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ABSTRACT
The simplicity of HTTP wasa major factor in the successof the
Web. However, as both the protocol and its useshave evolved,
HTTP hasgrown complex. This complexity resultsin numerous
problems,including confusedimplementors,interoperabilityfail-
ures,difficulty in extendingthe protocol,anda long specification
without muchdocumentedrationale.

Many of the problemswith HTTP canbe tracedto unfortunate
choicesaboutfundamental definitionsandmodels.Thispaperana-
lyzesthecurrent(HTTP/1.1)protocoldesign,showing how it fails
in certaincases,and how to improve thesefundamentals. Some
problemswith HTTPcanbefixedsimply by adoptingnew models
and terminology, allowing us to think more clearly about imple-
mentationsand extensions. Other problemsrequireexplicit (but
compatible) protocolchanges.

Categoriesand Subject Descriptors
C.2.2 [Computer-communication Networks]: Network Proto-
cols—Applications

GeneralTerms
Design
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1. INTRODUCTION
HTTP appearsto be a very simpleprotocol, and its simplicity

was a major factor in the successof the Web. We have learned,
however, that HTTP is morecomplex thanit first looked. Partly,
this is becausethe actual complexity increasedas the protocol
evolved; partly, becausethe environment in which HTTP is ap-
plied hasbecome morecomplex (especiallywith the introduction
of intermediariessuchascaches);andpartly, becausetheprotocol
alwayswasmorecomplicatedthanit seemed.

The complexity of HTTP causesmany problems,not the least
of which is a lengthy (176-page) specificationwithout much ex-
plicit rationalefor the designdecisions.As a result,many imple-
mentorshave beenunableto understandhow to combinefeatures
in ways not specificallyaddressed in the document. The natural
consequencesof thisconfusionareinteroperabilityfailures,limited
support for usefulbut subtlefeatures,andrepetitive discussionson
mailing lists.
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Albert Einstein is supposed to have said “Everything should
be assimpleaspossible,but not simpler”[8]. Protocoldesigners
shouldkeepthis in mind; decisionsto leave thingsout of a proto-
col, in searchof apparentsimplicity, cancreateactualcomplexity
aspeopletry to bendtheprotocolto solve hardproblems.Much of
thecomplexity of HTTP/1.1stemsnot from thelengthof its speci-
fication,but ratherwhatwasleft unsaid.

Wecantracemany of theproblemswith HTTPto what,in hind-
sight, were incompletely considered choicesabout fundamental
definitionsand models. The deepestproblemslie with the pro-
tocol’s lack of a cleanunderlyingdatamodel,but HTTP/1.1 also
failed to resolve significantproblemswith extensibility. In partic-
ular, HTTPforcesimplementationsto infer certainpiecesof infor-
mationthatshouldandcouldbeexplicit in theprotocolmessages.
Inferenceis seldomagoodmechanismto ensurereliableinteroper-
ation,andpreventscertainusefulextensionsbecauseimplementa-
tionsdepend on behavior not actuallydefinedin thespecification.

In this paper, I analyzecertain fundamentalsof the current
(HTTP/1.1)protocoldesign,to show whereandhow it fails. I also
suggestsomewaysto fix boththeprotocolandtheunderlyingcon-
cepts.While someof theproblemswith HTTP do requireexplicit
(but compatible)protocolchanges,otherscanbe fixed simply by
adoptingnew modelsand terminology. This shouldallow us to
think moreclearlyabouthow to implementor extendtheprotocol.

1.1 Why Write This Paper, and Why Now?
For aboutsix years,I have beeninvolved in the processof de-

signingtheHTTP/1.1revision of theprotocol[10], particularlythe
aspectsrelatedto caching, aswell asseveralsubsequentextensions
intendedto improve the utility of HTTP caches.Thesedesignef-
fortshaveoftenbeendifficult becauseHTTPlacksaclearandcon-
sistentdatatype modelfor theprimitive structuresof the protocol
itself.

It is quite unlikely that theseconceptual problemscould have
beenaddressed, or even foreseen,whenHTTP wasfirst designed.
Theprotocolandits useshave co-evolved,in wayswhich theorig-
inal designers could not have predicted.But with several yearsof
deploymentexperiencewith theWeb,we cannow seemany prob-
lemsquiteclearly.

However, we have learnedfrom the slow transition between
HTTP/1.0and HTTP/1.1[20] just how difficult it could be to re-
placeHTTP with a new protocol. HTTP is the protocol that we
have, andit would bepointlessto proposetossingit out andstart-
ing over.

Thegoalsof this paper, then,are:
� Start with the existing HTTP protocol: Theinstalledbaseof

HTTPsystemsmustconstrainany proposals.
� Identify the problems: From our experience with HTTP, we



canrecognizesetsof relatedproblemswith thecurrentmodels.
� Get the conceptscrisp and right : Provide a commonterm-

inology that both reflectsreality andallows for unambiguous
interpretations.

� Createguidancefor: (1) Implementationdecisionswherethe
existing specificationis ambiguous; (2) future extensionsto
HTTP; and(3) designersof futurenew protocols,whocanlearn
from theHTTPexperience.

� Judiciously suggest new tagging mechanisms to add to
HTTP : Almost all of theproblemsidentifiedin this papercan
beaddressed by providing explicit informationin theprotocol,
insteadof forcing implementationsto guess.

It may seemparadoxical to try to changethe definitionsandeven
thespecificationof HTTPwithout makingchangesthatareincom-
patiblewith theinstalledbase.However, in many casesthe“miss-
ing” aspectsof thespecificationareinescapably impliedby thelog-
ical consequencesof what is alreadythere.Our taskis thusto un-
earththeseconsequences,ratherthan to invent new specification
detailsfrom scratch.

1.2 The Particular Importance of Caching
HTTPis anetwork protocol,but it is alsothebasisof a largeand

complex distributedsystem.HTTP hasclients,servers,intermedi-
aterelays(“proxies”), andthepossibilityof cachesat all points. It
canbe difficult to designthe cachingmechanismsin a distributed
system,especiallyif onehopesto make the caches“semantically
transparent” (thatis, cachingshouldbeinvisible to theendsystems
exceptfor its effect on performance).

HTTP acquiredits cachingmechanismsby accretion.The first
mechanisms quickly supportedsignificant benefitsfrom simple
cacheimplementations,but alsoopened the door for an array of
confusing featureinteractions.During the HTTP/1.1 designpro-
cess,this lead to a debatebetweenpeoplewho viewed aggres-
sive cachingasvitally importantto the healthof the Internet,and
people who viewed it aspotentiallydangerous to the semanticin-
tegrity of theWeb. In fact,it shouldbepossibleto designacaching
systemthat guarantees semantictransparency to Web interactions
while still eliminating nearlyall truly excesscosts. But, this re-
quiresa morerigorouslydefinedcaching designthanhasevolved
for HTTP. Our failure to get that designright is largely a conse-
quenceof a conceptual faultlinebetween“protocol designers”and
“distributedsystemdesigners,” anda failure to meld theexpertise
of bothcamps.Mostof thetopicsdiscussedin thispaperultimately
reflecta needfor cleardefinitionsandexplicit information,in or-
derto support safe,aggressive caching.Ambiguity is theenemyof
caching, becauseit forcestheuseof inferences,which reduces the
opportunitiesfor truly safecaching,andmakesit nearlyimpossible
to composeindependentlydevelopedcachingdesigns.

2. HTTP’S EXISTING DATA TYPE MODEL
Analysisof a data-orientedprotocolsuchasHTTP shouldstart

with anunderstanding of theprotocol’sdatatypemodel.By this, I
meanthe variousdatatypeson which the protocoloperates.This
paperis concerned with thedatatypesactedon andinterpretedby
theprotocol,andnot with thehigher-level typesthataretransported
via HTTP, but which areopaque to theprotocol itself.

