indexed by search engines,
the approach can be bootstrapped. In this case a content
model of the seed set is extracted and other high-confidence
target data can be found using query modifications on a
search engine. The indexed target data pages returned by
the search engine can then be used to build context graphs.
The system can also start with a breadth-first crawl and a
set of example documents for training the level 0 classifier,
with context graphs being built once a minimum number of
target documents have been recovered.

The architecture we presented already yields very good
performance, but can be fruitfully improved. Major im-
provements should result from more sophisticated ap-
proaches for setting the confidence thresholds of the clas-
sifiers. We are currently investigating other machine learn-
ing algorithms for setting these thresholds. A promising
approach maintains a graph representation of the current
crawl, which a separate on-line process uses to quantify
the effect of different queue thresholds.

Other areas of interest are the extension of the feature
space to include page analysis of HTML structure, using
the statistics gained during the search to develop ranking
procedures for presenting results to the user, and perform-
ing online classifier adaptation. At present adaptation in
our system is restricted to periodically incorporating the
context graphs of newly discovered target documents that
are found in queue 0, and re-building the classifier (the
tests in this paper did not use this feature, to avoid intro-

0 200 400 600 800 1000 1200 1400 1600
Downloads

0

10

20

30

40

50

60

70

80

90

100

110

R
et

rie
ve

d 
T

ra
ge

t D
oc

um
en

ts

Context Focused Crawler
Focused Crawler

Figure 7: Performance of focused crawlers on the category
“Biking”.

ducing another parameter). Online parameter updating of
the classifiers using the EM approach [19] should result
in more efficient continuous optimization of the classifier
performance.

Not only can our approach be used for background gath-
ering of web material, the computational and bandwidth re-
quirements of the crawler are sufficiently modest for the
crawler to be used in an interactive session over a DSL
or cable modem connection on a home PC. The focused
crawler can therefore be used as a valuable supplement to,
and in some cases a replacement for, standard search engine
database queries. We have no doubt that further improve-
ment of focused crawling will soon make crawling not only
the privilege of large companies that can afford expensive
infrastructures, but a personal tool that is widely available
for retrieving information on the world wide web.

References
[1] “Web surpasses one billion documents: Inktomi/NEC

press release.” available at http://www.inktomi.com,
Jan 18 2000.

[2] S. Chakrabarti, M. van der Berg, and B. Dom, “Fo-
cused crawling: a new approach to topic-specific web
resource discovery,” in Proc. of the 8th International
World-Wide Web Conference (WWW8), 1999.

[3] J. Cho, H. Garcia-Molina, and L. Page, “Efficient
crawling through URL ordering,” in Proceedings of
the Seventh World-Wide Web Conference, 1998.

[4] A. McCallum, K. Nigam, J. Rennie, and K. Sey-
more, “Building domain-specic search engines with
machine learning techniques,” in Proc. AAAI Spring
Symposium on Intelligent Agents in Cyberspace,
1999.

[5] A. K. McCallum, K. Nigam, J. Rennie, and K. Sey-
more, “Automating the construction of internet por-

7



tals with machine learning,” To appear in Information
Retrieval.

[6] M. Gori, M. Maggini, and F. Scarselli,
“http://nautilus.dii.unisi.it.”

[7] O. Heinonen, K. Hatonen, and K. Klemettinen,
“WWW robots and search engines.” Seminar on Mo-
bile Code, Report TKO-C79, Helsinki University of
Technology, Department of Computer Science, 1996.

[8] S. Chakrabarti, B. Dom, P. Raghavan, S. Rajagopalan,
D. Gibson, and J. Kleinberg, “Automatic resource
compilation by analyzing hyperlink structure and as-
sociated text,” in Proc. 7th World Wide Web Confer-
ence, Brisbane, Australia, 1998.

[9] K. Bharat and M. Henzinger, “Improved algorithms
for topic distillation in hyperlinked environments,”
in Proceedings 21st Int’l ACM SIGIR Conference.,
1998.

[10] J. Kleinberg, “Authoritative sources in a hyperlinked
environment.” Report RJ 10076, IBM, May 1997,
1997.

[11] S. Chakrabarti, M. van den Berg, and B. Dom, “Dis-
tributed hypertext resource discovery through exam-
ples,” in VLDB’99, Proceedings of 25th International
Conference on Very Large Data Bases, September 7-
10, 1999, Edinburgh, Scotland, UK (M. P. Atkinson,
M. E. Orlowska, P. Valduriez, S. B. Zdonik, and M. L.
Brodie, eds.), pp. 375–386, Morgan Kaufmann, 1999.

[12] J. Rennie and A. McCallum, “Using reinforcement
learning to spider the web efficiently,” in Proc. Inter-
national Conference on Machine Learning (ICML),
1999.

[13] K. Bharat, A. Broder, M. Henzinger, P. Kumar, and
S. Venkatasubramanian, “The connectivity server:
Fast access to linkage information on the web,”
WWW7/ Computer Networks 30(1-7), pp. 469–477,
1998.

[14] S. Chakrabarti, D. Gidson, and K. McCurley, “Surfing
backwards on the web,” in Proc 8th World Wide Web
Conference (WWW8), 1999.

[15] G. Salton and M. J. McGill, An Introduction to Mod-
ern Information Retrieval. McGraw-Hill, 1983.

[16] M. Porter, “An algorithm for suffix stripping,” Pro-
gram, vol. 14, no. 3, pp. 130–137, 1980.

[17] T. M. Mitchell, Machine Learning. McGraw-Hill,
1997.

[18] K. Nigam, A. McCallum, S. Thrun, and T. Mitchell,
“Text classification from labeled and unlabelled doc-
uments using EM.” To appear in Machine Learning,
1999.

[19] A. Dempster, N. Laird, and D. Rubin, “Maximum
likelihood from incomplete data via the EM algo-
rithm,” J. R. Statist. Soc. B, vol. 39, pp. 185–197,
1977.

8


