
Adaptive Power-Aware Cache Management for Mobile
Computing Systems

Guohong Cao
Department of Computer Science & Engineering

The Pennsylvania State University
University Park, PA 16802

gcao@cse.psu.edu

ABSTRACT
Prefetch can be used to reduce the query latency and improve the
bandwidth utilization of cache invalidation schemes. However, prefetch
consumes power. In this paper, we propose a power-aware cache
management to address this issue. Based on a novelprefetch-access
ratio concept, the proposed scheme can dynamically optimize per-
formance or power based on the available resources and perfor-
mance requirements. Simulation results show that our solution not
only improves the cache hit ratio, the throughput, and the band-
width utilization, but also reduces the query delay and the power
consumption.

Keywords
Power-aware, invalidation report, caching, mobile computing.

1. INTRODUCTION
Caching frequently accessed data items on the client side is an

effective technique to improve performance in a mobile environ-
ment. Classical cache management strategies may not be suitable
for mobile environments due to the disconnection and mobility of
the mobile clients. Barbara and Imielinski [1] proposed a cache so-
lution which is suitable for mobile environments. In this approach,
the server periodically broadcasts aninvalidation report (IR) in
which the changed data items are indicated. Rather than query-
ing the server directly regarding the validation of cached copies,
the clients can listen to these IRs over the wireless channel, and
use them to validate their local cache. The IR-based solution is at-
tractive because it can scale to any number of clients who listen to
the IR. However, the IR-based solution has some major drawbacks
such as long query latency and low bandwidth utilization. In our
previous work [3], we addressed the first problem with a UIR-based
approach. In this approach, a small fraction of the essential infor-
mation (called updated invalidation report (UIR)) related to cache
invalidation is replicated several times within an IR interval, and
hence the client can answer a query without waiting until the next
IR. However, if there is a cache miss, the client still needs to wait
for the data to be delivered. To increase the cache hit ratio and re-
duce the bandwidth consumption, clients intelligently prefetch the
data that are most likely used in the future. However, prefetch con-
sumes power. In this paper, we propose a power-aware cache man-
agement to address this issue. Based on a novelprefetch-access
ratio concept, the proposed scheme can dynamically optimize per-
formance or power based on the available resources and perfor-
mance requirements. Compared to previous schemes, our solution

not only improves the cache hit ratio, the throughput, and the band-
width utilization, but also reduces the query delay and the power
consumption.

2. POWER-AWARE CACHE MANAGEMENT

2.1 Efficiently utilize the bandwidth
To improve the cache hit ratio, clients prefetch data that may be

used in the near future. To save power, clients may only wake up
during the IR broadcasting period, and then how to prefetch data
becomes an issue. As a solution, after broadcasting the IR, the
server first broadcasts theid list of the data items whose data val-
ues will be broadcast next, and then broadcasts the data values of
the data items in theid list. Each client should listen to the IR if it
is not disconnected. At the end of the IR, a client downloads theid

list and finds out when the interested data will come and wakes up
at that time to download the data. With this approach, power can be
saved since clients stay in the doze mode most of the time; band-
width can be saved since the server may only need to broadcast the
updated data once. Since prefetching also consumes power, it is
very important to identify which data should be included in theid

list. Since the server does not maintain any information about the
clients, it is very difficult, if not impossible, for the server to iden-
tify which data is hot. To save broadcast bandwidth, the server does
not answer the client requests immediately; instead, it waits for the
next IR interval. After broadcasting the IR, the server broadcasts
theid list of the data items that have been requested during the last
IR interval. In addition, the server broadcasts the values of the data
items in theid list.

2.2 An Adaptive Prefetch Approach
Since prefetching also consumes power, we investigate the trade-

off between performance and power, and propose an adaptive scheme
to efficiently utilize the power.

Each client may have different available resources and perfor-
mance requirements, and these resources such as power may change
with time. For example, suppose the battery of a laptop lasts three
hours. If the user is able to recharge the battery within three hours,
power consumption may not be an issue, and the user may be more
concerned about the performance aspects such as the query latency.
However, if the user cannot recharge the battery within three hours
and wants to use it a little bit longer, then power consumption be-
comes a serious concern. To address this issue, the system monitors
the power level. When the power level drops below a threshold,
power consumption becomes the primary concern. If query latency
is more important than power consumption, the client should al-



0.1

1

10

100

1000

0.1 1 10 100 1000

T
he

 n
o.

 o
f 

pr
ef

et
ch

es
 p

er
 I

R
 in

te
rv

al

Mean update arrival time (seconds)

no-nonprefectch
delta = 0

delta = 20
delta = 50

delta = 100
delta = 200

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.1 1 10 100 1000

C
ac

he
 h

it
 r

at
io

Mean update arrival time (seconds)

no-nonprefetch
delta = 0

delta = 20
delta = 50

delta = 100
delta = 200
no-prefetch

Figure 1: The effects ofÆ

ways prefetch the interested data. However, when the power drops
to a threshold, the client should be cautious about prefetching.