2.1 Resources
HTTPrequestsalwaysspecifyaURI (Uniform ResourceIdenti-

fier). Thus,every HTTP requestrepresentsanattemptedoperation
on at leastone“resource,” andevery HTTPresponsemessagecon-

veys somethingabouttheresultof thatattempt.TheHTTP speci-
fication’s definitionof the term“resource”is circular (“A network
dataobjector servicethatcanbeidentifiedby a URI”, but “[URIs]
aresimply formattedstringswhich identify ... a resource”),aprob-
lem for someoneelseto unravel.

To supportfeaturessuchasmultilingual documents,an HTTP
resourcemayhave multiple “variants.” Eachvariantof a givenre-
sourceis expectedto representthesameconceptualthing,but (e.g.)
theFrenchandChineseversionsof adocument mighthavenothing
visibly in common.TheRequest-URIis not sufficient to identify a
uniquevariant;otherrequestheaderfields called“selectinghead-
ers”(e.g.,Accept-Language)mightbeinvolved.(It is convenient to
treatanunvarying resourceashaving exactly one“variant.”) Vari-
antsintroducetheir own setof problems,later briefly coveredin
section7.1.

2.2 Messages
An HTTP messageconsistsof protocol-visibleheaderinforma-

tion, followedby anoptionalbody(anopaque sequenceof bytes).
Thebodyof anHTTPmessagehasoneof thesehigher-level types,
describedby an orthogonal “content-type” systemthat HTTP in-
heritedfrom MIME[12]. TheHTTPmessageheaderscan(should)
convey application-level content-typetagsfor this body, suchas
“image/jpeg” or “text/html”, but HTTP per se doesnot concernit-
self with theinterpretationof content-types.

2.3 Entities and Entity Tags
Relatively earlyin its history, theHTTPprotocol adoptedanum-

ber of conceptsfrom MIME (Multipurpose InternetMail Exten-
sions)[12].In particular, MIME usestheterm“entity” to referto

[the] MIME-defined headerfields and contentsof either a
messageor oneof thepartsin thebodyof a multipartentity.
Thespecificationof suchentitiesis theessenceof MIME.

HTTPadoptedthetermanddefinesit similarly, as

The information transferredas the payloadof a requestor
response. An entity consistsof metainformationin theform
of entity-headerfields andcontentin the form of an entity-
body ...

For comparison,a dictionarydefinition for “entity” is “something
thathasseparateanddistinctexistenceandobjective or conceptual
reality”[23].

HTTP/1.1 introduced “entity tags,” usedto validatecacheen-
tries. The server generatesentity tags,which are stringswhose
contentis opaque to theclient. The server may sendan entity tag
in a response. Later, a client wishing to validatea cacheentry for
this response(that is, to checkwhetherthe cacheentry is coher-
entwith what theserver would sendin responseto a new request)
simply returnsthis entity tagstring to theserver. If it matchesthe
currententity-tag,thenthe server canrespondwith a “Not Modi-
fied” messageinsteadof sendingtheentireentity.

3. PROBLEMS WITH THE CURRENT
MODEL

Considertheresultof thesimplestHTTPoperation, a GETon a
URI with exactlyone“variant.” Whatis thedatatypeof theresult?
Is it anentity?

The problemwith the attemptedanalogybetweenMIME mes-
sagesandHTTP datatypesis that it assumesthe messageis the
centralconcern.

In MIME, anemailprotocol,themessageis indeedcentral.Ev-
ery MIME entity (email message)is fully containedwithin a sin-



gle SMTP-layermessage. Further, in an email system,the entity
(email

�
message)truly is “somethingthat hasseparateanddistinct

existence”:theemailmessageactuallyleavesthesenderandtravels
to thereceiver.

In HTTP, however, resourcesarecentral,andmessagesarenot
nearlyascentralasthey arein MIME. For onething, theresource
(uponwhich theHTTPrequestoperates)doesnot itself travel from
server to client. This is especiallytrueof dynamic resources,such
asCGI scriptsor databasequerysystems.Also, HTTP allows the
transmissionof subrange of the bytesof a result, or of just the
metainformationwithout the associatedbody, so the resultmight
spanseveral HTTP-layermessages.Therefore,what HTTP calls
anentity cannotbesaidto have a separateanddistinctexistence;it
is merelyanephemeral,andperhaps partial,representationof one
aspectof a resource.

HTTPthereforehasreasonably well-definedtermsandconcepts
for resourcesandmessages,but noclearlydefinedtermto describe
the resultof applyingan operationto a resource.In otherwords,
whatdowecall “the resultof successfullyapplyingasimpleHTTP
GETrequestto agivenresourcevariantat a givenpoint in time”?

This couldappearto bemerelya quibbleabout terminology. In
fact,however, thelack of sucha term,andthefailure to recognize
theimportanceof theconcept,hasledto anumberof difficult prob-
lems. I will discussthreein detail: how to specifyHTTP caching,
how to consistentlydealwith partialresults,andhow to categorize
HTTPheaderfields.

3.1 How to SpecifyHTTP Caching
WhatdoesanHTTPcachestore?Thismightseemto beatrivial

question, but a clear answer(or the lack of clear answer)hasa
profound effect on how to specifyandimplementHTTPcaches.

Thereare somethings that clearly aren’t storedby an HTTP
cache. A cachedoesnot store the actual requested“resource”:
resourcesthemselvesdo not transitthe network (think of a stock-
quoteresource,for example).

Neither does a cachestore “objects” in the senseof object-
orientedprogramming;while HTTPsupportsmultiplemethodsap-
plied to many resources,HTTP caches cancurrentlyonly respond
to GETmethods.

And clearly a cachecannot,in general, storea Web “page” or
“document,” sincetheseareoftencompositesof multiple resources
with differing cachability properties.

During the design of HTTP/1.1, we debatedwhether HTTP
cachesstored“responses”or “values.” Most otherkinds of com-
putercaches storevalues;for example,a CPU cacheentry might
storethevalueof a memoryline, anda file cachepagemight store
the valueof a disk block. But an HTTP resourcemight respond
differently to differentrequests,so it washardto definewhat the
“value” of a resourceis.

Instead,HTTPcachesarecurrentlydefinedasstoring“response
messages.” In otherwords,an HTTP cacheentry doesnot store
what a resourceis; it storeswhat the resourcesays. As a re-
sult, it is difficult to definepreciselywhat an HTTP cachemust
do in many circumstances,sincethe sameresourcecould saytwo
different things in response to two apparently identical requests.
HTTP/1.1includesa mechanism(the Vary header)which allows
a server to tell a cachethe “selectingheaders” that the resultof a
requestdepends on, in additionto theRequest-URI.However, the
Vary mechanism cannotdeal with even fairly simple generaliza-
tions,oftenrequiringa fallbackto non-caching operation.

The lack of a clearformal specificationfor cachingcausesim-
plementorsto make guesses,basedon fuzzy ideas of what is
“good” (e.g., minimizing network traffic). This leads to non-

interoperability, becausecontent providers cannot predict what
cachesdo.

As anaside,we alsolack consistent,rigorousshareddefinitions
for termssuchas“cachehit” and“cachemiss”asappliedto HTTP.
In traditional(CPUor file system)caches,a referenceis simply ei-
thera hit or a miss,but becauseHTTP allows conditional requests
(e.g.,usingtheIf-Modified-Sinceheader),wehavethepotentialfor
anin-betweencase:thecachecannot satisfyarequestwithoutcon-
tactingtheorigin server, but wemightstill beableto avoid transfer-
ring a responsebody. And becauseHTTPcachesdo not guarantee
coherency, a “hit” might or might not yield the right answer. No-
bodyasyet hasproposeda standardtaxonomyof HTTPcachehits
andmisses,althoughmany papershave describedprivate,partial
taxonomies(Dilley givesoneof thebest[5]).

