PERGAMON

Information Systems 26 (2001) 295-320

*

www.elsevier.com/locate/infosys

A case study in systematic hypermedia design

Venkatraman Balasubramanian®*, Michael Bieber®, Tomas Isakowitz®

& E-Papyrus Inc., 1 Gramercy Road, Monmouth Junction, NJ 08852, USA
® Collaborative Hypermedia Research Laboratory, Information Systems Department, New Jersey Institute of Technology,
University Heights, Newark, NJ 07102, USA
€ Research Department, Janney Montgomery Scott, 1801 Market St., Philadelphia, PA 19103, USA

Abstract

Hypermedia structuring and navigation requires design methodologies different from those developed for standard
information systems. This case study details our successful application of relationship management methodology
(RMM), a hypermedia systems analysis and design methodology, to ACM SIGLINK’s LINKBase. LINKBase is a
World Wide Web (WWW) application, which dynamically generates WWW pages from a relational database
containing information about hypermedia-related events such as conferences, publications, authors, and sponsoring
organizations. We describe our experience applying RMM in this case study, summarize design lessons we learned in
the process, present extensions to RMM, discuss human—computer interaction (HCI) aspects of RMM, and ground our
work in the hypermedia design and HCI literature. Our experiences should encourage hypermedia and WWW
developers to utilize systematic design techniques to build highly usable and useful WWW applications. © 2001 Elsevier
Science Ltd. All rights reserved.

Keywords: Hypertext; Hypermedia; Design methodologies; Design guidelines; Entity-Relationship diagrams; Structure; Content;
Navigation; User interface; Browsing semantics; Information access; Indexes; Guided tours; World Wide Web database gateways;

LINKBase; Usability evaluation; Functionality evaluation

1. Introduction

Organizations are increasingly seeking to exploit
hypermedia' to augment users’ access to informa-
tion. For example, we find hypermedia-based
information kiosks in museums, airports and other
public places. Hypermedia techniques help soft-
ware developers find program segments for reuse
[1]. Hypermedia structuring gives executives and
analysts ready access to details and explanations

*Corresponding author.

''While the term hypermedia nominally encompasses multiple
media, we make no distinction between hypertext and
hypermedia in this article.

within decision support systems [2-10]. On the
World Wide Web (WWW), organizations are
exploring the potential of hypermedia access to
present themselves to the public, and to sell their
products and services [5]. Yet, while the field of
hypermedia itself is maturing, methodologies for
hypermedia design are beginning to emerge only
now. To date, no published work has employed a
systematic hypermedia design methodology for
WWW development. Also, only relatively recently
have there been reports about the need to
incorporate human—computer interaction (HCI)
and usability aspects into the WWW [11,12].

This article details our successful application
of a hypermedia systems analysis and design

0306-4379/01/$ - see front matter © 2001 Elsevier Science Ltd. All rights reserved.

PII: S0306-4379(01)00022-9

296 V. Balasubramanian et al. | Information Systems 26 (2001) 295-320

methodology to a WWW application. We present
a case study using the relationship management
methodology (RMM) by Isakowitz et al. [13],
propose extensions to RMM, summarize the
“RMM design” lessons we learned in this process,
describe HCI implications of RMM, and ground
our experience in the hypermedia design and HCI
literature. Our experiences should help pave the
way for other developers to take advantage of
hypermedia design and development techniques,
both on the WWW and in more traditional
applications.

What makes hypermedia so useful? We view
hypermedia as the science of relationships and
hypermedia techniques as supporting relationship
management. Hypermedia concerns structuring,
presenting and giving users direct access to the
content and interconnections within an informa-
tion domain. A hypermedia vantage point en-
courages designers to consider a system in terms of
the relationships among its objects and processes,
focusing on what users might want to access and
how users should access them [14,15].

Handcrafting hypermedia interrelationships is
tedious at best, and impractical in cases of
voluminous or frequently changing information.
Furthermore, authoring a hypermedia interface
and hypermedia links in an ad hoc format leads to
inconsistent design [16], and the possibility of
errors and omissions [17,18]. Therefore, a systema-
tic design approach with automatic page genera-
tion constitutes the only reasonable option in
many cases.

Isakowitz et al. [13], focused on the first three of
RMM’s seven stages and provided initial devel-
oper guidelines for these. The current article
reviews RMM’s seven stages, extends some aspects
of the first three stages, and describes the remain-
ing four stages in detail. We also present the first
full case study of a step-by-step application of this
hypermedia design methodology. While many
WWW applications also retrieve display contents
from databases (see, for example, CommerceNet
[19] and Johns Hopkins University’s [20] public
domain bioinformatics databases), ours is the first
published description of a WWW application
designed with a systematic hypermedia design
methodology. Our emphasis in the previous

sentence is twofold: on published and on systema-
tic hypermedia design. We assume these other
applications resulted from some degree of design.
Yet without any published record we do not know
how much and, more important, others cannot
learn from them.

We begin in Section 2 by reviewing RMM and
our extensions to it. Section 3 discusses related
hypermedia design research. In Section 4 we
introduce our application, LINKBase. Section 5
presents our case study applying RMM to
LINKBase. Section 6 takes a larger view of
RMM, its strengths and limitations, and discusses
issues such as hypermedia requirements analysis
and retro-fitting legacy applications. We conclude
in Section 7 with some final motivation.

2. The relationship management methodology
(RMM)

The RMM addresses the design and construc-
tion of hypermedia applications. We begin this
section by briefly presenting RMM and its data
model, RMDM. A more detailed discussion can be
found in [13].

2.1. Methodological steps

RMM consists of the following seven steps,
some of which can be conducted in parallel: (1)
entity-relationship design: models the information
domain and its relationships, (2) slice design: how
information units are sub-divided for display, (3)
navigational design: how users will access infor-
mation, (4) user-interface design: how information
will be presented, (5) conversion protocol design:
how abstract constructs are to be transformed into
physical-level constructs, e.g., what kind of WWW
page corresponds to an index, (6) run-time
behavior design: how to populate the application
with data and how to provide interaction beha-
vior, and (7) construction and testing: actual
development of programs and testing.

RMM was conceived to be flexible by support-
ing rapid feedback loops as prescribed in [21]. This
is embodied in its software design tool, RMCASE
[22]. Although not explicit in the methodology,

V. Balasubramanian et al. | Information Systems 26 (2001) 295-320 297

HCI aspects are an integral part of RMM and we
will present these in the discussion of each of the
seven steps.

2.2. The RMDM data model

The RMDM is the cornerstone of the RMM
methodology. Fig. 1 presents its elements. RMDM
includes elements for representing information
domain concepts (such as entities and relation-
ships), and navigation mechanisms (such as links).
An application’s design is described via an RMD
diagram (see Fig. 9). The RMDM model is based
on the entity-relationship model [23], and on
HDM [24] and HDM2 [25].

Because entities may have a large number of
attributes of a different nature (e.g., salary

information, biographical data, photograph), it
may be impractical or undesirable to present all
the attributes of an entity instance in one screen.
Thus, RMM groups attributes into slices. Splitting
an entity into slices also reduces clutter of the
information display. Only the most essential
information is presented upfront with details being
available as links.

RMDM specifies navigation via the six access
primitives at the bottom of Fig. 1. RMDM’s most
significant access structures are indices, guided
tours, indexed guided tours and groupings. An
index acts as a table of contents. A guided tour
implements a linear path through a collection of
items, allowing the user to move forwards or
backwards on the path. Indexed guided tours
combine the functionality of indices and guided

Entity E
E-R Domain Attribute @
Primitives One-One
Associative Relationship == rrrrmr s
One-Msny v e
Associative Relationship)
RMD Domain Slice
Primitives
Uni-directional Link D =
Bi-directional Link -
Grouping >{
Access
Primitives
Conditional Index j— _P>
Conditional Guided Tour _P>
—»
Conditional Indexed - _P>
Guided Tour >

Fig. 1. The elements of the RMM data model (RMDM).

298 V. Balasubramanian et al. | Information Systems 26 (2001) 295-320

tours. Logical conditions qualify these access
structures. For example, attaching the condition
“type=‘panel’” to an index of an Event entity
denotes an index to panels from that event. The
grouping mechanism serves as a major access
gateway to other parts of the system, as often
found on many applications’ home pages or initial
screens.

2.3. Extensions to RMM

Our experience enabled us to identify two useful
additions to RMDM (1) minimal slices, and (2)
hybrid slices. A minimal slice is a minimal
collection of attributes of an entity type that
enable users to identify entity instances uniquely.
Although conceptually similar, RMDM minimal
slices differ from database keys, because the latter
usually do not convey relevant information (at a
cognitive level) to users. For example, although an
employee’s social security number may serve as a
database key, a minimal slice may instead com-
prise the employee’s name and department. In
hypermedia applications, minimal slices are used
as anchors to entity instances.

Hybrid slices combine attributes from different
entities and access structures. RMM’s original
slices are “pure” in that they combine attributes of
the same entity type. Since every screen in an
RMM application originates in a slice or in an
access structure, the purity of slices severely
restricts the allowable pages. For example, using
pure slices, it is impossible to combine into one
screen the name of a paper in a conference and an
index of its authors. Hybrid slices can be used to
that effect. We illustrate these new kinds of slices
in Section 5.4.

3. Related research

Hypermedia structuring and functionality re-
quires design methodologies different from those
developed for standard information systems.
Hypermedia applications involve many different
components, such as content preparation, struc-
ture, storage, user-interface, navigation, and re-
trieval. As a consequence, data models such as

data flow diagrams, entity-relationship (E-R)
diagrams and object-oriented hierarchies cannot
represent the design intricacies hypermedia appli-
cations encompass.

