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Abstract

PageRank is a topological measure of the authority of Web pages which is adopted by
Google search engine to sort all documents matching a given query. In this paper, we
provide a circuital analysis which allows us to understand how the connectivity of the Web
affects PageRank. Based on the given results, we formulate some rules which turn out to
be very useful to construct pages with high PageRank. Finally, we prove that PageRank
exhibits a nice robustness property, in the sense that communities with a small authority
cannot change significantly the PageRank of other communities.
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1 Introduction

Google search engine combines the relevance of the document content with PageRank [1], which is a
measure of the authority of a page simply based on the Web connectivity. The ideas behind PageRank
can be traced back to the notion of citation in scientific literature. In particular, the authority of a
page p depends on the number of incoming hyperlinks (number of citations) and on the authority of
the page ¢ which cites p by a forward link. Moreover, selective citations from g to p provide more
contribution to the score of p than spread citations. In [1], PageRank is formally defined by

rp=d Y z—z+(1—d), (1)
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where d € (0,1) is a dumping factor, hq is the number of hyperlinks outcoming from ¢, and pa[p] is the
set of pages linked to p. Eq. (1) is slightly different in [2], but the corresponding versions of PageRank
are tightly related [3]. The PageRank algorithm evaluates eq. (1) using the Jacobi algorithm to solve
linear systems [2, 3].

In this paper, we study how the connectivity of the Web affects the distribution of PageRank. Our
goal is not to provide a direct method to acquire visibility on Google. In fact, Google’s scoring system
is a complex mechanism using a query relevance measure and many heuristics along with PageRank.
On the other hand, our analysis of PageRank will allow us to disclose interesting properties of the
method and to provide the basis for extensions and improvements.



2 Basic Results

In order to carry out our analysis, let us define the concept of community and the associated notion
of energy. A community G; = (I, W7;) is a subgraph of the Web which is defined by a set of pages I
and by all the hyperlinks W; between the pages in I. The energy E; of G is the sum Ej = Z z; of
the PageRanks of all its pages. A community is connected to the rest of the Web by a set of zienlternal
pages out(I) that point to other communities and by a set of external pages in(I) that point to G;. In
our analysis, an important role is also played by the set sink(I), which collects the pages that do not
contain hyperlinks (e.g. full text documents). Finally, a community isolated from the rest of the Web
is an island. Due to space limitations, the proofs of the theoretical results shown in the following are
collected in [3].

2.1 Communities and their interactions

Intuitively, a community can be any set of pages on a given topic, the set of pages of a domain or
a Web site. The energy is a measure of the authority of the community. A detailed analysis points
out that the energy is due to the interaction among communities established by the hyperlinks. The
theory that describes the energy flow through the communities resembles theory of digital circuits.

The following theorem shows that energy F; depends on four components.
Theorem 2.1 The energy Er of a community G1 satisfies

E; =|I|+ E" — E§* — B, (2)

Here, |I| denotes the number of pages in G; and represents the default energy assigned to the com-
munity. The component Ei" is the energy that comes from the other communities pointing to G;.
The presence of Ei" in eq. (2) is coherent with the fact that communities with many references have
a high authority. The term E?“! is the energy that the community spread to the Web. In fact, the
presence of hyperlinks from G to outside G leads to decrease its energy. Finally, also sinks yields a
loss of energy, which can be calculated by E§™*. More precisely, it can be proved [3] that
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where f; is the fraction of the hyperlinks of page ¢ that point to pages in G; w.r.t. the total number
of hyperlinks outgoing from .

Notice that eq. (4) shows that the loss of energy due to each page i € out(I) depends also on f;. In
particular, it turns out that in order to minimize E¢“!, the external hyperlinks (those pointing to out
of Gr) should be in pages with a small PageRank and that have many internal hyperlinks. A similar
reasoning works also for sinks. The above discussion provides the following guidelines for the design

of Web communities with a high energy.

1. The same content divided into many small pages yields a higher score than if it is concentrated

into a single large page.
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Figure 1: Two islands with maximum PageRank and a regular graph.

2. Sinks should be avoided or carefully limited.
3. Ezternal hyperlinks must be limited.

4. External hyperlinks should belong to pages with many internal hyperlinks and/or with small
PageRank.

5. Pages that point to sinks should have a small score and/or many internal hyperlinks.

2.2 PageRank and degree of regularity

An interesting question related to the above discussion, but not answered by Theorem 2.1, is the
following one: How can the energy be concentrated into a single page? Said another words, which
is the island that is constituted of exactly N documents and contains the page with the largest
PageRank? In fact, it is reasonable that a Web designer wants to concentrate PageRank into one
or few important pages (e.g. homepages), instead of spreading the energy over all the documents.
Formally, the answer to this question is different according whether self hyperlinks were admitted or
not. According to [3], Fig. 2.2(a) and Fig. 2.2(b) show the two islands with the largest PageRanks.

Moreover, let us consider a regular graph (of degree k), i.e. a graph where each node has exactly k
incoming and k outgoing hyperlinks (see Fig. 2.2(c)). If a community is an island and its connectivity
is represented by a regular graph, then it is easy to verify that all the PageRanks are 1. On the other
hand, notice that the island of Fig. 2.2(a) gets the “maximal irregularity”: the difference between
the hyperlinks received by page 1 and the other pages is maximal. Thus, practically speaking, the
irregularity of the graph can be a trick by which a Web designer boosts the PageRank of certain pages.

2.3 PageRank is robust

Even if an appropriate organization of a community can avoid energy loss, however, small communities
with few references cannot have pages with large scores. Such a claim is straightforwardly confirmed
by Theorem 2.1, which proves that
E; < |I| + E™. (6)
Moreover, also the effect that a community can produce onto the rest of the Web is bounded. In fact,
the following theorem describes what happens when a community alters its pages.
Theorem 2.2 Let C be a set of pages whose content changes in time. Then,
2d
D et +1) —2p(t)] < 7 Ec (), (7)
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where W denotes the whole Web.

Theorem 2.2 actually extends a similar result in [4]. It points out that the change in PageRank is
proportional to the score of the modified pages. Thus, global PageRank can change linearly at most (by
a factor 2d/(1—d)) w.r.t. the energy of the community that contains the altered pages. Finally, we can
conclude that PageRank is robust, since non—authoritative communities cannot influence significantly
the global PageRank.
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