3.2 ConsistentHandling of Partial Results
HTTPoriginally assumedthata resultwould becarriedin a sin-

gleresponsemessage.HTTP/1.1,however, introducedthepossibil-
ity for aclient to requestapartialresult(or “range”), thusallowing
a full result to be transmittedusinga seriesof messages.It also
recognized thepossibilitythata client might never wantmorethan
asubsetof theentireresult(e.g.,achapterfrom aPDF)file, andso
might plausiblycacheapartialresult.

The entity-baseddata model, unfortunately, doesnot entirely
support partialresults.

For example,considera cachethat alreadystoresthe first half
of a result. Whenthe second half of the resultarrives,we would
like the cacheto unite the two halves into a single cacheentry.
But thisentrycouldno longerbetreatedascontainingany specific
“response” sentby the server, so the caches-store-responsesview
becomesuntenable.In fact, the HTTP/1.1 specificationhadto in-
cludespecialrulesfor composingmultiple responsesinto one.

The creationof a cacheentry by combiningmultiple responses
introducesthepossibilityof erroneousassembly, sowe would like
a meansto checkend-to-endintegrity for the entireresult. HTTP
definesa Content-MD5header, inheritedfrom MIME, which car-
ries a digestof the entity (message)body. But this is uselessfor
checkingtheintegrity of a resultassembledfrom partialresponses,
becauseeachdigestonly coversa singlepart.

The situationbecomesmore complex when combiningranges
with compression. HTTP/1.1 allows compressioneither as an
end-to-end“content-coding,” or asahop-by-hop“transfer-coding.”
Generally, the end-to-endapproach is more efficient. The speci-
fication definesa content-coding asa transformationon an entity;
thatis, boththeinput andoutput is of type“entity.”

Supposeaclientrequestsbothacompressioncontent-codingand
a byte range(e.g.,bytes1-1000). In what ordershouldthe server
performthebyte-rangeselectionandthecompression(which pre-
sumablychangesthebytenumbering)?Thespecificationdoesnot
explicitly resolve this ambiguity. However, thereis animplicit rea-
sonwhy thecompression cannotbedone aftertherangeselection:
therewould thenbeno way to consistentlychoosethepoint where
theentity tag(seesection2.3) is assigned.

Wecandeducethis point from two constraints:

1. An entity tag must be assignedbeforethe rangeselection.
Otherwise,a client trying to assemblea full resultfrom two
or moreranges(in multiple messages)could not matchthe
entity tagsto testcachecoherency.

2. Thespecificationmustallow anentitytagtobeassignedafter
theapplicationof acontent-coding,becauseit alreadyallows
the server to storeits datain a pre-encoded form (andthus
to requirethe entity tag to be assignedprior to any content
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Figure1: HTTP message generationpipelines: (a) old model, (b) newmodel

codingwould make all existing serversnon-compliant).

Sincethe entity tag mustbe assignedprior to rangeselectionbut
aftertheapplicationof content-coding, rangeselectioncannot pre-
cedecontent-coding. Otherwise,we would have to acceptincon-
sistentrules about when to assignthe entity tag. (This chain of
logic servesasan exampleof a point madein section1.1: some
of the incompletely specifiedaspectsof HTTP maybededucedas
necessary consequencesof theexisting specification.)

Now considerthe extensionof HTTP to support “delta encod-
ing”, in which the server transmitsthe differencesbetweenthe
client’s cacheentryandwhat theserver would currentlyreturnfor
a full response[17]. Whenwefirst tried to definethisextension[26]
we thought deltaencodingshouldbe treatedasjust anotherform
of content-coding, since it resemblescompression. But it more
closely resemblesrangeselection,in that it transmitspartial con-
tent that mustbe combinedwith an existing cacheentry. Trying
to treatdeltaencodingasa content-coding turnedout to createex-
tremelycomplex rules for handling entity tagsandcacheentries.
We alsofound it difficult to definehow a client couldaskfor delta
encoding, ranges,andcompressionin variousorders.

OtherproposedHTTP extensions,suchasrsync[31] andcache-
basedcompaction[4], sharethedefinitionalproblemsfirstseenwith
deltaencoding.

We canvisualizethe situationby depictingthe HTTP message
generationmodel as a pipeline, as shown in figure 1(a). In this
figure, datatypes(bold-faced terms)are transformedvia process-
ing steps(arrows)suchasvariantselection,applicationof content-
codings,rangeselection,etc.Thefigureshows thattheservermust
assignan entity tag at a point not associatedwith a specificstage
in thepipeline.Themodelincludesa cycle,whereanentitycanbe
both input andoutputfor eitherrangeselectionor the application
of content-codings. This cycle is what leadsto the apparent need
for complex rulesto definehow deltaencoding works.

Thesituationwith content-codings is furthercomplicatedby the
pragmaticdistinction betweenon-the-fly encoding, in which the
server appliesa content-codingat the momentit transmitsa nor-
mally unencoded resource,and as-storedencoding, in which the
native (on-disk)form of a resourceis alreadycompressed. HTTP
treatsboth of thesecasesidentically, yet a naively-implemented

server might apply rangeselectionbeforeon-the-flyencodingbut
not beforeas-storedencoding.

3.3 Categorizationof Headers
The HTTP/1.1 specification distinguishesbetween “general

headers... whichdonotapplyto theentitybeingtransferred”(e.g.,
Cache-Control,Date), “response headers... additional informa-
tion aboutthe response” (e.g.,ETag,Age), and“entity headers...
metainformationabout the entity-bodyor, if no body is present,
aboutthe resourceidentifiedby the request”(e.g.,Expires). Note
that “Cache-control: max-age”andExpiresarecategorizeddiffer-
ently, even though they have essentiallythe samefunction. There
is alsoaconfusionherebetweenbodiesandresources– bodiesex-
pire,but resourcesdon’t.

Thespecificationalsolumpsall extensionheaders(thatis, head-
ers that might be defined in the future) as entity headers,even
thoughplausibleextensionscould introducenew headersthat, as
with existing generalheaders,“do not apply to the entity being
transferred.”

Theseflaws in thespecificationnot only canconfuseimplemen-
tors; they also limit extensibility, sincea proxy might not prop-
erly handle an extensionheaderthat it cannotcorrectlycharacter-
ize. Extensiondesignersmustconsider how naive or pre-existing
proxiesandcachesmight confound a proposed extensiondesign.

3.4 Summary of the Problems
ThecurrentHTTPmodel leavescachinghardto specify, makesit

difficult to cleanlyclassifyHTTPheaders,leadsto confusion about
when to assignentity tags,and makes it very difficult to consis-
tently dealwith bothpartialresultsandcompression.

The complexities andambiguitiesof the modelcreatetrapsfor
unwaryimplementorsandfor designersof new protocol extensions.

4. A BETTER DATA TYPE MODEL
All of theseproblemscanbesolvedby addingonenew datatype

to theHTTPmodel,which I have calledthe“instance”:

The entity that would be returnedin a full response to a
GET request,at the currenttime, for the selectedvariantof
the specifiedresource,with the applicationof zeroor more



content-codings,but without theapplicationof any instance
manipulations.�

In this revisedmodel,the input to a content-coding transformation
is the selectedvariantof the requestedresource,andthe output is
aninstance.(It is convenient to treattheno-content-codingcaseas
theapplicationof anidentity content-coding.)

Theinstanceis thenusedastheinput to a seriesof zeroor more
“instancemanipulations,” which canincluderangeselection,delta
encoding,andcompression. Theresultof theseriesof instancema-
nipulations(possiblyjust the identity function) is anHTTP entity.
The specificationfor deltaencoding[28] now extends HTTP both
to allow the server to list the instancemanipulationsappliedin a
response,usinga new headernamedIM, andto allow theclient to
list a setof acceptable instancemanipulations,usinga new header
namedA-IM. TheA-IM headeralsoallowstheclient to specifythe
orderingif theserver appliesmultiple instancemanipulations.