Garzotto et al.’s HDM data model [24] and its
successor HDM2 [25] describe the structure of a
database application domain adequately to sup-
port hypermedia access. HDM and HDM2 de-
scribe representation schemes, but provide little
guidance on using those representations in the
design process. In other words, while they describe
an application domain; they do not constitute a
hypermedia design and development methodol-
ogy. RMM builds on HDM and HDM2 to
provide this full methodology. Lange [3] and
Schwabe et al. [26], have proposed hypermedia
design methodologies based on the object-oriented
paradigm. For database domains, RMM has the
advantage of using tools such as E-R diagrams,
with which designers are already familiar. In fact,
as we note in Section 5.10 designers using RMM
especially have lauded this familiarity.

At the other extreme, Marshall and Shipman [8]
discuss authoring in spatially oriented hypermedia
environments. In spatial hypertext, relationships
may be left implicit, inferable only from the
proximity of content with each other on the
display. In addition, authors do not have to
commit to a structure and its enforced consistency
in advance. One could view this as an excuse to
bypass consistency guidelines proposed by RMM
and HDM; alternatively, time may show that the
best spatial applications evolve to a state consis-
tent with these guidelines. It is possible, in
principle, to produce spatial designs from an
underlying RMD diagram (Section 5.5), as does
RMCASE [22]. The interaction between the
structured RMM methodology and spatial hyper-
texts remains to be explored.

Our experience follows Nanard et al.’s observa-
tion that hypermedia design “‘is an incremental
and opportunistic human activity that takes place
in a two axes space,” in which one axis represents
the technical aspect and the other axis represents
the design process [21]. Employing RMM certainly
had both aspects. Nanard et al. also identified fast
feedback loops as a fundamental requirement of a
hypermedia development environment. As we

V. Balasubramanian et al. | Information Systems 26 (2001) 295-320 299

shall describe starting in the following section,
throughout LINKBase’s design and development,
we reiterated through design-implementation
loops.

We direct the reader to our prior research in
systematic hypermedia user interface design [27]
and in automatically generating hypermedia based
on an application’s internal structure [28,29].
These do not have the breadth of RMM. Lastly
we note that researchers are beginning to focus on
the need to incorporate design and usability
aspects into WWW applications from an HCI
point of view [11,30].

4. LINKBase

LINKBase is a new implementation of ACM
SIGLINK'’s bibliographic application using infor-
mation stored in a relational database manage-
ment system. LINKBase contains information on
events (conferences, workshops, special issue of
journals, etc.), event items (actual articles), event
publication(s) containing the articles (conference
and workshop proceedings, books, URL ad-
dresses), the organization(s) sponsoring the event
(e.g., ACM, INRIA, etc.), and people (authors,
event managers, and organization officers). LINK-
Base is more than a database, it is a full-fledged
hypermedia application which processes and re-
formulates data extracted from a relational data-
base. The WWW was chosen as the delivery
platform so the widest possible audience could
access LINKBase easily and free-of-charge.

The following scenario illustrates LINK Base. A
user interested in information about hypermedia
reaches ACM SIGLINK’s LINKBase. After
traversing some introductory material, he or she
selects “‘conferences” from a list of event types.
The user arrives at the dynamically generated page
shown in Fig. 2a, which contains an index of
hypermedia related conferences. Upon selecting
“ECHT ‘94 (European Conference on Hyperme-
dia Technology 1994), the system generates the
WWW page shown in Fig. 2b, containing basic
conference information including name, date,
location, sponsor (“ACM”), and related publica-
tions (“ECHT ‘94 Proceedings’). Other navigation

choices include “previous conference” and “‘next
conference” for the index. Other links (not visible
here) can lead to photographs taken at the
conference, trip reports, a list of committee
members, etc. At any time, the user has access to
all major system entry points (“‘groupings’) for
events, authors, organizations and publications.

The user then traverses the link ‘““Table of
Contents” to the page shown in Fig. 3a, contain-
ing a list of papers, posters and demos, etc.,
presented at ECHT ‘94 along with author names.
Note that the “Navigation Path” reflects the user’s
movement deeper into the information space.
Selecting “Adding Multimedia Collections to the
Dexter Model,” the user arrives at Fig. 3b. From
here the user can select author names and navigate
to details about their affiliation and contact
information.

5. LINKBase case study

Like many Web applications, LINKBase’s
original version was designed in an ad hoc manner
without following a methodology. In retrospect,
this resulted in a system too limited in content and
access mechanisms, containing only conference-
related event items and co-author cross references.
Source information was kept in flat files. The
system administrator executed utilities to periodi-
cally update WWW pages in hypertext markup
language (HTML) and to re-generate navigation
indices.

This section describes LINKBase’s design and
development using RMM. We will present the
relevance of HCI principles with respect to the
seven design stages, where applicable.

5.1. Requirements analysis

We, the designers, played the role of users (both
content providers and readers) while discussing the
requirements for the new LINKBase. The second
author who implemented the original LINKBase
knew its deficiencies: primarily, it lacked a lot of
content relevant to hypermedia researchers. Access
and update mechanisms were also very limited.
Although usability aspects were not of primary

300 V. Balasubramanian et al. | Information Systems 26 (2001) 295-320

= ECHT94
File Edit Yiew Go Bookmarks Options Directory

— Conferences

File Edit View Go Bookmarks Options PDirectory

General
slice of
Event

Minimal
slice of
Organization

Minimal
slice of
Publication’

(a) (b)

Fig. 2. Screenshots of a prototype LINKBase implementation showing navigation between dynamically generated Web pages.
Screenshot (a) lists hypermedia research conferences; (b) results from selecting “ECHT’94,”” and provides the conference’s date and

location, and access to its table of contents.

importance while re-designing the system, as we
discuss in Section 5.11, the discipline encouraged
by RMM results in a system with a high-degree of
usability and utility. The second author along with
the first, and two students taking a course in
hypermedia discussed the functionality and con-
tent required for a comprehensive bibliographic
system on hypermedia. This approach is similar to
other design approaches reported by Salomon [31],
that is, the designer taking the role of the user.
Based on discussions amongst ourselves, we
arrived at the following new requirements for the
system:

® Improve the information content of LINK Base
by incorporating missing information. The
original LINKBase had a list of conferences,
list of papers and their abstracts and some
information on authors. Also, all this informa-

tion was restricted to events organized by the
ACM. A lot of hypermedia related information
was available in the form of workshop reports,
other conferences, books, technical reports, etc.
In addition to these other sources, we also
wanted to provide complete author information
(such as affiliation, contact address, e-mail,
etc.), more information about the event (loca-
tion, dates), event managers, sponsoring orga-
nizations (ACM, IEEE, universities, etc.), and
resulting publications. Being researchers our-
selves, we felt that these would be additional
pieces of information in which other researchers
would be interested.

Provide easy mechanisms for content providers
to update information about themselves and the
organizations they represent.

Provide an easy-to-use and intuitive interface
using the World Wide Web as the medium so

V. Balasubramanian et al. | Information Systems 26 (2001) 295-320 301

= ECHT94 - Table of Contents
File Edit View Go Bookmarks Options Directory

(a)

=2 BECHT94.bib&ECHTI4

r

(b)

Fig. 3. Screenshot (a) shows the table of contents for ECHT ‘94 selected from Fig. 2b. This lists all papers, posters, demonstrations
and videos presented at the conference. When the user selects the paper “Adding multimedia collections to the dexter model,” the
system generates screenshot (b). It shows paper details such as authors, keywords, its abstract, etc.

that the information is easily accessible by
researchers all over the world.

® Develop the system in a systematic manner so
that it is easy to maintain and update.

® Generate HTML documents dynamically from
an up-to-date source so that HTML documents
need not be created and maintained manually.

Hence, the primary purpose of re-implementing
LINKBase was to provide additional information
to researchers interested in the field of hypermedia,
increased functionality in terms of various ways to
access the information, a simple-to-use user inter-
face, and an easy update mechanism.

5.2. Why use RMM to re-implement LINKBase?

The haphazard, semi-planned nature of the
original system convinced us to use a systematic

design methodology to facilitate a more compre-
hensive, consistent and robust product. We
decided to use Ingres, a relational data base
management system (RDBMS) as the back-end.
Although industry-strength full-text retrieval en-
gines such as WAIS™ [32] or BASIS WEBser-
ver™ [33] or Topic® WebSearcher [34]
successfully support good indexing and searching
facilities on variable length text strings, they
neither support the design process nor the manage-
ment of relationships.

LINKBase satisfied the criteria for an RMM-
based design specified in [13]. The domain’s
structure contains no ad hoc relationships (except
for our manually added introduction and ac-
knowledgments, etc.—see Section 6.1), and can
be expressed clearly and succinctly in terms of
entities, relationships, and navigation structures
based on these. Furthermore, we frequently add,

302 V. Balasubramanian et al. | Information Systems 26 (2001) 295-320

and sometimes modify, information about authors
and conferences, etc. While not a large system by
industrial standards [6,35], LINKBase does con-
tain several hundred event items and authors.
Although manual page generation would be
possible, doing this in a controlled manner proves
to be more efficient and robust. This also allows us
to provide a controlled interface for updates (see
Section 6.1) instead of letting (numerous) people
update HTML pages at will and potentially
degrading LINKBase’s consistent layout and
integrity.

