AutoDoc: A Search and Navigation Tool for Web-Based
Program Documentation

Richard Wheeldon, Mark Levene and Nadav Zin
Department of Computer Science
Birkbeck College, University of London
London WC1E 7HX, U.K.
{richard,mark,nadav}@dcs.bbk.ac.uk

1 Abstract

We present a search and navigation tool for use with automatically generated program documen-
tation, which builds trails in the information space. Three user interfaces are suggested, which
show the web pages in context, and hence better explain the structure of the code.

2 Introduction

The documentation process is an important part of any software development. Extensive doc-
umentation of any program is essential if it is to be maintainted and enhanced. To meet this
demand, many companies and organizations are using tools capable of producing Hypertext doc-
umentation, typically in HTML format suitable for placing on a project web site or company
intranet.

Such documentation is typically generated from special markup in the code. One of the best
known examples of such a system is the Javadoc [2] tool shipped with all versions of the Java
Development Kit. Exploration of the Google index reveals over 800 examples of documentation
sets created with Javadoc with over 200000 HTML pages between them. Given that so many such
archives are firewalled or restricted from robots, the true number is most likely to be much higher.

Similar systems also exist for other languages, with Object Oriented languages such as C++,
C# and Java gaining particular benefit from the mapping between classes and web pages. How-
ever, none of the tools for creating such documentation provide search facilities or automated
navigational support for the user. We have devloped a new search and navigation tool, which we
call AutoDoc, to address these problems. An example of AutoDoc using the Javadocs for Sun’s
Java Development Kit v1.4 is available at www.navigationzone.net

3 The Search and Navigation Challenge

Visitors to a Web Site often “get lost in hyperspace” when they lose the context in which they
are browsing, and are unsure how to proceed in terms of satisfying their original goal [5]. The
unresolved problem in Web site usability, of assisting users in finding their way, is termed the
navigation problem [3]. In order to help tackle this problem, we developed a navigation system
which builds information trails (or navigation paths) in response to a user’s query. The basic
architecture of this system and the first user interface, which presents the results in a tree-like

structure that users can interact with, was discussed in [4]. The trails presented in the tree
structure were generated from the link structure of the hypertext, but could sometimes be confused
with a hierarchy or directory structure. This is a problem we have attempted to address with our
new TrailSearch and GraphSearch interfaces.

A similar problem also exists in automatically-generated corpuses such as program documen-
tation. Program documentation, like other online support systems, provides the opportunity for
enhanced productivity. However, users often take longer finding the required information in such
systems than they would in conventianal paper-based documentation [6].

Such corpuses are often highly interlinked. Links are created in JavaDocs due to package
structure, class inheritance and type references. This is of great benefit if the information can
be harvested correctly, as a link exists in most cases where the relationship between the classes
suggests one should. Hence, a greater number of potential trails also exist. Filtering this increased
density of link information provides the challenge. We achieve this by combining our Best Trail
algorithm with a set of heuristics customized for on-line documentation.

Interesting questions may be asked of such corpuses. Should links based on the usage of objects
in code be treated in the same way as those based upon human judgements? Are these created
with the same distributions of preferential linking as found in web sites? How does this affect the
performance of metrics which assume that links denote quality or authority, such as Kleinberg’s
Hubs & Authorities (HITS) or Brin and Page’s PageRank?

4 The AutoDoc Solution

The AutoDoc tool is based on the same technology as our website navigation tool, SiteNavigator.
The trail-finding and information retrieval subsystems remain the same, as do the major compo-
nents of the user interfaces. AutoDoc, like SiteNavigator, provides full-text indexing of the corpus.
Our trail finding algorithm uses probabilistic expansion of a search tree to select candidate trails
quickly, with the results returned in an XML format that can be adapted using XSLT StyleSheets
to any format required. Three user interfaces are provided, each with their own advantages and
restrictions.