In thenew model,it becomesclearthattheentity tagis assigned
to the instance,becauseit mustbe assignedprior to any instance
manipulations. It is clearly not assignedto the entity (andwould
betterhave beencalledan“instancetag”).

Figure1 depictsthe differencesbetweenthe old andnew mod-
els. In the new model(figure 1(b)), thereareno cycles,andthere
is a clearrelationshipbetweenprocessingstages(e.g.,applying a
Content-coding) andlinks in thegraph.Also, while theold model
requiresthe entity tag to be assignedbetweentwo differentsteps
thatbothresultin entities,thenew modelclearlyassociatestheas-
signment of anentity tagwith aspecificstagein thepipeline.

It might seem redundant to allow compressioneither as a
content-codingor asan instancemanipulation. In retrospect,this
simplifiesthedistinctionbetweenon-the-flycompression(bestde-
scribedasan instancemanipulation)and the server’s useof pre-
compressed files (in which compressionnaturallywould be done
prior to theassignment of anentity tag).

Table1 shows how variousoperationsthat may be includedin
themessagegenerationpipelinenow have well-definedandunique
input andoutputdatatypes. The “HTTP protocol elements”col-
umnshows just a subsetof therelevant protocolelements.

It is now alsoclearwhatanHTTPcachedoes:it storesinstances
(rather than entitiesor responses).This is the only point in the
messagegenerationpipelinewhereonecan implementcacheco-
herency through the useof entity tags. Of course,in the many
caseswhereno instancemanipulation or transfer-codinghasbeen
used,thereis no practicaldistinctionbetween“instance,” “entity,”
and“response,” but moregenerallythethreedatatypesaredistinct.

A cacheentry might, in somecases,containonly partof an in-
stance: for example,after an abortedtransferor after Rangere-
quest.However, becausea cacheentry is alwaysassociatedwith a
specificinstance,it is clearhow thecacheshouldcombinemultiple
partialresponsesfor thatinstance.

4.1 Better HeaderClassifications
Section3.3discussedthedistinctionthattheHTTP/1.1specifica-

tion makesbetweengeneral,response,andentity headers,arguing
thatthechoicesareoftenconfusing.

Thenew modelmakesit easierto categorizeHTTPheaders.We
can createthe new category of “instanceheaders,” for instance-
specificmeta-information. Many headerscurrently classifiedas
entityheaders(suchasContent-Language, Content-Type,andLast-
Modified)or responseheaders(Etagandperhapsothers)areassoci-
atedwith aspecificinstance,andshouldbecalledinstanceheaders.

Wecanalsousethenew categories“resourceheader”and“vari-
ant header” for fields that pertainto thosedatatypes,and “outer
header” for fields pertainingonly to the message(HTTP already

definesthe term “message-header”). The category “connection
header”pertainsto aspectsof the transportconnection (which is
orthogonal to all othercategories)and “server header”appliesto
aspectsof theserver per se.

Field name RFC2616 New
Accept-Ranges response-header resource-header
Age response-header outer-header
Allow entity-header resource-header
Cache-Control general-header instance-header
Connection general-header conn-header
Content-Encoding entity-header instance-header
Content-Language entity-header variant-header?
Content-Length entity-header entity-header
Content-Location entity-header variant-header?
Content-MD5 entity-header entity-header
Content-Range entity-header entity-header
Content-Type entity-header variant-header
Date general-header instance-header
ETag response-header instance-header
Expires entity-header instance-header
Last-Modified entity-header instance-header
Location response-header resource-header
Proxy-Authenticate response-header resource-header
Retry-After response-header server-header?
Server response-header server-header
Trailer general-header outer-header
Transfer-Encoding general-header outer-header
Upgrade general-header conn-header
Vary response-header variant-header
Via general-header outer-header
WWW-Authenticate response-header resource-header
Warning general-header outer-header?

Table2: Header field classifications

Table2 classifiesmany of theHTTP/1.1headerfieldsaccording
to both theexisting (RFC2616)categorizationandthis recategori-
zation.(Thetableexcludesfieldsusedonly in requestmessages,al-
thoughperhaps thosefieldscouldbesimilarly categorized.)Some
entriesin the“New” columnareshown with questionmarks,since
theexisting specificationis not alwayspreciseabout thenecessary
distinctions. (Note that the Date headeris listed as an instance-
header, but is alsorequiredin HTTP responsesthatdo not pertain
to specificinstances.)

In hindsight,it mighthavebeenwiseto explicitly tageachHTTP
headerwith its category, thusallowing implementations(especially
proxies)to properlyhandleall headerswithoutknowing theirspec-
ifications.For example,all instanceheadernameswould startwith
“I-” (I-Content-Language,I-Tag,etc.)Suchaschemecouldstill be
adoptedfor all futuredefinitionsof HTTPheaders.

Thisrecategorizationdoesnotnecessarilychangetheactualpro-
tocol. However, it canhelp to simplify someof thearcanespecifi-
cationrules.

Onesuchsetof rulescover “hop-by-hop,” “non-modifiable,” and
“end-to-end” headers. Thelistingsof theseheadersin RFC2616ap-
peararbitrary, but (if oneignoresthepossibilityof transcodingby
proxies),thesetof hop-by-hopheadersroughlymatchesthesetsof
outer-headersandconnection-headersin table2,andthesetof non-
modifiableheadersroughly matchesthesetof instance-headersand
variant-headers.Arguably, themismatchesreflecterrorsin thelists
given by RFC2616. Unfortunately, a few looseendspersist: the
resource-headercategory doesnot mapcleanly to eitherhop-by-



Operation HTTP protocol elements Input type Output type
Resourceselection URL (none) Resource
Variantselection “Selectingheaders” Resource Variant
Apply content-coding (e.g.,compression) Content-encoding Variant Instance
Apply instancemanipulation(e.g., Rangeselection,Delta
encoding, compression,etc.)

IM, Content-Range Instance Entity

Apply hop-by-hop transfer-coding (e.g., compression,
chunking, trailers)

Transfer-Encoding Entity Message

Table 1: Input and output data typesfor messagegenerationoperations

hop or non-modifiable; the Content-Lengthheaderrequirescom-
plex specialtreatmentin HTTP/1.1(becauseof compatibility is-
sueswith olderversions);andthequestionof whichheaderscanbe
modifiedby a transcodingproxy createssignificantcomplexity.

4.2 Can WeSimplify the Specification?
In section 1, I alluded to the length and the complexity of

the HTTP specification. Oneof the anonymous reviewers asked
whetherthe new five-stagedatamodelwould allow the specifica-
tion to be broken up into independentlayers;perhapstherequire-
mentsfor acachecouldbedefinedentirelyin termsof theinstance
datatype,sincecachesstoreinstances.

Thisdoesnot seempossiblefor theexistingHTTPprotocol.For
example,cachingmay involve not only instanceheaders(suchas
Expires)but alsoanouterheader(Age,which is modifiedon every
hop) andperhapscertainvariantheaders(if the cacheparticipates
in contentnegotiation)andentity headers(suchasContent-Range,
if the cacheusesRangerequests).This resistanceto strict layer-
ing mightbetheresultof HTTP’shistory, reflectingdesignbothby
evolution andbeforethe constructionof this model, but it might
reflect intrinsic complexity (“Everything shouldbe as simple as
possible,but not simpler”). It might alsoimply that the proposed
five-stagemodelcouldbeimprovedupon.