5.3. Entity-Relationship design

The first step, entity-relationship (E-R) design,
involves identifying the entities and relationships
that make up the application domain. These
entities and relationships will become nodes and
links in the resulting hypermedia application. This
step is familiar to most system analysts with
experience in developing applications employing
relational databases. It results in an E-R diagram
for the entire application.

5.3.1. LINKBase example

In our scenario the user was interested in aspects
of the ECHT 94 conference, such as its location,
sponsoring organization, proceedings, committee
members, any trip reports, and details of items
presented (papers, posters, demonstrations, vi-
deos, etc.). Similarly, a user looking at a paper
abstract may be interested in more details about it,
background information about its authors, and
general information about the conference in which
it was presented.

Based on these requirements, we identified five
entities Organization, Event, Event_item, Person,
and Publication and eight associative relation-
ships® Fig. 4 shows the E-R diagram. Table 1 lists
the entity attributes. Each entity has a general
“catch all” attribute miscinfo for including addi-
tional information at a later date. A person can be
an officer of many organizations. Conversely, an

2Entity and relationship names are in italics where they are
used in the context of LINKBase. Also note that relationships
are shown in both directions.

organization can have many officers. Thus the
relationships Officer_of and Officiated_by relate the
Person and Organization entities. These are the
sole time-sensitive relationships in our system, as
they reflect an organization’s current status. In our
bibliographic domain, information is mostly of
archival nature. An organization can organize
many events (both simultaneously and over time).
Conversely, organizations can jointly sponsor an
event. Thus relationships Organizes and Organi-
zed_by relate Organization and Event. Many
people manage an event and, over time, a person
can manage many events. The remaining relation-
ships in Fig. 4 follow a similar pattern.

5.3.2. Lessons learned

E-R Design is nothing but data modeling in the
traditional sense with a slight modification. In the
case of E-R design for hypermedia applications,
there may be redundancy in the way entities are
related to each other in order to facilitate
navigation. Although we can indirectly find out
where an Event_item can be found in a Publication
through the associated event entity, we added an
additional relationship between Event.item and
Publication entities so that we facilitate direct
navigational access. Therefore, even a purely data-
oriented phase such as E-R Design takes into
account the navigational aspect which has been of
primary importance for both HCI and WWW
researchers. E-R design focuses on what informa-
tion must be presented to the reader while the
following phase, Slice Design, focuses on how
much of it must be presented at a given time.

5.4. Slice design

The second step, slice design, involves grouping
entity attributes for display. This task is unique to
hypermedia applications. It involves slicing an
entity’s set of attributes into different overlapping
but meaningful subsets, displayed one per page.
Slice design is similar to chunking information
appropriately for presentation purposes. It is
important that these slices are not only self-
contained but also form cross-references to other
slices or chunks [36]. Each slice by itself should be
coherent on its own. When slices are combined

V. Balasubramanian et al. | Information Systems 26 (2001) 295-320 303

Person

Organization

/

Produces
by,

dited_by

Publication

ssoci

with

e a\Ps

Event

%

Consis /

Part_

Event_ltem

Fig. 4. E-R Diagram

together, the combined view should also be
coherent. Presenting fewer slices on the display
will reduce clutter and scrolling, and overcome
short term memory limitations [37]. This poten-
tially can increase comprehension of the displayed
information. A head slice is the default target of
access structures entering an entity; it usually
connects to all other slices via structural links,
which carry semantic labels and may be uni- or bi-
directional. Appropriate labeling of links high-
lights the nature of the target slices. As described
in Section 2.3, designing LINKBase led us to
extend RMM'’s data model by introducing mini-
mal and hybrid slices.

5.4.1. LINKBase example

Since they are unique contributions of this case
study, we describe how minimal and hybrid slices
were used. Fig. 5 shows the slice diagram for the
Event entity. Its minimal slice contains two
attributes: EventName and EventType, for exam-

)

for LINKBase application.

ple, “ECHT’94” and “Conference,” which for
most purposes suffice to identify an event. The six
regular slices contain (1) general information, (2) a
description, (3) trip reports, (4) photographs, (5) a
list of referees, and (6) miscellaneous information.
The general slice, which contains basic informa-
tion such as the entity’s name, type, series name
(e.g., ACM hypertext conferences), date and
location, is the head slice.

Displaying information about Event_Item illus-
trates the use of hybrid slices. Fig. 6 shows an
instance of an event item as seen on a browser. Its
schematic screen or node design, as shown in
Fig. 7, incorporates attributes of different entities.
Event_Item — General, for example, refers to
the general slice of the Event_Item entity, while
(Produced_by) Person -» Minimal(Name), refers to
the minimal slice of the Person entity related to the
Event_Item via the Produced_by relationship from
Fig. 4’s E-R diagram. The name attribute (in this
case, PersonLastName and PersonFirstName)

304 V. Balasubramanian et al. | Information Systems 26 (2001) 295-320

Table 1

Entity and relationship attributes in LINKBase’s domain

Entity/relationship Attributes

Organization OrgName, OrgType (University, SIG, professional organization, etc.), Address, Phone, Fax,
E-mail, Homepage, MiscInfo

Event EventName, EventType (conference, workshop, book, special issue), Series Name, Date, Location,
Description, List of Referees, Trip report, Event photo, MiscInfo

Event_item EventltemTitle, EventltemType (introduction, paper, panel, video, demo, poster, workshop_related,
technical briefing, cultural briefing, commercial symposium, tutorial, keynote speech),
Category or Grouping within event, Subject classification, Abstract, Keywords, Content,
Full reference, Page #, MiscInfo

Person PersonLastName, PersonFirstName, Affiliation, Address, Phone, Fax, Email, Biography,
Homepage, MiscInfo

Publication PublicationName, Publisher Name, Location, ISBN, Foreword, MiscInfo

Organizes OrgName, EventName, EventType

Manages PersonLastName, PersonFirstName, EventName, EventType

Produces PersonLastName, PersonFirstName, EventItemTitle

Edits PersonLastName, PersonFirstName, PublicationName

Officer_of PersonLastName, PersonFirstName, OrgName

Belongs_to PublicationName, EventName, EventType

Consists_of

Contains PublicationName, EventItemTitle

EventName, EventType, EventItemTitle

Event

Photo(Gen)

Trip(Gen) g Referee(Gen)

Trip Report

Description
Trip(Descr)

General * : EventName, EventType,
SeriesName, Date, Location

Minimal: EventName, EventType
Description: EventName, DescriptionText
Trip Report: EventName, TripReportText
Referees: EventName, List of Names
Referees

Photo: EventName, EventPhoto

Miscinfo: EventName, Miscinfo Text

Fig. 5. Slice diagram for the Event entity showing its slices and their attributes. The general slice serves as the head slice. The minimal
slice contains the minimum set of context information necessary to identify this entity when embedding it within hybrid slices of other

entities.

forms the anchor to a link to the Person entity.
More generally, the format is: “(relation) entity —
slice name (attribute anchor).”

A hybrid slice is conceptualized as a composi-
tion of slices (pure or hybrid) from other entities,

that is anchored in one specific entity. Fig. 8 shows
the design of the hybrid slice we have been
discussing. It is anchored in Event.item. Fig.§
illustrates how its design combines slices from the
Person, Event_item, Event and Publication entities.

V. Balasubramanian et al. | Information Systems 26 (2001) 295-320 305

HT94.bib&

HT94

 File Edit View Go Bookmarks Options Directory

Fig. 6. An instance of a hybrid slice as viewed in a browser.

5.4.2. Lessons learned

Slices and hybrid slices determine how much
information must be displayed. This simplifies the
user interface design stage discussed later. During
slice design the designer begins to refine and prune
the application’s design. For example, one might
decide to drop some attributes included in the E-R
diagram. For example, we dropped the biography
attribute from Person and subject classification
from Event_Item, as both would be impractical to
collect and maintain.

In our application, we utilized a single hybrid
slice per entity, which became that entity’s head
slice. The essence of slice design lies in ranking

information according to its importance and
clustering information for its cohesiveness. Slice
design involves several calculated tradeoffs. Small
(screen-sized) chunks eliminate scrolling (meaning
all information is immediately visible), but require
more separate slices, thus potentially increasing
fragmentation [36] and reducing local coherence
[30,38]. This tradeoff is the subject of a long-
standing philosophical and user interface-oriented
debate in the hypermedia community [39—41].
Although interface considerations come later
in RMM, we needed to know the approximate
size of our windows to determine how much we
could display without scrolling (and without

306

overwhelming the user by having too much visible
at once). On the other hand, knowing that
navigation on our implementation vehicle—the
WWW —is often slow, pragmatically we may wish
to have fewer, fuller nodes. We also might place
more attributes in minimal slices to reduce the

Event_item->General

(Produced By) Person->Minimal(Name)

(Part_of) Event->Minimal(Name)

(Within) Publication->Minimal(PublicationName)

(Content)

(Reference Information)

(Miscellaneous Information)
Fig. 7. The hybrid slice definition for Event_item. It includes
slices from the Person, Event.item, Event and Publication
entities in the format: “(relation) entity —slice name (attribute

anchor).” The underlined words represent the attributes that
serve as anchors to links to other slices.

Event_Item

e B

V. Balasubramanian et al. | Information Systems 26 (2001) 295-320

need to traverse to other entities for related
information.