4.1 Flat TrailSearch User Interface

The flat TrailSearch user interface appears very similar to that of a traditional search engine. Each
trail appears sequentially and users can follow any link they choose. Such an interface is the best
choice for introducing new users who are already familiar with search engines to the ideas of a
returned trail. However, it is still difficult to see the context of a node or the structure of a site in
such a display, nor is there adequate support during the navigation session.

4.2 Improved NavSearch User Interface

The NavSearch user interface appears at first glance to be identical to that presented in [4]. The
two main elements are a navigation tool bar comprising of a sequence of URLs (the “best trail”)
and a navigation tree window with the rest of the trails. Improvements provide faster responses
to queries and better filtering of results to remove duplicate entries and redundant information.

File Edit View Favorites Tools Help File Edit View Favorites Tools Help

Gk v o+ © [£ @searen Gravores sy | D)

Sk v S @ [4] @search Gravortes BHistory | [T

agaress @) s A @oo [Juns Address @1 it o navigationzone ey A oo ||unks 7]
P Nay Search | Trail Search | Standard Search | Help NesigarZone- @Il — T
NavigationZone ——— -) @ NavigationZone,., Y —
Autodor ed) for JD s in 10 {hL Tradt St > s > T
Trail >SQLInput (Java 2 Platform SE v1.4,0) > Array (Java 2 Platform SE v1.4.0) > Types (Java 2 Platform SE v1.4.0)

s SQLINpUL (Java 2 Platforn SE v14.1 =
g reaSiing) Reads e next alnbuts i the stea an reurns 1.3 a Sing in the Java prograning overview [ETEIIY Class Use Tree Deprecated Index Help Java™ 2 Platform.
language...If the datum is an SQL structured or distinct type, it determines the SQL type of the datum at the e— —_— — Sed. Ed. v14.0
ead of the stream, F— PREV PACKAGE NEXT PACKAGE ERAMES HO FRAMES. A
Fitpd193 61,28, svassarsQLInputhtnl 5] =

—Array (Java 2 Platorn SE v140) Tpes A
By default, an Array value s a ransaction-duration reference to an SQL ARRAY value... String SOLOwpE Package java.sql
GUBsTypeNane Rleves he SQL iy riane fhe st 1 e aay desinaed by s Aray Srtenert
abject [oms— .) . .

i 7193.61.23. 88/ avadocs/apifavalsqliAray hinl s Provides the API for accessing and processing data stored in a data source (usually a

e Tynes sy 2 Platom SE 140 Hgunsamer relational database) using the Java™ programming language .

Field Summary staic nt ARRAY The constant in the Java programming language, sometines referred o as Tyges
atype code, inat denifes the generic SQL type ARRAY. static int BIGINT The constant in the Java. N Seer
Programming language, somelimes referred ¥4 :
193,61 23.53ava avalsalTypes htni e Description
ResiSer
Trail >SGLInput (Java 2 Platform SE v1.4.0) > java.sql(Java 2 Platform SE v1.4.0)> Types (Java 2 Platform SE v1.4.0 T
i

e ottt o et Interface Summary
Sting readting(Reads the next atiibute in the stream and retums it 35 a Strng in the Java programming Py -
engiage. e datm 12 an SOL sined o ssimet oo, & etmings i SOL ype of e cebum ot e ﬁﬁn:bs;wmnm Arre The mapping in the Java programming language for the SQL
head of the strean. i arrey type ARRAY.