However, onecould,asanexercise,constructan“HTTP-prime”
protocol designed to strictly fit a layeredmodel. Sucha proto-
col would have a connection layer, a hop-by-hop messagelayer
(including transfer-codings),a cachinglayer (including instance
manipulations andnamingmechanismsfor resources),a resource
layer (dealingwith operations on resources), anda content-typing
layer (for useby higher levels). Supportfor contentnegotiation
andvariants,at leastasthey arecurrentlytreatedin HTTP, would
probably still createcross-layerissues(becausevariantsaffectboth
namingandcontent-typing).

5. DATA ACCESSMODEL
The Web, almost from its beginning, has supportednot just

accessto static “documents,” but also interactive information re-
trieval (e.g., searchengines,streetmaps),information modifica-
tion (e.g.,discussionforums,Weblogs),andactiveoperationswith
real-world sideeffects(e.g.,orderingpet food, or buying stockin
pets.com).However, we seemunable to shake the habit of using
the term“document” to applygenerically to theobjectof Webre-
quests.Many researchpapersuse“document” (or “page”),whena
moreaccuratetermwould be“resource,” “response,” or (asin sec-
tion 4) “instance.” EventheHTTP/1.1specificationoftenusesthe
term “document” in placeof morepreciseterms,andwithout any
formal definition.

HTTP needsa data access model describingboth what kinds
of dataitemscanbe accessed(e.g.,staticdocuments,productor-
der forms, etc.) and how data is accessed(e.g., reading,updat-
ing, or morecomplex modifications).Althoughearlierversionsof

the specification[9]called HTTP “object-oriented,” it is not, but
no completealternative modelhasyet beendefined.Most people
haveonly ahazyidea,basedon theusesthey havealreadyseenfor
HTTP.

This ambiguity aboutthe dataaccessmodel is reflectedin the
protocolitself. Thedistinctionbetweenstaticdocumentsandother
kindsof resourcesis at bestimplicit, andoften impossibleevento
infer from theprotocol messages.For example,onecaninfer thatif
aPOSTmethodis not rejectedby theserver, thentheURI involved
is notsimplyanimmutablestaticdocument. But it is impossibleto
make that kind of inferenceby observinga server’s responseto a
GETrequest.

When we think solely of static documents,we ignore several
aspectsof otherkindsof Webresources.For example:

	 What updateoperationsareallowed? Someresourcesaccept
updateoperations,suchasPUTor POST, but mostonly accept
GET.

	 Is the resourcemutable? Regardlessof whetherthe resource
allows a client to updateit, it might still be subjectto change.
Many, if not most,Web pagesdo changeover time[6]. How-
ever, somedocuments are immutable (such as IETF RFCs,
whosetext is immutableby definition,althoughsomesitespro-
videadditional formattingthatmaybemutable).Mutability has
implicationsfor cacheconsistency andfor automatedclients,
suchassearch-enginecrawlers.

	 Do operationson the resourcehave sideeffects? Readinga
staticdocument may have no hiddenconsequences,but many
otherHTTPoperationsdohavesideeffects.Someareinsignif-
icant(suchasupdatingapage’s “hit counter”).Significantside
effects can include effects on the physicalor financial world
(e.g.,operatinga remotecontrol, or buying a stock);on other
HTTP-accessibleresources(e.g.,postingamessageto adiscus-
sionforum);onotheronlineresources(e.g.,submittingapaper
to a conference),or even on the client browser(e.g.,updating
thebookmarksor infectingtheclient with a virus).

	 Ar e operations on the resource idempotent? Usersoften
retry a specificHTTPoperation(i.e.,sendexactly thesamere-
questmessagemore than once). This is often doneto work
aroundanerror, suchasa droppedTCPconnection, anticipat-
ing that repeatingthe requestwill yield the same result. It is
alsooftendoneto update theuser’s view of a resource(suchas
a sportsscore),in thehopethatrepeatingtherequestwill yield
a new result. Thus,the “Reload” button may have a distinctly
differentmeaningdepending on whethera requestis idempo-
tent or not. Although browsersoften warn the useraboutpo-
tentially dangerous repetitions(“repostform data?”),this does
notaddresstherootproblem:doestheresourcesupporttheop-
erationthattheuserintends?




 Doesthe URI name a specific or generic target? A Web
site� might employ a namingstructurein which thebindingbe-
tweena URI andtheunderlying resourceis specific;for exam-
ple, the URI might denotethe October3, 2001 front pageof
thePodunk Times. Or thesitemight employ a genericbinding:
the newspaper’s URI might denote “today’s” front page(and
whenyoureadthis,“today” will no longerbeOctober3,2001).
Bothnamingstructurescanbeuseful,but thechoicecanaffect,
for example,theapproach takento automaticallyarchiving the
contentsof remotesites. Thereis no reliableway to discover
which structurea siteor resourceuses.

While mostof theseissuesmayseemirrelevant to humanusers,
they aremoresignificantto automatedclients,especiallyto inter-
mediariessuchas proxiesand caches. Somethingthat might be
“obviousfrom context” to anintelligenthumanis usuallynotobvi-
ousto software,unlessit is madeexplicit.

5.1 Access-modelSupport in HTTP/1.1
HTTP includesseveral mechanisms to amelioratethe lack of

an explicit dataaccessmodel. By convention, for example, the
GET method“SHOULD NOT have the significanceof taking an
action other than retrieval,” but the specificationgoeson to say
that“somedynamic resourcesconsider [generatingside-effectson
a GET method]a feature”[10](section9.1.1). It is not clearif one
canrely, in practice,on thisaspectof GETs.Thespecificationalso
requirescertainmethodsto beidempotent; this requirementmight
bewidely abused.

HTTP includesan “Allow” responseheaderwhich lists the al-
lowablemethods(suchasPUT).Typical implementations,suchas
Apache, sendthis only in responseto anunallowedmethod(a rea-
sonable optimization,sincerelatively few resourcesacceptmeth-
odsotherthanGET.)

HTTP alsosupports the useof the “Location” header, returned
in a response to a POSTmethodthatcreatesa new resource(e.g.,
addinga messageto a discussionforum). This helps to expose
the relationshipbetweenresources.It is not clear what a server
shouldsendif a POSTresultsin the creationof more than one
resource,sincethespecificationof Locationallows only onesuch
URI perresponse.Moreover, onecannotknow prior to performing
thePOSTrequestwhetherthemethodwill createa new resource.

Generally, however, the mechanismscurrently supportedby
HTTP tend to act as directives ratherthan as labels. For exam-
ple, HTTP allows a server to defeatcachingfor responses if the
resource’s semanticsdo not permit caching,but provides no way
to labela resourceasimmutable.Theuseof directivesratherthan
labelsmakes it harderto introducenew, unanticipatedservicesat
intermediariesandclients.

We alsoneedto make a cleanseparationbetweenaccess-model
issuesthat relateto caching,andthosethat do not. Existing rules
(both in the specificationand in folklore) that restrict response
cachingbasedoninferencesabouttheaccessmodel(e.g.,responses
to URLscontaining“?” arenotcachable)arebothtooweak(to pre-
ventsomecachecoherency failures),andtoostrict (they canforbid
cachingwhenit is safe).If wehadanexplicit andusefuldataaccess
model,wewouldnotneed,for example,to confusecaching-related
labelswith URL querysyntax.

5.2 Mor e Explicit Labeling
At leastone proposalhasbeenmadeto add access-model la-

belsto HTTP. RFC2310[16]definesa“Safe” responseheader. This
would indicatewhethertherequest(suchasa POST) couldbe“re-
peatedautomaticallywithout askingfor userconfirmation.” Note
thatthis labelappliesto aspecificrequest,not to theresource,since

it is possiblethat somePOSTrequeststo a given resourcearere-
peatable,while othersarenot. It might befeasibleto treattheSafe
headerasa labelon a given instanceof theresource,althoughthe
consequencesof thischoicearenot entirelyclear.