5.5. Navigation design

The third step, navigation design, involves
identifying the paths that enable hypermedia
navigation. We analyze each associative relation-
ship between entities and each structural relation-
ship between slices to determine first whether to
include it in the final system, and second, which
kind of access to implement for it. Navigation
design is related to user interface design. While the
former focuses on providing easy access mechan-
isms to various entities and their relationships, the
latter focuses on presentation aspects of the
information. Navigation must occur within an
entity (via structural links) and between entities
(via associative links). For entities with links
leading to multiple instances, we employ condi-
tional indexes, conditional guided tours, or condi-
tional indexed guided tours. When links lead to
single instances—the norm for structural

-———-—-

Reference
Info

Ref(Content)

\ 7/

Hybrid slice ~ —____yN f

with Event_item ~ 1

as reference N N \

entity N ~ -

~ <
[N
N

> < _Publication

Trip(G&Referee(Gen)

Trip Report

Descr(Gen)

Description

Trip(Descr)

Misc(Ge%)escr(Ge&

Referees

=

-
\
! General *
/
'

Description

=

Fig. 8. The general slice of Event item and the minimum slices of Event, Person, and Publication have been combined together
(covered by the dashed lines) to form Fig. 6 and Fig. 7’s hybrid slice representing an Event_item.

V. Balasubramanian et al. | Information Systems 26 (2001) 295-320 307

links—then the RMDM unidirectional access
mechanism suffices. Each of the access paths are
represented by one of Fig. I’s RMDM access
structures. This step produces an RMD diagram.

5.5.1. LINKBase example

Fig. 9 shows LINKBase’s RMD diagram. The
RMD diagram shows only associative relation-
ships at the entity level. We provided the following
major entry points: through Event indexes by
series name and by type, Event_item indexes by
subject and by assigned keyword, an Author
index, an Organization index, and a Publication
index. For example, to see the papers (event items)
from the ECHT’94 conference, a reader would
follow this navigation path: first the user chooses
the Event index by type (“‘type= ‘conference’”).
From the list of conferences, the user selects a
particular instance, “ECHT’94,” and then all

papers presented there using the Event_item index
by type (“type = ‘papers’’). Each Event_item index
comprises a table of contents of all papers, posters
or demonstrations, etc., satisfying the condition
specified. Attribute values serve as the conditions.
The system generates each of the six Event_item
indexes dynamically based on the selection criteria
(by name, by type, by grouping, by subject). We
chose conditional indexed guided tours for each.
Once viewing a particular instance of Event_item,
the reader can navigate directly to the next and
previous instance in the guided tour. In our
example, when viewing an ECHT’ 94 paper, the
reader can travel to the next and previous entries
in that conference’s list of papers. The reader can
access detailed information (beyond what the
minimal slice contains) such as its author entity
instances, the associated publication entity in-
stances, etc., through the associative links.

By Type and Name P -7

v
3
o]

PubIndex

R

oo ol S o e 0 o 5

] oglndex

Cfficer Incex

Fig. 9. RMD Diagram for LINKBase.

308 V. Balasubramanian et al. | Information Systems 26 (2001) 295-320

Normally one would provide major entry points
(in the form of groupings) to all major entities. In
our case, knowledge about how readers would
employ LINKBase led us to provide only a
“conditional” grouping for the Person entity,
restricting major access to only authors.

5.5.2. Lessons learned

RMM enabled us to plan our access structures
only logically in this step, postponing all presenta-
tion details to user interface design (step 5). We
mostly used indexes and indexed guided tours. We
did not use simple guided tours anywhere because
we anticipated the number of instances of each
entity to be relatively high. Guided tours without
an index suffice only when an entity has relatively
few instances. Indexes allow more direct access
and should be used for a relatively high number of
instances. Indexed guided tours serve best in-
between.

During navigation design, we also decided on
the qualifier attributes for accessing information
based on a reader’s queries or needs. For example,
we provided facilities for the reader to access an
Event_item index as a plain old vanilla table of
contents, by type of the Event_item (for example,
‘paper’), by keywords, etc. We also included the
access mechanism where one could access an Event
by its series name (for example, ‘ACM’).

5.6. Conversion protocol design

Isakowitz et al. [13] do not elaborate on the
remaining four steps of RMM. In the next four
subsections we discuss our approach. While the
first three steps can be considered logical design
from a software development life-cycle perspec-
tive, the remaining four steps are more related to
physical design, that is, translating the conceptual
model into a working artifact.

The fourth step, conversion protocol design,
produces a set of rules (to be implemented as
programs or as instructions to programmers) for
converting components of RMD and E-R dia-
grams into physical objects in the target hyperme-
dia application. This includes translating the
logical E-R design to a physical design in terms
of relational database tables, columns and keys.

Entities become tables. Attributes become table
columns. Indexes are manifested as lists of
database query results.

5.6.1. LINKBase example

We converted the logical E-R diagram to
physical tables on Ingres and transformed indexes
in the RMD diagram into queries that, upon
activation, produced a list of links to instances.
We also identified attributes that could be null
given the fact that we would populate the system
initially from an existing source without all the
attributes of the model’s entities (e.g., without
author addresses). For each we needed to decide
whether to display “none” as its value or not to
display its label at all. Displaying “none” is more
consistent for readers who may expect a value and
wonder at its absence. When readers do not expect
certain information, we can omit its label when
valueless.

To reduce the size of database records, we also
decided to store each Event_item’s abstract as a file
in the UNIX file system and the filename as the
abstract attribute’s value. Because Event_item did
not have a unique identifier, we introduced the
attribute Event_Item_Id. Its value is generated as
each instance of Event_item is inserted. It subse-
quently could be used internally for retrieval (or as
part of the abstract’s address).

5.6.2. Lessons learned

In order to improve retrieval efficiency, one may
have to ‘‘de-normalize” the normalized data
model. Of course, one should consider the
implications of increased redundancy. The tradeoff
is between retrieving long rows of data versus
joining tables and retrieving related items. This, in
turn, depends on whether one plans to convert
application objects dynamically at run time as we
planned, or in advance, as with the departmental
information system illustrated by Isakowitz et al.
[13] and implemented in [42]. Design changes often
must be made in order to convert the schema into
tables, columns, keys and indexes. Items without
an inherent unique attribute, must be assigned a
unique identifier if instances are to be retrieved
individually.

V. Balasubramanian et al. | Information Systems 26 (2001) 295-320 309

5.7. Step 5: User interface design

The fifth step, user interface design, involves
designing presentations for every RMD diagram
object. This involves how to present the following:
the information content of slices and hybrid slices
identified in the second step; access structures to
linked information from the third step; location of
orientation and navigation components; and lay-
out of link anchors and nodes.

Just like any other application, one could
employ low-fidelity prototyping using paper and
pencil strategies to prototype the interface [43] or
employ high-fidelity prototyping with computer-
ized tools [44]. The information identified in the
form of slices and hybrid slices must be proto-
typed. In addition, the access mechanisms and
groupings identified during navigation design
should be included.

This phase, along with navigation design, is
similar to constructing an interaction state dia-
gram but less formal. Representations of different
display objects along with navigation mechanisms
between them can be represented in the form of
user interface design and navigation -charts
through paper and pencil prototypes [45]. This
provides a high-level overview of how various
pieces of information can be accessed but does not
necessarily include a state diagram. By default, the
head slice of an entity is always displayed as part
of a traversal from one entity to another. It acts as
an index to other slices of the same entity. As we
can see, both navigation design and user interface
design are closely related; and we frequently
interated between them.

5.7.1. LINKBase example

During this step, we sketched each major
window (one per slice or index) and the navigation
pathways between the windows. Figs. 10 and 11
give examples. We made changes to our navigation
design after a few iterations. For example, we
converted the Event index by type and name from
indexes (as shown in Fig. 9°’s RMD diagram) into
indexed guided tours, as Fig.2b and Fig. 10b
reflect.

In order to understand the flow of HTML pages
and various navigation pathways better, we con-

structed some sample pages by hand, linked them
together, and tested them using a Web browser.
Each window, from a graphical user interface
point of view, became an HTML page in our
application. Thus, we adopted both low- (paper)
and high-fidelity (working) prototyping techni-
ques.

We adopted many user interface design guide-
lines suggested by hypermedia researchers. To
maintain a sense of orientation and facilitate
navigation, we followed the guidelines for local
and global context by Kahn [38] and Thiiring et al.
[30]. For example, users may have difficulty
distinguishing between structural links within an
entity and associative links to other entities, as
WWW browsers display all anchors in the same
format. The developer must provide semantic cues
through the surrounding layout and through good
labeling. We employed a stable screen layout, as
prescribed by Thiiring et al.’s eighth hypermedia
design principle [30]. We placed global links under
the header “Major Entry Points,” which contains
all the major groupings from Fig.9’s RMD
diagram. Major entry points provide the reader
with landmarks [46] or strategic choices [27], which
are always visible. To minimize clutter and
scrolling, and hence user interface adjustment
[30], we placed all structural link anchors to other
slices under the heading “Other Choices.” Group-
ing of choices or menu items have been discussed
widely by HCI researchers [37]. We represented
associative links and all other access structures as
anchors within the window’s main content area.
Although not implemented in LINKBase, a
modified version of the RMD diagram (imple-
mented as a conditional image map) could serve as
an overview diagram providing global orientation
and high-level navigation. See [42] for an example.

We planned to represent link anchors in
graphical or iconic form, especially for the major
groupings. However, we quickly decided against
this due to the complexity of icon design and
usability testing [47]. Instead, we chose simple
textual link anchors.