193,61 23.83ava avalsaliSQLInput il - — -
S The representation (mapping) in the Java™ programming
== java.sql(Java 2 Platform SE v14.0) [re— Blob 1 £ an SQL]
Conection A connection (session) wih a specifc database... What the java.sq Package Contains The T anguage of an SQL BLOB value.
javasql package contains API for i following: Making a connection wih 3 database via the -
B aranages sy Ortverstanagrr ass -i;l C The interface used to execute SQL stored pr
153,61 28, 83javadocs/apijavalsapackage-summary il . P ;
" ; packag Y o b The mapping in the Java™ programming language for the SQL
L - CLOB type.
Field Summary static int ARRAY The constant in the Java programming language, sometimes referred to as. Crmestion 23
atype code, that identifies the generic SQL type ARRAY. stafic int BIGINT The constant in the Java Steanet C A connection (session) with a specific database.
programming language, somstines refered s
hitp://193.61.29 ¢ ava/sql/Types.html Statemert: D Data |Com ive information about the database as a whole.
Trail >java.sql(Java 2 Platform SE v1.4.0) > CallableStatement (Java 2 Platform SE v1.4.0)> (Java 2 Platform SE s Driver The interface that every driver class must implement.
¥1.4.0) > Types (Java 2 Platform SE v1.4.0) 7 - ; ;
[— An object that can be used to get information about the types =l
o a3 sql(dava 2 Plafom SE v14.0) i s
Cannection A connection (session) with a specific database...What the java.sal Package Contains The g]

E [[[® mtemet zone 1G]

[[[# mtemet zone

(a) TrailSearch (b) NavSearch

File Edi Vew Favories Tools Help |

Soack v =S+ @ [Y| Disearch FFavorites HBrisory | B &

Address @] nttg//nzene/~richard/graphuisal itml A Pee HLmks »]

Interface SQLInput

Interface Array Interface SQLData

Package java.sal

interface SQLOutpU

Uses of Class java.sql SQLException
Interface Ref
nterface CallableStatement Interface PreparedStatement

Class Types Interface ResultSet

&) [[% Local intianet z0ne
=

(c¢) GraphSearch

Figure 1: Three user interfaces for AutoDoc, showing results for the query “sql”. The results show
the classes of JDBC (Java’s software for connecting to SQL databases). By examining the links

between pages on the trails, we can see the connections between the classes.

4.3 Clickable GraphSearch User Interface

We have developed a prototype interface, using the GraphViz program [1] which displays the
results in the form of a graph, where each trail is indicated by a different colour. The trail set
output is simply piped to the clickable image map generator.

AutoDoc allows increased productivity while programming, being quicker and more up-to-
date than using a book or manually navigating the on-line documentation. It is thus ideal for
experienced users who want answers quickly, as well as a providing a smooth introduction to the
language for novice programmers. It also helps to expand developer’s knowledge by providing con-
textual information such as relevant classes in the hierarchy, implemented interfaces and external
specifications, giving pedagogic value as a teaching tool.

5 Future Work

Following the release of AutoDoc for Java documentation, we are currently extending the coverage
for C++, C# and other languages. We intend to further develop the GraphSearch user interface
to production quality, with pop-up windows containing useful information similar to those in the
NavSearch interface, including document summaries and metadata. Finally, we intend to allow
personalization so that programmers working on a particular field have query results tailored to
their particular needs.

References

[1] Emden R. Gansner, Eleftherios Koutsofios, Stephen C. North, and Kiem-Phong Vo. A tech-
nique for drawing directed graphs. IEEE Trans. Software Engineering 19, pages 214-230,
1993.

[2] Sun Microsystems Inc. Javadoc tool home page, 2001. http://java.sun.com/j2se/javadoc/.

[3] M. Levene and G. Loizou. Web interaction and the navigation problem in hypertext. In
A. Kent, J.G. Williams, and C.M. Hall, editors, Encyclopedia of Microcomputers. Marcel
Dekker, New York, NY, 2002. To appear.

[4] M. Levene and R. Wheeldon. A Web site navigation engine. In Poster Proceedings of Inter-
national World Wide Web Conference, Hong Kong, 2001.

[5] J. Nielsen. Designing Web Usability: The Practice of Simplicity. New Riders Publishing,
Indianapolis, Indiana, 2000.

[6] Martin D. Tomasi and Brad Mehlenbacher. Re-engineering online documentation: Designing
examples-based online support systems. Technical Communication, 46, pages 55—66, 1999.