However, a Safeheadercouldnot alwaysbetreatedasapplying
to all otherinstancesof aresource,sincethesemanticsof theappli-
cationbehindtheresourcemight not allow this. This suggeststhat
a labelingschemeneedsto distinguishbetweenresourcelabelsand
instancelabels.

HTTP needsa more generalschemefor attachinga variety of
access-model labelsto instancesor resources.For example,a re-
sourcemight be labeled“immutable” (instances,asa consequence
of the term’s definition, arealways immutable). Resourcesor in-
stancescould be labeledasidempotent. And by analogywith the
programming-languageconcepts of “lv alues”and“rvalues”,a re-
sourcecouldbelabeledas“assignable,” meaningthatit canaccept
PUTmethods(alreadysupportedin HTTPusingthe“Allow: PUT”
header).

To conserve bandwidth, such a labeling schemeshould use
a compact representation. While HTTP traditionally has used
human-readable encodings for protocol elements,this is neither
necessarynor appropriatefor labelsmeantprimarily for automated
interpretation.For example,a hypotheticalresponseheadersuch
as:

Labels:R:IAD, I:S

would indicatethat the (R)esourceis (I)mmutable,(A)ssignable,
andi(D)empotent,while the (I)instanceis (S)afe. (The actualen-
codingformatis bestleft to a standardsgroup.)

5.3 Static vs. Dynamic Resources
We have historically made a distinction between“static” re-

sources,for which a Webserver simply returnsthecontentsof an
existing file, and“dynamic” resources,generatedby a processat
thetime therequestis received.Certainlyfor server implementors,
this is an importantdistinction. But in the context of the HTTP
protocol,it appearsto have beena redherring.Clientsandproxies
shouldnotcarehow theservercomesupwith thebits thatmake up
an instance;they shouldcareonly what theserver meansby those
bits.

So while conventional practice, especiallyin client or proxy
cacheimplementations,is to treatcautiouslyanything that might
bea dynamic resource(e.g.,a URL containinga “?” or thestring
“cgi-bin”), this would not be necessary if HTTP instanceswere
explicitly labeledwith sufficient detail. (With minor exceptions,
RFC2616doesnot requirespecialhandlingfor dynamicresources;
thedistinctionis primarily folklore.)

It might indeedbeusefulfor aclientor proxy to know whethera
particularinstanceis expensivefor theserverto generate.Wecould
introducean instancelabel statingthe server’s time to regenerate
the instance.This might, for example,affect a cachereplacement
policy. However, this measureis orthogonal to the static/dynamic
axis (i.e., a “static” disk accessmight be more expensive than a
short “dynamic” threadexecution). In fact, it makes little sense
that, in currentpractice,responsesrequiringthe mostserver costs
to regenerateareexactly theonesthatcachesdo not store.

5.4 Resourcesvs. Pages
I complainedearlierthatpeopleoftenusethe term “document”

or “page” when they really mean“resource”or “instance.” This
split, betweenthetermsusedby specificationwritersandtheterms
usedby almosteveryone else,while problematic,partially reflects
realityratherthansimpleignorance.While HTTPwouldhavebeen
far more complicatedif it had directly supported multi-resource



pages,insteadof leaving that to a higherlayer, browsersandtheir
usersultimatelycareabout thepagerendered,not its atomicparts.

HTTP’s lack of support for page-orientedoperations canaffect
usersin waysthatcomplicatetheir interactionswith theWeb. For
example, since all HTTP cachingmechanismsare definedwith
respectto resources(or instances),not pages,HTTP providesno
mechanism eitherto ensurethatall cachedelementsof a pageare
consistent,or even to detectwhenthey are inconsistent.In prin-
ciple, this could leadto corruptedpages,although in practicethe
problemseemsquite rare. It alsomeansthat when one usesthe
“Reload” button to refreshoneimageon a page,onecannotavoid
reloadingall of theimages.

More problematic, and confusing, is the interactionbetween
caching and browser “history” mechanisms(which support the
“Back” and“Forward” buttons).A historymechanism shouldlead
you to the pageview you actually saw in the past,not to a cur-
rent (andhencecache-coherent)view of thedocument. (For more
discussionof history mechanisms,seesection7.3.) But because
mostbrowsersusetheir cachesto storehistory data,onecanend
up seeingtheold HTML with new images,or vice versa.

The WebDAV extensions to HTTP[15] provide facilities for
managing collectionsof resourcesin thecontext of distributedcon-
tent authoring, but do not appearto addressthe problemof main-
tainingtherelationshipbetweenapageandits resourcesin atypical
browsingapplication.

6. HTTP EXTENSIB ILITY
TheWebspreadso widely andrapidly largely becauseits main

components(HTTP and HTML) emphasizeinteroperation. The
Web hasmanagedto evolve to support new featuresonly because
thesesamecomponentsareeasilyextended. Interoperability and
extensibility canwork at crosspurposes: too muchextensioncan
damage interoperability; too much emphasison interoperability
canfreezeout valuableextensions.

The extensionmechanismsin HTTP have beenthe subjectof
significantdiscussionandseveral falsestarts.While HTTP hasal-
wayshadonepowerful extensionmechanism(therequirementthat
implementationsmust ignore headersthat they don’t understand,
without generatingerrors),theprotocol lackssupport for complex
extensions.

The traditional HTTP extensionmechanismhas beenfor the
client to senda headerindicating its supportfor a feature,such
as response datacompression,and the server to use that feature
only upon receiptof sucha header. For example,a client could
send“Accept-Encoding: gzip, compress”,allowing the server to
use“Content-Encoding: gzip” in its response.

Early HTTP clients sent long lists of their capabilitiesin Ac-
cept* headers. This seemedwasteful, and in current practice,
browsersomit many “obvious” content-types,such as text/plain
and text/html (althoughthe HTTP specificationdoesnot include
any such default values). Server implementors,in turn, have
learnedto key their responses basedon the User-Agent header,
ratherthanthe Acceptheaders, for lack of any otherinformation.
(Or, they useJavascriptthattriesto tailor theHTML to thespecific
browser.)

Therefore,efficiency considerationsfurthercomplicatetheprob-
lem: anexpressiveextensionmechanismbecomesdisusedbecause
it coststoo much,to bereplacedby a cheapermechanism thatcan
severely limit interoperability.

Similarly, while aservercouldsendextraheadersin its responses
to indicatewhat extensionsit supports (e.g., the existing Accept-
Rangesheader),this is inefficient for a server supportinga wide
varietyof extensions.

6.1 Looking for an ExtensionMechanism
HTTP needsanextensionmechanismthatexplicitly andunam-

biguously identifiesthecapabilitiesof implementations,andthatis
efficient both in its useof bytesandits useof network roundtrips.
Several mechanismhave alreadybeenproposed;do any of them
meettheserequirements?

6.1.1 Protocol version numbers
Oneobvious approachwould be to usea protocolversionnum-

ber to indicateimplementationcapabilities.In fact, the HTTP/1.1
specificationassumesthat certaincapabilities areassociatedwith
the versionnumber. Unfortunately, many HTTP implementations
sendmeaninglessversionnumbers,eitherbecausethey werede-
ployedbeforethespecificationwasfinished,or (for someproxies)
becausethey incorrectly forward versionnumbersfrom incoming
messages[27].

Evenif wecouldrely oncorrectimplementations,theuseof pro-
tocol versionnumbersto indicatefeaturesupport doesnot match
the way by which HTTP gainsfeatures.Many of the wartsin the
specificationresultedfrom theco-evolutionof theapplicationspeo-
ple inventedto exploit HTTP, theclient andserver implementation
innovationsaddedto support thoseinventions,andtheprotocolfea-
turescreatedto rationalizethoseinnovations. TheHTTP/1.1spec-
ification[10] is a fairly arbitrarysnapshot in this evolutionary se-
quence,not anintrinsically stablepoint.