5.7.2. Lessons learned
Because Web browsers at the time did not offer
frames and we chose to use a single window per

310 V. Balasubramanian et al. | Information Systems 26 (2001) 295-320

From Event By Type l

Conferences (From Events By Type) ECHT ‘94 Conference (From Conferences)
Mosaic Menubar Mosaic Menubar
[| []
[1 s [] s
Major Entry Points A Major Entry Points A
Home Events lems Authars Qrgs Pubs Home Events lftems Authors Qrgs Pubs
Navigation Path Other Choices
E By T Prey Conf Next Conf Description Committee Referees
Trip Reparts Photas Misc Infa
Conferences
Navigation Path
Following are the conferences: .
Events By Type ==> Conferences
ECHT ‘94 >
“Hypertext ‘93 ECHT ‘94 C
. onference
,mm Edinburgh, Scotland, Sep 18 - 23, 1994.
:ECHLQ'QTEE Conference items can be accessed by:
‘ ‘Type: Papgs Panels Posters Videos Demos
(@) “Grouping
“Subject
Organization|: ACM Publication: ECHT ‘94
. \

To ECHT '94TOC
(b)

Fig. 10. User interface design and navigation pathways: Low-fidelity sketches of our windows. The window with a list of conferences
in (a) is generated from the “Homepage” upon selecting “Events By Type” and then “Conferences.” It prototypes the general layout
for an index. Clicking on a conference name generates the window shown in (b), which portrays the general layout for an Event entity.
It contains structural links to other slices (under “‘other choices’) and associative links to indexes of this conference’s Event items.

slice, we had to use the window space very
judiciously. Our design evolved the following
conventions. We grouped all important informa-
tion to the top of each page. We clustered all
related items together to preserve context. We tried
to position no cluster of information entirely
below the visible portion of a window when
opened, so readers would always know what kind
of information a window contained and what kind
of information they would find upon scrolling.

In LINKBase, we implemented each index in a
separate window from the entity slices accessible
through major groupings or associative links. In a
separate RMM design project for a university
information system, we found it often made sense
to embed some indexes within the slices from
which they would be accessed. In these cases the
slice had few attributes, so the index was visible
without scrolling, and the index had few entries.

For example, in the general slice for a course
section we included a list of that section’s
instructors. This list represented the taught by
index, which often contained a single instance, but
when team taught included multiple instructors
and, when available, included the section’s teach-
ing assistant.

5.8. Step 6. Runtime behavior design

In the sixth step, runtime behavior design, one
designs the programs that will control how the
application generates and retrieves information,
and how it interacts with the browser and the user.
One can design HTML production dynamically
(generated at run-time in response to user interac-
tion) or in batch-mode (periodically generating all
pages for future “‘static” retrieval). RMM supports
both. Specifying runtime behavior also involves

V. Balasubramanian et al. | Information Systems 26 (2001) 295-320 311

From ECHT ‘94 Conference l

(a)

ECHT '94 Conference TOC (From ECHT ‘94 Conference) Paper1 (From ECHT ‘94 Conference Items TOC)
Mosaic Menubar Mosaic Menubar
[1 []
| 6 : 5
Major Entry Points A Major Entry Points A
Home Events ltems Authors Qrgs Pubs Home Events ltems Authors Qrgs Pubs
Other Choices Other Choices
Prev Conf Prev paper Confent Reference Info Misc Info
Navigation Path Navigation Path
Events By Type => Conferences==>ECHT ‘01 Events By Type ==> Canferences==>ECHT ‘91 =>10C
ECHT ‘94 Conference - Table of Contents Title of Paper1
) _ » Authors (Nams Keywords: a1, b1, a2, b2
Following are the conference items classified by type: Affiliation & Adtiress
Email
Papers (20):
o || Conference: ECHT ‘94 Publication: ECHT ‘94 Proc
*Paper T -
+Baper2 Abstract
This paper describes our attempts to develop a systematic|
methodology tq designing hypermedia applications.
\/ \J

To Author Info

(b)

Fig. 11. User interface design and navigation pathways, continued. The window in (a) prototypes the general layout of an indexed
guided tour’s leading index page. It is generated by selecting “Table of Contents” in Fig. 10b. It shows the Event_items grouped by type
such as papers, posters, etc. The window in (b) portrays a page along with the indexed guided tour (links to the previous and next
papers under “other choices’), generated upon selecting a paper in (a) or a previous/next tour link. This page implements the hybrid
slice design for an Event_item from Fig. 7. The navigation path in each window reflects the reader’s traversals.

designing the algorithms and implementation
mechanisms for hypermedia navigation such as
browsing (link traversal), history tracking, indexed
navigation, guided tours and backtracking (such
as our navigation path feature). The designer
should identify those parts of the information
content that need to be generated dynamically,
which constitute link anchors, to what their links
lead, and each link’s dynamics—the ““behavioral
semantics” or the programs to invoke when the
user selects each anchor. This in turn will dictate
the parameters and URL destination to embed
within the HTML anchor. This is similar to the
object-oriented concept of attaching methods to
data elements. The designer determines all these
aspects based on the user interface design sketches
for each node, which in turn rely on the RMD
diagram and the slice design diagrams.

5.8.1. LINKBase example

This step required detailed design of the inter-
action between the WWW server and the Ingres
database server through the WWW’s common
gateway interface (CGI). CGI is the mechanism
for communicating between an external informa-
tion source such as a database and the Web server
[4].

To preserve both local context and current
position (design principles three and six in [30]) we
added ‘“‘navigation path,” which the system
dynamically generates based on the user’s link
traversals. For example, the table of contents
window in Fig. 8a has the navigation path “Events
By Type = Conferences == ECHT ‘94.” The cur-
rent implementation appends ‘“— *here*” to the
navigation path because some early users were
confused as to whether the last page listed was the

312

current one visible. This required us to maintain
state information as the user navigated through
the information space. Web browsers and servers
are stateless [48], so we pass state information
around through the CGI environment variable
QUERY_STRING. Of course this state informa-
tion is lost if the user navigates out of and reenters
LINKBase (without backtracking). State informa-
tion can now be preserved, to some extent, using
the “cookies” mechanism in currently available
popular browsers.

5.8.2. Lessons learned

Runtime behavior design allowed us to take the
output of user interface design (a series of HTML
documents) and implement browsing semantics in
an incremental way and thereby observe runtime
behavior. We prototyped a few runtime behaviors
and iterated through a few rounds of construction
and testing (step 7) so that we could observe the
dynamic behavior of our C programs and inter-
faces to CGI. Most of our lessons learned were
technical. Since this was the first time we
interacted with a database through CGI, we
learned the mechanics of coordinating the Web
server and an Ingres database server through CGI.
Apparently the details for each relational database
server’s CGI gateway are different. We especially
relied on Web resources concerning the CGI [49]
and Liu et al. [43]. Gateways to RDBMS backends
can now be implemented through application
programming interfaces (API) provided by popu-
lar Web servers.

5.9. Construction and testing

The final step, construction and testing, imple-
ments the design obtained through the first six

V. Balasubramanian et al. | Information Systems 26 (2001) 295-320

steps. It involves constructing the physical data-
base out of the logical design (developed during
Step 1 and turned physical in Step 4), populating it
with domain data, and implementing each of the
mechanisms designed in the previous step. After
construction, one should test the application to
ensure that it satisfies functional, navigational and
usability requirements. For hypermedia applica-
tions this includes testing each link to ensure that
we generate the proper underlying parameters.

5.9.1. LINKBase example

We created a database on Ingres with tables for
the five entities and their associative relationships.
We populated the database using C programs,
extracting information about all ACM sponsored
events in the hypermedia field from the HCI
bibliography project files [50]. We had to update
some data manually, such as for Organization (all
attributes) and Person (e.g., address and email).
We placed the text of abstracts in UNIX files.

Fig. 12 shows the client-server architecture we
adopted. This Web-database gateway approach is
standard for any Web application that uses
information from a dynamic source. The Web
browser detects when the reader selects a link and
passes it to the Web server. For example, consider
Figs. 2 and 10. 2(a) and 10(a) show the list of
hypermedia conferences, that is events selected by
type = ‘conference’. Assume the user requests a list
of all papers (Eventitems of type= ‘paper’)
associated with ECHT’94. The Web server invokes
a csh script, which then invokes a C program,
passing the arguments “ECHT’94” and ‘“‘paper”
through the Web server environment variable
QUERY_STRING. The program treats these
arguments as command-line arguments, which it
then passes as variables to embedded SQL (ESQL)

Link Requests CaGl
4»
Web
Browser
. W
(e.g.,Mosaic eb Ingres
Server Datab
or Netscape atabase
Client) HTML HTML Server

Fig. 12. LINKBase’s client/server architecture.

V. Balasubramanian et al. | Information Systems 26 (2001) 295-320 313

statements. These SQL queries then execute over
the database. The Ingres server returns results
(rows of paper titles and author names). The C
program processes the results, adds appropriate
HTML tags and converts them to HTML “on the
fly.”” Those parts of the result’s text which need to
be identified as link markers will be replaced by an
anchor containing a URL for its appropriate C
program and arguments to be passed to it. The
Web server is then informed that the stream
coming through the standard output is an HTML
document, that is, the ‘“‘content-type” is ‘‘text/
html.” The Web server forwards the HTML
document across the network to the client Web
browser for display. Thus, links become queries. In
this way, LINKBase dynamically generates each
HTML document (with a few exceptions covered
in Section 6.1) based on embedded SQL queries.

We treated each interaction as a separate
database session, opening and closing the connec-
tion, because we could not tell when a user
navigates out of LINKBase. We are investigating
a time-out mechanism to keep the database session
open for a certain period of time, as users probably
will navigate within our information space for a
while.

5.9.2. Lessons learned

It became clear that runtime behavior design,
and construction and testing (steps 6 and 7) go
hand-in-hand. We started implementation with a
small subset of the system. As we gained better
understanding of the initial implementation re-
lated issues, we slowly extended the prototype to
other entities, relationships, navigational mechan-
isms, and views. This experience refined our own
understanding and belief in RMM’s iterative and
systematic approach to LINKBase’s development.

