
A Multiple-Bidding Support Framework
for Bidding and Browsing Information

Hiromitsu Hattori, Ryota Yamada, Tadachika Ozono and Toramatsu Shintani
Department of Intelligence and Computer Science

Nagoya Institute of Technology
Gokiso-cho, Showa-ku, Nagoya, Aichi, 466-8555 Japan.

{hatto,ryota,ozono,tora}@ics.nitech.ac.jp

ABSTRACT
Because of the increasing sophistication of Internet auctions, a user can participate in many different
auctions held around the world, each of which offers a wide variety of items. In this paper, we present
multiple-bidding support framework based on multiagent system, which can support bidding and browsing
information. To extract information on items from real-life Internet auction sites, we implement a Web
wrapper component which can be connected with a template generator. In this paper, we present a process
of generating a template.

Keywords
Multiagent System, Bidding Support Agents, and Browsing Support

1 Introduction
Increasingly, there has been a growing interest in Internet auctions as a means of electronic commerce. Be-
cause of the increasing sophistication of Internet auctions, a user can participate in many different auctions
held around the world, each of which offers a wide variety of items. However, there are two difficulties
with bidding at multiple auctions. One is determining bidding strategies for winning the items. It is diffi-
cult for common users to determine a bidding price depending on the progress of multiple auctions. The
other is collecting information on the many items. To compare the price of items on different auction sites,
users must access each site, search for desired items, and get their prices. To overcome these difficulties,
we have constructed a multiple bidding support framework that consists ofMultiBidder andMultiHammer.
MultiBidder is an extension of BiddingBot [2] that enables bids to be made on any combinations of items.
In this paper, we focus on the MultiHammer, a system which can support extracting information on items
from real-life Internet auction sites.

In MultiHammer, multiple agents can extract information on items simultaneously and present inte-
grated information. Users can accessMultiHammer using an appropriate interface for their browsing envi-
ronment, and then they can browse many information on items efficiently. Here, because of the difference
in the description format of HTML document, each agent behaves as a Web wrapper [4]. To extract infor-
mation, agents need data on the document structures. To determine the meanings of extracted information,
agents need data on the semantics of the information. We use these data as a template for extracting infor-
mation. However, it is difficult and time-consuming for users to develop this template because they must
analyze the description formats of the HTML documents in detail. To make it easier for users, we have
developed a template generator (the basic idea is proposed in [3]). Using our template generator, users can
semi-automatically generate a template.

2 Multiple-Bidding Support Framework

Figure 1: Multiple Bidding Support Framework

Figure 1 shows our multiple bidding support framework, which consists ofMultiBidder andMultiHam-
mer. In this figure, we emphasize an architecture of MultiHammer. This framework has been developed
using Java language and MiLog (A Logic-based Intelligent Agent Framework) [1] which enables us to
develop an intelligent web-agent easily.

MultiHammer consists of three types of agents, i.e., auction agents, data storing agents, and informa-
tion collecting agents. The information collecting agents extract information from various real-life Internet
auction sites. Because these agents are implemented as mobile agents, each can work at a different host
for efficient information extraction. The data storing agent stores the collected information in a database
using a SQL. The auction agent provides auction services using the stored information. Users can access
the auction agent via web browser. The auction agent provides three different types of interfaces, i.e.,
“Default View”, “List View”, and “Simple View.” Using the default view, users can browse many infor-
mation efficiently, and there are enough links to other information sources (e.g., the web page representing
detailed information on item). The list view presents information on items as a list form. Users can browse
information roughly using this interface. Since there is no large data, the simple view is suitable for ac-
cessing from PDA (e.g., Palm Pilot). Furthermore, users can browse many information smoothly because
the information collecting agents extract information in parallel with the browsing information.

3 The Process of Information Extraction

Figure 2 shows an outline of the process for a template generation. The process consists of following four
steps.

(i) Extract two HTML documents on two different items from the same auction site and convert them
into tree structures. To generate a template, at least two HTML documents described based on the
same description format must be input. To convert each document into a tree structure, each HTML
tag and character string is regarded as a node. In the following steps, we represent the two input
documents as X and Y . The tree structures ofX and Y are represented as P and Q, respectively.

Figure 2: Process of the Template Generation

(ii) Compare P andQ, and obtain common description patternR. In P andQ, we trace and compare the
nodes from the root-node to each leaf node according to a depth-first search algorithm. Concretely,
we compare pi and qi, which are elements of P andQ, to obtain ri, an element ofR. If pi = qi, then
ri = pi. If pi �= qi, then ri = $DIFF, which means that nodes pi and qi are characteristic information.

(iii) Extract information by matching common description patternR to tree structure P . If r i = $DIFF (in
Figure 2, we represent such nodes as “?a” and “?b”), we extract p i and add it to list SR. SR is the
list of extracted information, so it represents the characteristic information of documentX .

(iv) Determine the meaning of the extracted information. In this step, we determine the meaning of each
extracted information si ∈ SR. If si is required information, we determine meaning l i by referring
to P , and add li to list LR. On the other hand, if si is not required, li is “USELESS” and is added to
LR. As a result, LR is the list of the meanings of SR. For example, when the extracted information
list SR = [’PalmPilot’,’$42.00’,’2days,16hours’] is extracted, we would determine the meanings L R

= [’Item Name’,’Current Price’,’Time Left’].

Although we must determine in step (iv) the meaning of the information, the template can be generated
without analyzing the description format in detail.

4 Conclusion

In this paper, we present multiple-bidding support framework based on multiagent system, which can
support bidding and browsing information. To extract information, we implement a template generator for
a Web wrapper in our framework. We present the process of the template generation.

References

[1] Fukuta, N., Ito, T., and Shintani, T., : MiLog:A Mobile Agent Framework for Implementing Intelli-
gent Information Agents with Logic Programming, In Proceedings of the First Pacific Rim Interna-
tional Workshop on Intelligent Information Agents (PRIIA2000), pp.113–123, 2000.

[2] Ito, T., Fukuta, N., Shintani, T. and Sycara, K., BiddingBot: AMultiagent Support System for Cooper-
ative Bidding in Multiple Auctions, In Proceedings of the 4th International Conference on Multiagent
Systems (ICMAS-00), pp.399–400, 2000.

[3] Yamada, R., Hattori, H., Ozono, T. and Shintani, T., “MultiHammer: A Virtual Auction System
based on Information Agents,” In Proceedings of the Pacific Asian Conference on Intelligent Systems
(PAIS-2001), pp.73–77, 2001.

[4] Wells, D., “Wrappers.,” http://www.objs.com/survey/wrap.htm, 1996.