Onecould incrementthe versionnumber frequentlyenough to
capturetherateat which featuresareproposed. But this imposesa
partialorderingon capabilities(or elsea version-X systemcannot
makeany assumptionsaboutaversion-X+1 system).Suchapartial
orderingwould betoo burdensomefor extensiondesigns.

6.1.2 Explicit extension naming
HTTP/1.1 introducedan OPTIONSmethodto “requestinfor-

mation about the communicationoptions available on the re-
quest/response chain identified by the Request-URI.” There has
never beena clearspecificationof what informationOPTIONSre-
turns,how it is encoded, or how it namesoptionalfeatures.(Some
implementationssimply sendan “Allow” header, which only lists
themethodssupported, not otheroptional features.)

In fact,thecentralissuein designinga generalHTTP extension
mechanismis how to nameextensions. Oneseriesof proposalscul-
minatedin RFC2774[13],which never enteredtheIETF Standards
Track. In this model,eachextensionis namedusinga URI such
as “http://example.com/extension”, which allows eachextension-
designerto controla privatename.(This approach dependson the
stability of the organizationowning the DNS namein the URI.)
RFC2774providesadditionalmechanismsfor reservingnamesfor
messageheaders andfor allowing multiple, independently-defined
extensionsto co-exist in onemessage.In this approach, introduc-
tion of a new extensiondoesnot depend on a standardizationpro-
cess.

6.1.3 RFC numbers as extension names
Onealternative is to consider only how to addthoseextensions

createdby acentralizedstandardsbody. Althoughthissetis poten-
tially muchsmallerthancouldbesupportedby RFC2774,it is still
not adequatelysupportedby HTTP/1.1.ThetraditionalHTTP ap-
proach(senda feature-specificheader andseeif yougetsomething
relevantback)candiscover if two implementationsbothimplement
a given headername,but it cannotguarantee that they agreeon
whattheheadermeans.

JoshCohen,ScottLawrence,andI proposed[24] asimplemech-
anismto resolve this problem: the useof IETF RFC numbersas



the extensionnamespace.The IETF ensuresthat RFCsarewell-
specifiedandimmutable,anRFCnumberis relatively compact,and
theIETF appearsto beastablenamingauthority. Wealsoproposed
addinga “Compliance” headerto assertcompliance with elements
of thesenamespaces,aswell asa “Non-compliance” header for
proxiesalonga pathto indicatea lack of end-to-endsupport.

In sucha declaratory(ratherthannegotiation-based)approach,
onerisks sendinglengthyComplianceheaders, listing lots of ex-
tensionidentifiers.However, while theremight bemany registered
extensions,in practicemostimplementationswouldsupport oneof
a relatively small numberof distinct subsetsof extensions.Each
subsetwould be a sort of “profile” (a term often usedto describe
an agreed-upon setof protocolfeatures).The Complianceheader
could thereforebeusedto list subsets,usinganothercompactand
centrally-managed namespace. Or, onecould avoid centralization
by sending a hashvaluebasedon theelementsof a subset,falling
backto anegotiationmechanismto transfertheactuallist of exten-
sionsif thesubsethasnotbeenseenbefore(thisapproachwaspro-
posedby Klyne andMasinterfor abbreviationof “featuresets”[19],
althoughnot ultimatelyadopted).

6.2 Summary: ExtensionMechanisms
Fromthediscussionabove,onecancrudelydivide HTTPexten-

sionproposalsinto threecategories:
� Trial and error: sendan extension-specific headerandseeif

you getsomethingusefulback.
� Negotiate: asktheotherendwhat it supports, thenchoosethe

bestoption.
� Declare capabilities or profile: always say what extensions

you support,and let the other end decidewhetherto exploit
them.

The first (trial-and-error)approach is informal, but widely sup-
ported.Currently, HTTP hasno formal extensionmechanism; the
negotiation-basedapproaches have proved too complex for most
tastes,while many peopledislike centralizednamespaces.How-
ever, the centralized-name-spaceapproachseemssimplerto spec-
ify andunderstand.

7. OTHER ISSUES
Spaceconstraintsdo not permit comprehensive discussionof

many otherunresolved or unclearaspectsof HTTP. HereI briefly
describea few of theseissues,to show how they tie in with therest
of this paper.

7.1 Variants
A truly “World-Wide” Web mustsupport the useof many nat-

ural languagesand charactersets. One of the most prominently
proclaimedfeaturesin the first public draft of the HTTP specifi-
cation[2]wasthe“the negotiationof datarepresentation,allowing
systemsto be built independently of the developmentof new ad-
vanced representations.” One goal behindthis “content negotia-
tion” mechanismis to allow a singleURL to automaticallyserve
the samecontentin the appropriatenaturallanguagefor any user.
Contentnegotiation in the currentspecificationcanalsoapply to
other dimensions,including content-encoding or presentationis-
suessuchasdisplayscreensize.

The useof content negotiationmeansthat a given URL is not
simplyanamefor aspecificpieceof data.(Thetranslationof a text
in onelanguage to adifferentlanguageclearlyis not now, andmay
never be, an automatable one-to-onemapping; think of how hard
it is to translatepunsandotherwordplay.) Instead,HTTP defines

theterm“variant”; a givenURL might have multiple variants.The
contentnegotiationmechanismis usedto selectthebestvariantof
a URL, given the preferences of the user(client) andthe content-
provider (server).

Variantscreateimmensecomplicationsfor almostall of the is-
suesdiscussedin this paper, especiallycaching. Spacedoesnot
permit even a minimal discussionof how one might bring some
clarity to variants,andI’m not surethat anyoneknows how to do
thatyet.

7.2 Regularizing the Useof Intermediaries
Much of theInternet’s successdependson placingsophisticated

processingat endhosts,not in theinfrastructure.This “end-to-end
argument”[30] is the objectof veneration, debate,andsomecriti-
cal analysis[3],asthe useof intermediarysystemsbecomesmore
prevalent.

TheWebnot only supportsintermediaries,but in somewaysde-
pendsonthemfor its success.HTTPdirectlyspecifiesthebehavior
of proxies,especiallyfor caching,but they arealsowidely usedfor
accesscontrol,transcoding, serveravailability, andthedeployment
of new protocol features.

While the HTTP specificationtreatsproxiesasexplicit agents,
it alsoassumes(for the most part) that their role is semantically
transparent.However, many newer intermediaryfunctions(such
as transcodingto support the use of handheldclients) can radi-
cally changeforwardedcontent,afeaturethatHTTPdoesnotreally
grapplewith. At thesametime,many proxiestake transparency to
anextreme,makingthemselvesinvisible to endsystems.This can
leadto confusionwhenerrorsoccur.

HTTP needsa moreregularandcomprehensive approach to in-
termediaries.TheInternetArchitectureBoardhasissuedsomepol-
icy recommendationsin this area[18],andelsewhereI have sug-
gesteda new approachto proxy-basedtranscoding[25].

7.3 Protocol Support for User Interface
Concerns

Weliketo think thatthereis aclearboundarybetweentheHTTP
protocolandtheuserinterfaceof anHTTP implementation:user-
interfaceconcernsareoutsidethescopeof theprotocol design. In
oneway, this separationis intrinsic; someHTTP clientshave no
userinterface. But mostapplicationsof HTTP involve an interac-
tivehumanuser, andin reality, theboundary betweenuser-interface
concernsandprotocolconcernscannotbeignored.

Theexistingspecificationalreadyplacessomeconstraintsonthe
userinterface. HTTP/1.1 recommends (but doesnot require)that
useragentsdisplayWarningheaders[10] (section14.46),and re-
quires that a useragentcan be configurednever to sendCook-
ier headers[21] (section6.1). The SecureHTTP specificationre-
quiresbrowsersto “provide a visual indicationof the securityof
the transaction”[29] (section6.3.1), typically displayedasa lock
icon. However, theseconstraintsarephrasedtimidly, asif thiswere
inappropriatefor a protocolspecification.