5.10. RMM usability

RMM made it easy for both the designers and
developers to build a highly usable and functional
bibliographic hypermedia system. In preparation
for this paper, developers of LINKBase were
interviewed (informally) about RMM’s usefulness
and usability.

LINKBase’s primary developer who is the first
author of this paper said, “I felt the methodology
was extremely useful and relevant, as well as easy
and intuitive to use. It was a natural extension to
the design approaches I am used to in the
relational world. Something like OOHDM (Ob-
ject-Oriented Hypermedia Design Methodology
[26]) would have been a major learning curve since
I do not know much about OMT or object-
oriented methodologies. Imposing relationships
between entities to facilitate navigation (though
they may not be related in the real world) is a
powerful feature of RMM. The RMD diagram is
another important feature. This was the first time [
have ever worked with a formal way of represent-
ing navigation and access structures for an
application. I wish there were something like this
for non-hypermedia applications also.”

The RMM developer for the university informa-
tion system mentioned in this paper also is very
enthusiastic about RMM. He found it “easy
because I already know database concepts. No
parts (steps) of the design were difficult, and at
each part we only dealt with a small part of the
design. The end result looks difficult, but it was not
complex at all (to design any particular part)...
(RMM) was perfect.”

LINKBase’s implementor commented that the
RMM outputs made it easy to visualize the
system, its structure and what to place on each
page. Learning about the system was made “‘really
easy”’ due to the expressiveness of the RMM
output. The implementor on the university in-
formation system agreed. The resulting RMM
design was “‘intuitive” and he implemented it
“almost unconsciously”’. However, consistent with
the limitations noted in Section 6.1, the first
implementor was frustrated that RMM provides
so little help on implementing the design.

5.11. Usability evaluation of LINKBase: HCI
implications of RMM

While we did not focus explicitly on improving
the usability aspects of the original LINKBase,
employing RMM resulted naturally in increased
usability in addition to the better content
and more functionality which was our original

314 V. Balasubramanian et al. | Information Systems 26 (2001) 295-320

requirement. However, this does not imply content
is more important than usability [12].

Garzotto et al. describe five dimensions for
systematic design: an application’s content, struc-
ture, presentation, dynamics and user interaction
[16]. They then provide several heuristics for
evaluating hypermedia applications in these terms,
including richness, consistency and self-evidence.
RMM’s approach leads developers to design all
five dimensions, and, we believe, promotes design
habits that would score high evaluation ratings.
Table 2 shows the stages at which RMM
incorporates each of the five design dimensions.
conversion protocol design and construction and
testing are more implementation steps rather than
design steps. As designers, we conducted informal
usability evaluation by employing heuristic tech-
niques as part of the testing stage. Once again, this
was the case of designers becoming user interface
specialists. The new LINKBase satisfied some of
the system acceptability parameters required for
hypermedia [51] such as usability (both in terms of
content and structure), utility or functionality (in
terms of access mechanisms and multiple path-
ways), and an easy-to-use browser-based interface
with well-designed orientation and navigation
elements. We could not carry out extensive
usability testing with real users since we are
currently in the process of migrating LINKBase
to a different RDBMS as the University decided to
phase out Ingres.

Although not explicit in the methodology, six
out of the seven RMM stages incorporate HCI
related aspects. Based on our discussions, we see
that E-R design includes identifying relationships

Table 2
RMM’s seven stages compared to five evaluation dimensions of
a hypermedia application [13]

Design RMM stages [13]
dimensions [24]

Content Entity-relationship design

Structure Slice design

Presentation Navigation design and user interface design
Dynamics Runtime behavior design

Interaction Navigation design and runtime behavior

design

which do not occur naturally so as to facilitate
navigation. It focuses on what information must
be presented. Slice design focuses on chunking
information appropriately to reduce clutter and
increase comprehension. It focuses on how much
information must be presented. Navigation design
is interested in providing various access mechan-
isms or navigation pathways to retrieve informa-
tion. It focuses on how to access various pieces of
related information. User interface design includes
presentation of content, structure, orientation and
navigation elements. It focuses on how to present
information. Runtime behavior design includes
identifying browsing semantics and prototyping
interaction states. It focuses on how to model
browsing semantics and interaction behaviors.
Construction and testing include usability evalua-
tion in addition to testing for functionality. They
focus on how to build and test the system. Thus,
RMM helps build information systems that satisfy
aspects of both functionality and usability [52].
RMM results naturally in hypermedia systems
with increased usability and utility due to the
discipline that it inculcates in the designer.

6. Issues in systematic hypermedia design

Despite the abundance of WWW applications,
to date neither the research nor the professional
literature has reported on how one should design
them systematically. Through this case study, we
have successfully demonstrated that systematic
design methodologies can be applied to Web-based
applications, including those that generate infor-
mation dynamically. We can apply our methodol-
ogy to new hypermedia applications as well as
retro-fitting existing legacy applications with a
hypermedia interface (Section 6.3). RMM can be
used to define the interface of any domain that
either has a single entity with numerous attributes
(requiring slice design and structural linking) or
multiple interrelated entities with multiple in-
stances, in which case users benefit from directly
accessing the associative links. Practitioners em-
barking on major information service initiatives
should find such a systematic methodology of
great value.

V. Balasubramanian et al. | Information Systems 26 (2001) 295-320 315

While Isakowitz et al. lay the foundation for the
seven-step RMM, they provide details only for the
first three steps [13]. This article contributes by
expanding on the remaining four. During slice
design we added two intermediate steps of
identifying minimal slices and hybrid slices. We
also contributed the concept of making the logical
data model physical during conversion protocol
design. While HCI aspects have been implicit in
RMM, we have brought out the relevance of HCI
to RMM.

With the case study as background, in the
following subsections we broaden our discussion
of RMM and hypermedia design beyond the
LINKBase application. We begin in Section 6.1
by considering RMM’s strengths and limitations,
and by proposing some extensions. In Section 6.2
we expand on performing a hypermedia require-
ments analysis, which should precede any RMM
analysis. In Section 6.3 we consider applying
RMM to an organization’s existing legacy sys-
tems. We close in Section 6.4 with some general
design lessons we have learned.

6.1. RMM: strengths, limitations and extensions

With RMM the designer need not learn an
entirely new way of designing hypermedia applica-
tions. RMM builds upon and thus adds value to
existing ways of designing and developing applica-
tions. For example, the designer still works with an
E-R design to model real-world objects and
relationships, but also analyzes the application
domain from a hypermedia philosophy of con-
sidering all possible (internal and external) rela-
tionships and maximum user access (see Section
6.2). This led us, for example, not only to include
additional entities and attributes, but also to
capture additional relationships facilitating navi-
gation (e.g., for the sake of adding a navigational
relationship, identifying an Event_item as within a
publication). The power of RMM also lies in the
fact that the E-R model is directly reflected at the
presentation layer thereby reducing both func-
tional opacity (mismatch between the reader’s
mental model and the interface) [53] and system
opacity (mismatch between the implementation
model and the interface) [54].

Whereas RMM focuses on the logical design of a
hypermedia application, it does not offer details
about physical design or implementation. The
actual physical design and development is left to
two steps, conversion protocol design and con-
struction and testing, which need greater elabora-
tion. For example, it is not clear whether
normalization benefits a hypermedia application.
Redundancy may provide more direct access points
and thus improve navigation. This must be
investigated further. RMM also offers no guidelines
on user interface design, although we augmented
our design with guidelines by [38,46,37,30].

We encountered two problems with indexes.
First we had no way to specify the order index
entries would display. For example, by default
Ingres retrieves conference names in alphabetical
order, where chronological order makes more
sense—note the difference between the sketch in
Fig. 10a and the screen dump in Fig. 2a. Thus we
need a way to think about and specify a rank
ordering other than the DBMS’s default. Second,
RMM provided no way to specify intermediate or
multi-level indexes. For example, we might wish to
split authors into twenty-six separate indexes (A—
Z) to shorten the number of entries for users, or we
may wish to separate conferences by year.
Furthermore, we need RMDM symbols for mini-
mum slices, hybrid slices and user input. The latter
would signify a user query to obtain a conditional
search condition.

Because it models only systematic elements of
applications, RMM provides no constructs or
guidance for modeling and integrating elements
that do not represent entity-relationship compo-
nents. As with most Web applications, we had to
hand-craft a central entry point to the system-
—LINKBase’s home page, with links to ACM’s
homepage and to other non-automatable docu-
mentation such as an introduction, help informa-
tion and acknowledgements. Such one-time
elements constitute important “finishing touches”
to applications. We would have appreciated some
guidance on how to design them well and on how
to integrate them into the systematic elements of
our application. This includes both where to place
access to them and which navigation tools to
employ for this access.

316 V. Balasubramanian et al. | Information Systems 26 (2001) 295-320

We also found that RMM and this case study
focus on structuring information for display, but
not on how to maintain (add, delete and modify)
information in the databases. As mentioned in step
7, we loaded the Ingres database tables through
batch programs reading data files extracted
(through FTP) from another bibliographic system.
This data did not include author addresses and
many of our other attributes. We have just started
a project to collect (and maintain) data directly
from input forms on the WWW. For example,
authors would be able to update their own address
information through the WWW. Maintaining
author information is relatively straightforward,
as all attributes belong to the same entity and thus
to the same database table. Designing and proces-
sing the input forms for a new event item
(including information about its parent event,
sponsoring organization, publication and author)
is more complex. Intuitively it seems that the same
slice and user interface designs for displaying
existing information could form the basis for
designing input, deletion and modification screens.
Because we designed the slice and user interface
designs specifically to maintain context and reduce
fragmentation, they may provide the proper
presentation clustering for all user interaction with
the system. In the end, however, we may decide it
is best to collect all information about an entity
and its relationships on a single, long form.
Maintenance thus presents interesting issues for
future hypermedia design research.

