Enhancing Reuse via Inheritance in XML

Giovanni A. Modica
Department of Computer Science
Mississippi State University

gmodica@cs.msstate.edu

ABSTRACT

While the idea of extending XML to include object oriented
features has been gaining popularity in general, the poten-
tial of inheritance in document design and ontology manage-
ment has not been well recognized in contemporary research.
In this paper we demonstrate that XML with dynamic in-
heritance aids better document designs and decreased man-
agement overheads and support increased autonomy. We
present an object oriented extension to the language of XML
to include dynamic inheritance and describe a middle layer
that implements our system.

1. INTRODUCTION

The reliance on XML as the defacto standard for data rep-
resentation and electronic data interchange has motivated
both academic research endeavors and industrial develop-
ments. These capabilities have even been exploited in areas
such as ontologies and phyloinformatics in addition to their
use in document databases. XML has also played major
roles in creating new languages. Its popularity has led to an
increasing number of standards that have been created us-
ing XML as the meta language specification. While the rep-
resentation and electronic interchange capabilities of XML
have been used and investigated quite well, the “re-use” as-
pect of XML remains rather neglected. Traditionally, inher-
itance has been the key to re-use and express specificity in
specialization/generalization hierarchies. While there have
been some efforts in incorporating the so called object ori-
ented features in XML, nothing substantial has been re-
ported in XML standards.

In this paper, we propose an extended XML, called the
XML™ to include a subset of object-oriented (OO) features
such as dynamic inheritance, encapsulation, and methods.
Our contributions parallel other existing extensions to XML
such as SOX [3] but as opposed to SOX, we extend the XML
data model itself while extensions such as SOX are orthogo-
nal to XML. By that we mean that these extensions exploit
object oriented concepts for schema validation only but fail
to extend to document levels. As a consequence, they have
little to do with document design and structuring. Our ex-
tensions will allow re-using existing documents in other re-
mote documents by treating them as class templates. In
this approach, documents will inherit features from other
documents autonomously and without intrusion.

2. RELATED RESEARCH

Some recent research have addressed the issue of object-
orientation in XML documents in the form of proposals and
notes to the W3 Consortium. We will discuss only two such
major proposals: XML Schema [4] and SOX [3] for the
sake of brevity. We have adapted some of these concepts

Copyright is held by theauthor/evner(s).
WWW2002, May 7-11,2002,Honolulu, Hawaii, USA.
ACM 1-58113-449-5/02/0005.

Hasan M. Jamil
Department of Computer Science
Mississippi State University

jamil@cs.msstate.edu

in XML™ with substantial modifications that strengthens
the concepts in XML Schema and SOX.

XML Schema [4] is an approved recommendation from
the W3 Consortium. Designed to overcome the limitations
of DTDs, schemas are used to define the structure, con-
tents and semantics of XML documents. XML Schema is
divided in two parts: XML Schema Structure to specify
the structure and constraints of XML documents, and XML
Schema Datatypes used to represent and validate complex
data types. While XML Schema features some OO capabili-
ties it cannot be regarded as fully object-oriented as it lacks
many essential features including methods, polymorphism,
encapsulation, etc.

SOX, Schema for Object-Oriented XML [3], is a meta-
grammar which extends the XML DTDs by supporting OO
capabilities as follows: (i) data types, (ii) inheritance, (iii)
namespaces, (iv) polymorphism, (v) embedded documenta-
tion and (vi) distributed schema management. Although
SOX provides a great deal of Object-Oriented capabilities
for XML documents, these capabilities are defined from the
point of view of XML elements, and not from the point of
view of XML documents as a whole. This is where XML
comes to our aid and introduces a new set of features that
enrich the SOX language for better document design.

3. XML+ OVERVIEW

In this section, we present the XML1" language specifica-
tion. The XML™™ specification describes XML documents
to build XML** documents, and we use the same XML
language to build an extension to it. XML*" documents
are described based on an XML DTD or Schema which con-
strains the language syntax and the semantics of XML*T

Classes: object classes are declared using the element
tag. XML™T object classes can contain attributes (using
the attribute tag), simple text or XML fragments (using
the elementContent tag), or subclasses which definition is
nested within the parent class.

Inheritance: Inheritance is supported by allowing ob-
ject classes to extend other classes. The element tag uses
an optional extends attribute which is used to specify the
object class for which it inherits the contents. The inher-
itance is based on template definitions (which are XML*™
documents) by specifying the template prefix and the super-
class name in the template. Superclasses in templates must
have a unique name in the template scope, so they can be
identified in the subclass document.

It is important to note here that dynamic inheritance is
in the heart of our extension to current XML standards.
As opposed to static inheritance, a run decision is needed
to resolve conflicts, and to inherit properties and methods.
Such an approach consequently supports currency, increased
autonomy of class design and decreased management over-
head, features that are considered essential for distributed
XML documents as we highlight in this paper.

Support for methods: XML™™ elements can support
the use of methods in their declarations. The implementa-
tion of the method must be externally defined using a pro-

XML++ Documents

Parsing

Datatypes
HML++ Inheritance
Engine Encapsulation

Polymarphism

Clients

HML++
Instruction

m

g & £
Web Server :f,:jE‘

Figure 1: System Framework.

gramming language supported by the XML™* engine. Cur-
rently, the only programming language supported is the Java
programming language, however, different implementations
of the engine can add support for other common languages
like C++, Perl, etc. XML™T engines can be extended us-
ing language plug-ins to support different programming lan-
guages for method execution. Plug-ins must support some
sort of Introspection, as defined for the Java language [7].
By using introspection, the executioner module is able to
query at runtime for methods interfaces defined inside the
class library.