As a result,we areagainstuckin a situationwhereservicede-
signersareforcedto rely on inferencesaboutpoorlyspecifieduser-
interfacefeatures,insteadof on explicit protocolsupport.

For example,RFC2616makesacleardelineationbetweenclient
cachesandclient history mechanisms(“back” and“forward” but-
tons)[10] (section13.13), which were discussedin section5.4.
Mostpopularbrowsersviolatethispartof thespecification,primar-
ily for implementationexpedience. However, browserimplemen-
tors have alsofacedpressureto make history entriesobey cache-
relatedHTTP directives (contrary to the specification),such as
“Cache-control: no-store”,in orderto meetcertain(possiblymis-



guided) expectationsaboutsecurity. And certainpageswarn “Do
not use
 the backbutton,” putting theonuson theuserto avoid se-
manticconfusioncausedby thehistorymechanism.

A betterapproachwould be for the HTTP protocol to provide
explicit support for any necessaryserver controlover historyfunc-
tions,ratherthanoverloadingthecache-relatedprotocolfeaturesor
burdeningusers.

8. RELATED WORK
Most work on HTTP, andon otherWebprotocols anddatafor-

mats,hasfocusedon solvingspecificproblems,usuallyin thecon-
text of standardscommittees.Academicresearchers,on the other
hand, have generallytaken the protocolasa given, not treatingit
asworthy of directstudy. However, a few peoplehave takena step
backto look at thelargerprotocoldesignissues.

Fielding and Taylor developed an idealizedmodel for interac-
tionsin theWeb[11],which is moreabstractthanthediscussionof
this paper. They point out that HTTP fails to matchtheir model,
andmentionthefailure to sufficiently distinguishbetweenvarious
typesof HTTP headers.Their modeldoesnot addressthedetailed
issuesof developing a datatype model. They write that “entity,
instance,or variant” are “less precisenames”for what they call
a “representation,” apparently ignoring the problemthat trying to
subsume thesetermsunderthe moregeneric“representation” ob-
scuresusefuldistinctions.

Eastlake haswritten on how protocoldesignerscantake either
a “protocol” or “document” point of view during the designpro-
cess[7].He impliesthatoneneedsto honor bothpointsof view. In
particular, a purely “document” view can leadto the omissionof
importantdetails.

Baker attemptsto defineanabstractmodelof how HTTP meth-
odsaffect thestateof resources[1].In hismodel,“static” resources
are containersfor a single (non-composite) immutablepiece of
data. ResourcesacceptingPUT but not POSTarecontainersfor
single,mutablepiecesof data. CertainresourcesacceptingPOST
are containersfor compositesof several data items. Using this
model,Baker proposesnew descriptionsfor HTTP methodsthat,
while consistent with the existing methodspecifications,are in-
tendedto be moreeasilyunderstood. Oneproblemwith Baker’s
model is that most “static” Web resourcesare not immutable[6],
which impliesthathis modelneedselaboration.

Theefforts listedabove, andthis paper, have beenaimedat im-
proving theexistingHTTPdesign.Severalgroupshavesuggesteda
clean-slateredesign,undernamessuchas“HTTP Next Generation
(HTTP-NG)”[14]. Noneof theseefforts have born fruit; theexist-
ing HTTP design,albeit flawed,works well enoughto discourage
revolutionarychanges.

9. FUTURE WORK
A shortpapersuchasthis onecannotincludeall of theconcep-

tual problemsafflicting HTTP now, or asit evolvesfurther. I have
no ideahow to solve many of theseproblems.HereI suggestsome
areasfor futurework.

TheimproveddatatypemodelthatI havedescribedin thispaper
hasbeendevelopedwhile working on theexisting protocol,andon
a few extensions that have received a lot of scrutiny. The model
shouldbefurthertestedonadditionalHTTPextensions(e.g.,pend-
ing work on coherentcaching[22], or the metadatamechanisms
usedin someCDNsto trackthevalidity or mutability of informa-
tion), to ensurethat it is robustenoughto support extensionsthatI
have not considered.

One impetusfor the improved modelwas to clarify how com-

pressionandbyte-rangeselectioncouldbecomposed.It would be
useful to testwhetherthe modelis helpful in enablingimplemen-
torsto understand,withouthaving to consult protocol experts,how
to composeother featuresin waysnot explicitly describedin the
HTTPspecification.

My goals in writing this paper explicitly excluded replacing
HTTP with a clean-slatedesign. However, attemptingsucha de-
sign, while preservingasmuch aspossibleof the existing flavor
of HTTP, might be an illuminating exercise.Section4.2 sketched
how one might convert HTTP to a more cleanly layereddesign.
Section5.2 sketchedhow onemight addmoreexplicit labelingto
thedataaccessmodel.Section6.1.3 showedhow acentralauthor-
ity could be a simpleway to nameextensions.A full clean-slate
designwould certainlyincludeotherchanges.

10. SUMMARY
In thispaperI haveattemptedto show theneedfor morerigorous

fundamental modelsfor HTTP, andI have sketchedin someof the
details.While it mightnotbepossibleto compatiblyresolveall the
problemswith theexisting protocol, suchan effort would provide
guidance to designersof a follow-on protocol.

I have madeseveralspecificrecommendations:
� HTTP needsa clean and consistentdata type model: By

thinking in termsof a message-generationpipelinewith well-
definedstagesandprocessing steps,wecanclarify many issues
of HTTP, especiallycaching,thehandling of partialresults,and
thecategorizationof headerfields.

� HTTP needsan explicit “instance” data type: Onecannot
constructa consistentmessage-generationpipelinewithout in-
troducing a new data type. BecauseHTTP cachesstore in-
stances(ratherthanentitiesor messages),this changegreatly
simplifiesmany protocol concepts.

� HTTP needsa clear dataaccessmodel: Weneedaframework
to discusswhat kinds of dataitemsHTTP operatesupon, and
whatoperationsit canapply.

� Resourcesand instancesshouldcarry explicit access-model
labels: Explicit labeling, ratherthan heuristic inferences,al-
lows automatedclientsandcachesto correctlydealwith muta-
bility, sideeffects,idempotence, andresponse-generationcosts.

� Createa simplenamespacefor implementationsto declare
setsof supportedextensions: Use“profiles” to limit theover-
headof supporting many extensions.

More generally, I have tried to show how careful consideration
of the existing HTTP protocol can reveal regularities, or near-
regularities,thatshouldbeexploitedto improveourunderstanding,
implementations,andextensiondesigns.

11. CONCLUSIONS
If we have a clearerideaof how to think aboutHTTP, shouldn’t

we be able to simplify the protocol? Given the goal of working
within theconstraintsimposedby theinstalledbase,we cannotac-
tually remove featuresfrom theexisting design.

Weshould,however, beableto clarify theprotocolspecification.
This might not actuallyshortenthespecification,sincetheclarifi-
cationeffort (which would be a major undertaking) might reveal
ambiguitiesthatneedadditionaltreatment.Interoperabilitysuffers
far moredamagefrom ambiguitythanfrom verbosity.

We shouldcertainlyexpectany proposalfor a future extension
designto explain eitherhow it fits into a consistentdesignmodel



for HTTP, orhow themodelcanbeconsistentlyextendedto support
theextension� .

Many in the HTTP communityhave resistedformality at this
level, eitherbecausethey think it unnecessary or becausethey ex-
pect it to be too confining. My belief is that the lack of rigor and
clarity in thespecificationstiflesinnovation.JustasCPUdesigners
arefreedto innovateattheimplementationlevel whenthey aresure
thattheinstructionsetarchitectureis rigorouslydefined,HTTPim-
plementors(andextensiondesigners)will gainfreedomif thepro-
tocol is unambiguous.
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