6.2. Requirements analysis: a hypermedia design
philosophy

RMM, as a design methodology, essentially
begins once the requirements analysis phase is
complete and the designers have determined the
domain’s entities and relationships. The exercise of
designing LINKBase, as well as several other
hypermedia systems, prompted us to find a way to
figure out which entities and relationships to
include. In Section 5, we noted that we started
with the two entities, author and conferen-
ce_proceeding article, and ended up with the E-R
design described in this case study.

While we are still refining our hypermedia
requirements methodology, we have identified a
preliminary set of guidelines which we have found
useful in subsequent design projects. This has led
us to a hypermedia design philosophy or outlook
on thinking about entities, attributes and relation-
ships:

1. Analysts should do a standard requirements
analysis as they normally would do for any
application.

2. Analysts, together with the end-users, should
consider each entity carefully. What are all
possible pieces of information available for that
entity? What are all possible things that
different users (developers, content suppliers,
end-users, those viewing on-line reports written
by end-users) may wish to know about that
entity? What are all things directly or indirectly
related to that entity? Careful thinking about
these questions could yield additional attri-
butes, additional incoming and outgoing rela-
tionships, and additional entities at the ends of
these relationships. Bieber and Kacmar refer to
this step as exercising hypermedia’s
“philosophy of maximum access” [55]. Giving
users freedom to access and explore as much
information and meta-information as possible
should help them comprehend the system better
and have more confidence in its outputs. As
designers, we should plan for providing max-
imum access to information, although practical
considerations may dictate that such access may
not be provided all at once. It can be provided
in an incremental and iterative manner.

3. Analysts, together with the end-users, should
decide which of these new attributes, relation-
ships and entities are both sensible and practical
to include. It may be impractical to collect data
for some. Others may be too complex, redun-
dant or indirect, or simply may not add enough
value to include. In the end designers very well
could be left with only a few additions, which
still greatly enhance the application.

Bieber formalizes points 2 and 3 as the relation-
ship-navigation analysis, identifying several gen-
eral relationship types found in most applications
[56].

V. Balasubramanian et al. | Information Systems 26 (2001) 295-320 317

In summary, a hypermedia design philosophy
encourages designers to think of objects in terms
of their relationships, i.e., as if each object were the
center of a network of related information
(including attributes and parameters) and other
related objects. In fact, this philosophy derives
from the core concept of hypermedia, which
structures information in an associative network
and gives users free access within that network.

6.3. Applying RMM to legacy systems

To date designers have used RMM for applica-
tions developed from scratch, and in which the
entities and relationships developed for the screen
layout match those underlying the application.
Could we, then, apply RMM to retrofit the
interaction with an organization’s existing legacy
applications—“‘large software systems that we
don’t know how to cope with but that are vital
to our organization” [57]? In many legacy (and
non-legacy) information systems, the screen layout
does not reflect the system’s internal computation
or data structure. Yet their users would benefit
from better navigation that is offered by RMM.

We see two basic approaches to applying RMM
to legacy systems: re-designing only the legacy
system’s interface, and rebuilding the entire system
from scratch. Rebuilding entirely, while a very
costly effort [57], gives an organization the
opportunity to take advantage of years of experi-
ence with the domain to include missing features,
as well as incorporating a hypermedia-based
interface. In this case the RMM analysis must
supplement the regular systems analysis and
design process. Analysts would apply the regular
design methodology to develop a requirements
analysis and design the internal computational
structure. Analysts would supplement the require-
ments analysis with a hypermedia requirements
methodology (see Section 6.2) to determine what
entities, attributes and relationships to include.
The analysts would then determine the system’s
presentation layout.

If choosing to replace only the legacy system’s
interface, the developer must fit RMM’s hyperme-
dia-based design with the existing legacy system’s
internal functionality. This involves four major

steps. First, the developer must determine how to
pass information between the interface and the
legacy system’s functionality. If the legacy system
was coded in a modular fashion that clearly
separated the interface from the computational
aspects (any other situation would be much more
difficult, if not impossible), or if it has an API or
batch mode interface, then the developer basically
has to match each entity, entity attribute and
relationship with the appropriate internal call [55].
Second, the developer should perform a hyperme-
dia requirements analysis to determine whether
users would benefit from additional entities,
attributes or relationships. The existing system
effects a heavy constraint as any additional
information must already exist somewhere in the
system or be accessible from external sources.
Most probably only additional relationships be-
tween existing entities will prove feasible. In this
case users at least will benefit from more direct
access to related information in displays. Third, an
RMM analysis is to be performed to work out
appropriate screen layouts and navigation design.
Fourth, the user would employ the techniques
determined in the first step to implement the
RMM-based layout.

The label “legacy system” often reflects the
desire of an organization to re-engineer the system
coupled with its frustration in the tremendous cost
of doing so. When the concern primarily results
from the system’s interface as opposed to its
internal functionality, retro-fitting the interface
with a hypermedia-styled one may postpone or
even alleviate the need to replace the legacy system
in its entirety.

6.4. Summary of lessons learned

In addition to those learned as part of the seven-
step design process, we learned lessons which could
be considered as general guidelines. As it turns out,
some apply lessons the information systems analysis
and design community has already learned to
hypermedia and WWW development:

® Analyze the application domain from a hyper-
media philosophy. Consider giving users direct
access to every possible internal and external

318

V. Balasubramanian et al. | Information Systems 26 (2001) 295-320

relationship, and to every possible related piece
of information.

RMM accommodates iterative design. Proto-
typing is essential to implementing interaction-
intensive Web applications. Try alternate slice
designs, hybrid slices, and access mechanisms.
Chart out as many alternate navigation paths as
possible between nodes (HTML pages).
Maintain local context and minimize fragmen-
tation. Plan all slices and hybrid slices to
minimize the amount of scrolling required to
see the contents of a node. Ensure users can
determine the kinds of information each node
contains without scrolling. Cluster related
information together. Provide titles or semantic
labels when it is not absolutely clear what
anchor values represent.

Provide global context. Place all important
items at the top (or bottom) of each Web
document, possibly in a frame, to provide
landmarks for orientation and navigation.
Consider implementing a version of the RMD
diagram as an overview map for navigation and
orientation purposes.

At or close to each external access point to your
system (e.g., home page), provide access to
major entry points (‘“‘grouping” access) for all
major entities and relationships in your applica-
tion domain.

Do not feel obligated to implement every entity,
attribute and relationship. To the extent possi-
ble, know all the users and the types of access
they likely will find beneficial. This might help
decide how much information users would like
to see, e.g., what to include in the minimal slice
and head slice (thereby reducing the amount of
navigation users require to get the information
they desire). For diverse user groups, if neces-
sary consider customized navigation options,
and customized slice and node designs.

Test each part of the system carefully, including
each slice, structural link, associative link, as
well as any manual pages and ad hoc links (see
Section 6.1).

Use RMM in conjunction with other design and
development methodologies (for user interface
design, runtime behavior design, and construc-
tion and testing).

7. Conclusion

In this case study, we have demonstrated
developing a Web-based information system using
a systematic hypermedia design methodology. We
have also discussed how RMM promotes usability
and utility aspects of WWW applications due to
the discipline that it encourages during the design
process. Although hypermedia itself symbolizes
the free-form expression of ideas and relationships
[40,46,30], the design and development of hyper-
media applications require great discipline on the
part of designers and developers. As prima facie
evidence, one comes across many inconsistent and
otherwise poorly implemented sites when browsing
the World Wide Web.

With the preponderance of WWW applications,
it would be astonishing if not a single one were
designed with a systematic methodology. Yet none
of the research or practitioner literature describes a
method for systematic hypermedia design. Perhaps
hypermedia features are so intuitive that standard
systems analysis and design techniques suffice, or
the current set of applications are simple enough
that standard design techniques suffice. Never-
theless, we believe that hypermedia interrelation-
ships and functionality will prove easier and more
robust to implement if done with a systematic
methodology that explicitly revolves around these.
We certainly have found this the case in our work,
and we shall continue to improve upon hyperme-
dia design methodologies in our research.

It is no secret that the information systems
profession has benefited tremendously from the
advances in systems analysis and design over the
years. We hope that our work—and that of
researchers in the hypermedia design and HCI
communities—can convince the World Wide Web
community about the importance of systematic
design and hypermedia usability, and provide
them with a methodology for doing so.

Acknowledgements
We would like to thank Bang-Min Ma, Yu

Cheng and Sajeev Joseph at the New Jersey
Institute of Technology, Joonhee Yoo at Rutgers

V. Balasubramanian et al. | Information Systems 26 (2001) 295-320 319

University and Mark Ginsburg at New York
University. We gratefully acknowledge funding for
this project by NJIT under Grant # 990967, by the
New Jersey Center for Multimedia Research, by
the National Center for Transportation and
Industrial Productivity at NJIT under Grant #
990905, the New Jersey Department of Transpor-
tation, grants from the Sloan Foundation, the
AT & T Foundation and the United Parcel Service,
and the NASA JOVE faculty fellowship program.

References

[1] T. Isakowitz, R. Kauffman, Supporting search for reusable
software objects, IEEE Trans. Software Eng. (1997)
forthcoming.