There are two solutions to reduce the power consumption. As
a simple solution, the client can reduce its cache size. With a
smaller cache, the number of invalid cache entries reduces, and the
number of prefetches drops. Although small cache size reduces
prefetch power consumption, it may also increase the cache miss
ratio, thereby degrading performance. In a more elegant approach,
the client marks some invalid cache entries asnon-prefetchand it
will not prefetch these items. Intuitively, the client should mark
those cache entries that need more power to prefetch, but are not
accessed too often.

The adaptive prefetch approach: In order to implement the idea,
for each cached item, the client records how many times it accessed
the item and how many times it prefetched the item during a pe-
riod of time. Theprefetch-access ratio (PAR)is the number of
prefetches divided by the number of accesses. If thePAR is less
than 1, prefetching the data is useful since the prefetched data may
be accessed multiple times. When power consumption becomes an
issue, the client marks those cache items which havePAR > �

asnon-prefetch, where� > 1 is a system tuning factor. The value
of � can be dynamically changed based on the power consumption
requirements. For example, with a small�, more energy can be
saved, but the cache hit ratio may be reduced. On the other hand,
with a large�, the cache hit ratio can be improved, but at a cost of
more energy consumption. Note that when choosing the value of
�, the uplink data request cost should also be considered.

When the data update rate is high, thePAR may always be
larger than�, and clients cannot prefetch any data. Without prefetch,
the cache hit ratio may be dramatically reduced and resulting in
poor performance. Since clients may have a large probability to
access a very small amount of data, marking these data items as
pre-fetch may improve the cache hit ratio and does not consume
too much power. Based on this idea, whenPAR > �, the client
marksÆ number of cache entries which have high access rate as
prefetch.

Since the query pattern and the data update distribution may
change over time, clients should measure their access rate andPAR

periodically and refresh some of their history information. Assume
Nx

acc
is the number of access times for a cache entrydx. Assume

Nx

c acc
is the number of access times for a cache entrydx in the

current evaluation cycle. The number of access times is calculated
by

N
x

acc
= (1� �) �Nx

acc
+ � �Nc acc

where� < 1 is a factor which reduces the impact of the old ac-
cess frequency with time. Similar formula can be used to calculate
PAR.

3. PERFORMANCE EVALUATION
In order to evaluate the efficiency of various invalidation algo-

rithms, we develop a model which is similar to that employed in [2,
3]. It consists of a single server that serves multiple clients. The
database can only be updated by the server whereas the queries
are made on the client side. Figure 1 shows the effects ofdelta

on the number of prefetches and the cache hit ratio. As can be
seen, the no-prefetch scheme, which does not prefetch data, has the
lowest cache hit ratio, whereas the no-nonprefetch scheme has the
highest cache hit ratio, but the highest number of prefetches. As
delta changes, the number of data items to be marked as prefetch
changes, and resulting in a tradeoff between cache hit ratio (delay)
and the number of prefetches (power).

4. CONCLUSIONS
Based on a novelprefetch-access ratioconcept, we presented an

adaptive power-aware cache management scheme for mobile envi-
ronments. Simulation results verified that our scheme can keep the
advantage of prefetch with low power consumption.

5. REFERENCES

[1] D. Barbara and T. Imielinski, “Sleepers and Workaholics: Caching
Strategies for Mobile Environments,”ACM SIGMOD, pp. 1–12, 1994.

[2] G. Cao, “On Improving the Performance of Cache Invalidation in
Mobile Environments,”ACM/Baltzer Mobile Networks and
Application (MONET), to appear.

[3] G. Cao, “A Scalable Low-Latency Cache Invalidation Strategy for
Mobile Environments,”IEEE Transactions on Knowledge and Data
Engineering, to appear (A preliminary version appeared in ACM
MobiCom’00).