Methods can use two types of parameters: input param-
eters and return parameters, which are used to specify re-
turn values for functions. Parameters are identified by a
name and a value. At method invocation, all the input pa-
rameters must define either a value or an XPath [1] expres-
sion for the attribute value. The use of XPath expressions
as parameter values is very useful for dynamic content cre-
ation. During declaration time, parameters are required to
be listed in the same order as defined in the method def-
inition, in other words, parameter specification is position
dependent. On the other hand, during method invocation
the use of parameter is position independent, meaning that
method parameters can be listed in any order as long as the
name of the parameter is used to specify its value.

4. XML++ ENGINE

We now present a few highlights of XML™+ middle-tier
engine, its architecture and design. Our implementation
follows the multi-tiered MVC (Model-View-Controller) pro-
gramming model for web applications development advo-
cated in [6]. Although the XML engine is implemented
using Java Enterprise Edition (J2EE) [2] platform specifi-
cations, its design and implementation can be applied to
similar platforms, like for example the Microsoft .NET ar-
chitecture. The framework, depicted in figure 1, shows a
typical three-tier implementation of a web application. The
engine is implemented in the middle-tier as an extension to
the web server, which will be configured to forward requests
for .xml and .xpp documents containing XML™* instruc-
tions to the engine, which after the appropriate parsing and
loading of the XML™™ document templates, will solve all
the Object-Oriented instructions of document requested.

The engine was developed using the Java programming
language due to its Object-Oriented capabilities and sup-
port for introspection [7]. Object-Oriented concepts imple-
mented in XML are based in this language. All the dif-
ferent components of the engine are developed using Java
Servlets and JavaServer Pages in a J2EE application. Each
Object-Oriented feature (i.e. data types, inheritance, etc.)
is handled by a different module. The XML parser is re-
spomnsible of loading the appropriate module depending on
the type of Object-Oriented instruction being parsed. Us-
ing this modular approach allows for the implementation

of new Object-Oriented features in future versions of the
engine, without compromising existing ones. The XML**
servlet is the controller for the engine. It is registered to
process every request with an .xml or .xpp files.

Before the file is delivered to the client response object,
the requested file is retrieved from the engine web context
and passed to the parser. If the file defines templates, each
template is treated as a new request. Once all the templates
are resolved and parsed, the requested XMLTT document is
returned to the client. If an error occurs (like a parsing error)
the application forwards the control to a predefined error
page, which is responsible for showing an appropriate error
message to the client. Templates can be resolved either in
the engine context (local to the web server where the engine
is installed) or to an external context through the Internet
(e.g. templates contained in other XML*T engines). In
order to parse XML1" documents, JDOM and Xerces [5, 6]
are used.

5. CONCLUSION

In this paper, we presented the idea of structured docu-
ment design in an autonomous world using the concept of
dynamic inheritance. To this end we have proposed several
object-oriented extensions to XML. We have presented some
of the XML™* specifications to handle object definitions,
inheritance, support of methods, and encapsulation. We
presented the specification DTD, against which all XML**
document should be validated. An overview of the imple-
mentation details for the XML'* engine, as well as a gen-
eral framework for the design of the engine, has also been
introduced.

Our future work is geared towards the implementation
of additional features (encapsulation, polymorphism, etc.)
for the XML™T specification and for the enhancement of
the XML** middle-tier engine. An extended version of this
paper with additional details, including illustrative examples
and implementation, may be found in the authors’ home
page at www.cs.msstate.edu/~gmodica.

6. REFERENCES

[1] A. Berglund, S. Boag, D. Chamberlin, M. F. Fernandez,
M. Kay, J. Robie, and J. Simon. Xml path language
(xpath) 2.0. http://www.w3.org/TR/xpath20/,
December 2001. W3C Working Draft 20.

[2] S. Bodoff, D. Green, E. Jendrock, M. Pawlan, and
B. Steams. The j2ee tutorial. Technical report, Sun
Microsystems, 2001.

[3] A. Davidson, M. Fuchs, M. Hedin, M. Jain,

J. Koistinen, C. Lloyd, M. Maloney, and

K. Schwarzhof. Schema for object-oriented xml 2.0.
http://www.w3.0rg/1999/07/NOTE-SOX-19990730,
July 1999. W3C Note 30.

[4] D. C. Fallside. Xml schema part 0: Primer.
http://www.w3.org/ TR /xmlschema-0, May 2001. W3C
Recommendation.

[5] J. Hunter and B. McLaughlin. Jdom.
http://www.jdom.org, January 2002.

[6] N. Kassem and the Enterprise Team. Designing
enterprise applications with java 2 platform, enterprise
edition. Technical report, Sun Microsystems, October
2001. Version 1.0.1.

[7] P. Naughton and H. Schildt. The Complete Java
Reference: Java 2. Osborne/McGraw-Hill, Berkeley,
California, 3rd. edition, 1999.