[2] S.O. Kimbrough, C. Pritchett, M. Bieber, H. Bhargava,
The coast guards KSS project, Interfaces 20 (6) (1990) 5-16.

[3] D.B. Lange, An object-oriented design approach for
developing hypermedia information systems, J. Organiza-
tion. Comput. Electron. Commerce 6 (3) (1996) 269-293.

[4] C. Liu,J. Peek, R. Jones, B. Buus, A. Nye, Managing Internet
Information Services, OReilly & Associates, CA, 1994.

[5] G.L. Lohse, P. Spiller, Electronic shopping, Commun.
ACM 41 (7) (1998) 81-87.

[6] K.C. Malcolm, S.E. Poltrock, D. Schuler, Industrial
strength hypermedia: requirements for a large engineering
enterprise. Hypertext 91 Proceedings, ACM Press (1991)
13-24.

[7] J. Mao, 1. Benbasat, J.S. Dhaliwal, Enhancing explana-
tions in knowledge-based systems with hypertext, J.
Organization. Comput. Electron. Commerce 6 (3) (1996)
239-268.

[8] C. Marshall, F. Shipman, Spatial hypertext: designing for
change, Commun. ACM 38 (8) (1995) 88-97.

[9] R.P. Minch, Application and research areas for hypertext
in decision support systems, J. Mgmt. Inform. Systems 6
(3) (1989) 119-138.

[10] R.P. Minch, G.I. Green, An investigation of hypermedia
support for problem decomposition, J. Organization.
Comput. Electron. Commerce 6 (3) (1996) 295-321.

[11] K. Instone, HCI and the Web, CHI ‘96 Trip Report,
SIGCHI Bulletin 28 (4) (1996) 42-45.

[12] S.B. Shum, The missing link: hypermedia usability
research and the web chi ‘96 trip report on the british hci
group symposium, SIGCHI Bull. 28 (4) (1996) 68-75.

[13] T. Isakowitz, E. Stohr, P. Balasubramanian, RMM: a
methodology for the design of structured hypermedia
applications, Commun. ACM 38 (8) (1995) 34-44.

[14] M. Bieber, F. Vitali, Toward support for hypermedia
on the World Wide Web, IEEE Comput. 30 (1) (1997)
62-70.

[15] M. Bieber, F. Vitali, H. Ashman, V. Balasubramanian. H.
Oinas-Kukkonen, Fourth generation hypermedia: some

missing links for the World Wide Web. Int. J. Human
Comput. Studies 47, 31-65.

[16] F. Garzotto, L. Mainetti, P. Paolini, Hypermedia design
analysis and evaluation issues, Commun. ACM 38 (8)
(1995) 74-86.

[17] R. Botafogo, E. Rivlin, B. Shneiderman, Structural
analysis of hypertexts: identifying hierarchies and useful
metrics, ACM Trans. Inform. Systems 10 (2) (1992) 142—
180.

[18] P. Brown, Assessing the quality of hypertext documents,
in: A. Rizk, N. Streitz, J. André, (Eds.), Hypertext:
Concepts, Systems and Applications, Proceedings of the
European Conference on Hypertext (ECHT) 90, 1-12.
Cambridge University Press, 1990.

[19] CommerceNet, http://www.commerce.net/, (1996).

[20] Johns Hopkins University Bioinformatics Web Server,
1996, http://www.gdb.org/.

[21] J. Nanard, M. Nanard, Hypertext design environments
and the hypertext design process, Commun. ACM 38 (8)
(1995) 49-56.

[22] A. Diaz, T. Isakowitz, Computer-Aided Support for
Hypermedia Design and Development. Proceedings of
the International Workshop on Hypermedia Design 1995,
LIRMM, 3-15, 1995.

[23] R. Elmasri, S. Navathe, Fundamentals of Database
Systems, 2nd Edition, Benjamin/Cummings Publishing
Company, 1990.

[24] F. Garzotto, P. Paolini, D. Schwabe, HDM-a model-based
approach to hypermedia application design, ACM Trans.
Inform. Systems 11 (1) (1993) 1-26.

[25] F. Garzotto, L. Mainetti, P. Paolini, Navigation in
hypermedia applications: modeling and semantics, J.
Organization. Comput. Electron. Commerce 6 (3) (1996)
211-237.

[26] D. Schwabe, G. Rossi, S.D.J. Barbosa, Systematic Hyper-

media Application Design with OOHDM. Hypertext ‘96

Proceedings, ACM Press, 1996 116-128.

V. Balasubramanian, M. Turoff, A Systematic Approach

to User Interface Design for Hypertext Systems. Proceed-

ings of Twenty-Eighth Annual Hawaii International

Conference on System Science (HICSS ‘95), Volume 111

(1995) 241-250.

[28] M. Bieber, S.O. Kimbrough, On generalizing the concept
of hypertext, Mgmt. Inform. Systems Quart. 16 (1) (1992)
77-93.

[29] M. Bieber, On integrating hypermedia into decision
support and other information systems, Decision Support
Systems 14 (1995) 251-267.

[30] M. Thiiring, J. Hannemann, J.M. Haake, Designing for
comprehension: a cognitive approach to hypermedia
development, Commun. ACM 38 (8) (1995) 57-66.

[31] G. Salomon, A case study in interface design: CHI ‘89
Information Kiosk, in: R.M. Baecker, J. Grudin, W.A.S.
Buxton, S. Greenberg (Eds.), Readings in Human-
Computer Interaction: Toward the Year 2000,
Morgan Kaufmann Publishers Inc., Los Altos CA, 1995,
pp. 25-34.

27

320 V. Balasubramanian et al. | Information Systems 26 (2001) 295-320

[32] WAIS, Inc., WAIS for UNIX, Chapter 1, Introduction,
http://www.wais.com/company/Tech_chapl.html. 1995.

[33] Information Dimensions, Inc. BASIS WEBserver™ Over-
view, http://www.oclc.org/oclc/idi/basisweb/8012web.htm.
(1995).

[34] Verity, Inc., Product Datasheet on Topic® WebSearcher,
http://www.verity.com/datasheet.html. 1995.

[35] H.V.D. Parunak, Toward industrial strength hypermedia,
in: E. Berk, J. Devlin (Eds.), Hypertext/Hypermedia
Handbook, : Intertext Publications/McGraw-Hill Publish-
ing Co., New York, 1991, pp. 381-395.

[36] R. J. Glushko, Transforming Text into Hypertext for a
Compact Disc Encyclopedia, CHI ‘89 Proceedings, ACM
Press (1989) 293-298.

[37] B. Shneiderman, Designing the User Interface, Addison-
Wesley Publishing Company Inc., Reading, MA, 1987.

[38] P. Kahn, Visual cues for local and global coherence in the
WWW, Commun. ACM 38 (8) (1995) 67-69.

[39] RM. Akscyn, D.L. McCracken, E.A. Yoder, KMS: a
distributed hypermedia system for managing knowledge in
organizations, Commun. ACM 31 (7) (1988) 820-835.

[40] J.E. Conklin, Hypertext: a survey and introduction, IEEE
Comput. 20 (9) (1987) 17-41.

[41] J. Raskin, The Hype in Hypertext, Hypertext’87 Proceed-
ings, ACM Press, (1987) 325-330.

[42] New York University. New York University’s Information
Systems Department Handbook. http://is-2.stern.nyu.edu/
isweb. (1996).

[43] M. Rettig, Prototyping for tiny fingers, Commun. ACM 37
(4) (1994) 21-27.

[44] T. Winograd, From programming environments to envir-
onments for designing, Commun. ACM 38 (6) (1995) 65-74.

[45] V. Balasubramanian, Designing in the real world, Inter-
actions II. 4 (1995) 15-17.

[46] J. Nielsen, Multimedia and hypertext: the internet and
beyond, AP Professional, 1995.

[47] J. Nielsen, D. Sano, SunWeb: user interface design for sun
microsystems’ internal Web, Proceedings of the Second
World Wide Web Conference, 1994.

[48] T. Berners-Lee, R. Cailliau, A. Luotonen, H.F. Nielsen, A.
Secret, The World Wide Web, Commun. ACM 37 (8)
(1994) 76-82.

[49] NCSA, The Common Gateway Interface, National Center
for Supercomputing Applications, University of Illinois-
Urbana Champaign. http://hoohoo.ncsa.uiuc.edu/cgi/
overview.html. (1995).

[50] Ohio State University. The HCI Bibliography Project by
Gary Perlman. http://www.cis.ohio-state.edu/ ~ perlman/
heibib.html. (1996).

[51] J. Nielsen, Hypertext and Hypermedia, Academic Press
Inc., New York, 1990.

[52] N. Goodwin, Functionality and usability, Commun. ACM
30 (3) (1987) 229-233.

[53] U. Rao, M. Turoff, Hypertext functionality: a theoretical
framework, Int. J. Human-Comput. Interaction 2 (4)
(1990) 333-358.

[54] J.S. Brown, S.E. Newman, Issues in cognitive and social
ergonomics: from our house to bauhaus, Human-Comput.
Interaction 1 (1985) 359-391.

[55] M. Bieber, C.J. Kacmar, Designing hypertext support for
computational applications, Commun. ACM 38 (8) (1995)
99-107.

[56] M. Bieber, Hypertext and Web Engineering. Proceedings
of the Ninth ACM Conference on Hypertext and
Hypermedia, ACM Press, 1998, 277-278.

[57] K. Bennett, Legacy Systems: Coping with Success. IEEE
Software, January, 1995, 19-23.

