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1. INTRODUCTION

This papersummarize®ur mechanisnfor efficiently exe-
cuting a proximity searchin nearlineartime for semistruc-
tureddatabasef moderatesize,e.g.,hundred®f thousands
of XML elements. This includesa methodfor encoding
graphs,andafamily of encodingschemesor representing
thisinformationin a compressedpace.Readersnay refer
to [1] for detaileddescriptionandapplications.In particu-
lar, theencodingschemesrrespecificallydesignedotonly
to be assmallaspossible but to facilitatethe direct calcu-
lation of proximity.

Informally, we arelooking for all F' nearN, where F’
and N eachrepresent setof nodes.lt is importantto re-
alisethatF and N maybespecifiedby someinexactcriteria
(for example,find all elementscontaining’ticket” nearall
elementscontaining”price”), and so may not be disjoint.
We referto F' asthe Find Set (i.e. whatwe wantto find),
and N the Near et (i.e. whatit is near). The problemcan
now formally be statedas follows: we wish to return all
elementsof the Find Set, ranked by their proximity to the
nearest elemenif the Near Set.

When consideringsolutionsto this problem,thereare
two fundamentabhpproachesOn onehand,we could pre-
computeall pairwiseshortestlistancesandthenlook these
up asrequired. This methodhasthe advantageof retriev-
ing ary distancein constantime. Algorithms which em-
ploy thismethod however, necessarilynvolve O(|F'| x | N|)
comparisonsFurthermoresuchpre-computedndexesare
very large (|V|? in the worst casefor a graphwith V' ver
tices), althoughmethodshave beenproposedor minimis-
ing this problem[2]. Updatingtheindex to reflectchanges
in the databasés alsoexpensve. The underlyingdatabase
needso be extensiely examinedto determineall shortest
distancesnvolving the singlemodifiednode.

Theotherapproachs to calculatedistancessrequired,
using someform of graph algorithm. This hasthe ad-
vantageof virtually no overheadto reflectchangeso the
databaseaswell asmuch more reasonablespacerequire-
ments(O|V]). However, asary graphalgorithmrequires
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arbitrarytraversalthroughanarbitrarygraph,suchanalgo-

rithm couldrequireO(|V| x (|F| + | N1])) randomdisk seeks
in theworst case.Thusthis solutionis impracticalfor any

realimplementation.

Our approachfundamentallyfalls into the secondcat-
egory, calculatingthe distancesas requiredusing a graph
algorithm. Insteadof directly examiningthe graph, how-
ever, we usea family of encodingschemedo representhe
relevantsubgraphgn avery smallspacgtypically nomore
than 20 bytesfor a single subgraph).The distanceis then
calculatedby directly comparingtheseencodings.As the
encodingsaresosmall,theentiresubgrapttomparisorcan
be performedn mainmemory oftenutilising only the CPU
cache. As the comparisonghemselesheavily utilise bit-
wise comparisonsand optimisations distancecalculations
areperformedvery quickly.

We utilise a two phaseapproachto avoid the needfor
performingO(|F'| x |N|) comparisonsln practice,our ap-
proachtendstowardseither O(|F| + |N|) comparisonsf
the Near Set encodingmustbe generateddynamically or
O(|F|) comparisonsf it canbe retrieved from the cache.
Our encodingschemesndthe algorithmswhich usethem
to determinegproximity aredescribedn detailin [1].

2. THE PROXIMITY INDEX

The efficiengy of our index relieslargely on our encoding
schemes Minimising spaceis importantasit allows more
of the index to be held in main memory Looking ahead
a little, our encodingschemecan representall subgraphs
from theroot to eachof 1,000,000KML nodesin 7.6 MB.
Givencurrentsystemsit is notunreasonablto hold thisen-
tirely in mainmemory In orderto efficiently encodea sub-
graph,eachedgein the maingraphis assignedhe smallest
unusedpositive numberwhich is unique only amongst all
edges originating from a given node. This meansthattwo
edgesanbeassignedhesamenumberaslong asthey orig-
inatefrom differentnodes.This numbertis referredto asthe
edgeidentifier,



2.1. Representing Single Paths
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Figurel: Graphwith IndicatedEdgeldentifiers

Pathsin the main graphare identified by the sequence
of individual edgeidentifiers,which implicitly startfrom a
(virtual) incoming edgeto the root. Nodesare identified
asbeingthe terminusof one or more paths. This concept
is illustratedin figure 1. The nodey; is identified by the
sequencef edgedentifiers’1.1.2”. Notethatthissequence
of edgeidentifiersboth uniquely identifiesthe nodeitself
andthe pathfrom therootto thenode.

Our encodingschemeexploits the low numericalvalue
of the edgeidentifiers, by only allocatingtwice the mini-
mum spacerequiredto storethe numbers.For example,as
thenumber'l” is representetby 1 bit, andthe number’2”
by 2 bits, the path”1.1.2" is representedn only 8 bits (2
x 4 bits). This approachoffers a greatspacesaving over
methodswhich typically usea 4 byte integer to represent
eachnode(thusrequiring12 bytesinsteadof 1 to represent
the previouspath).

It is now possibleto begin to seehow thedistancecalcu-
lationworks. Asy, isencodedy "1.1.2" andz; isencoded
by "1.1.3", thedistancebetweerthemcanbedeterminedy
observinghatthe pathsarethe samefor thefirst two edges
("1.1"), andsothis contributesnothingto the shortespath
betweerthem.Thisinformationis found usingasinglebit-
wise exclusive or operation. After the pathsdiverge, the
pathfrom therootto y; containsl edge,asdoesthe path
from therootto z;. Thisinformationis found usinganon-
iterative bit countingalgorithm. We canthusdeterminethe
distancebetweerthesetwo nodess 2 in constantime.

2.2. Representing Multiple Paths

The methoddescribedn section2.1 is extendedto repre-
sentgeneralsubgraphsn this section.Supposeve wantto
encodethe subgraphcontainingall pathsfrom the root to
y2. This mustinclude not only the direct pathto y», but
thecycle from y- to itself. Obviously our methodof listing

edgessequentiallyis not sufficient whenmultiple pathsare
involved.

To dealwith multiple pathsin a subgraphwe number
nodeswhich containmorethan2 incomingor morethan?2
outgoingedgeswithin a singlesubgraph Note thatwe are
not concernediboutthe total numberof incomingandout-
going edgesfrom a node. We areonly concernedvith the
numberof incomingandoutgoingedgesvhich areincluded
in the subgraphof interest. This is illustratedin figure 1
by the nodeslabeled’A” and”B”. Note thateventhough
mary nodesin thegraphhave morethan2 incomingor out-
going edgeswithin the subgraptcontainingall pathsfrom
therootto y», thereareonly 2 suchnodes.

Suchnodegreferredto ascommon nodes) arenumbered
separatelyfrom the edgeidentifier numbering. In figure
1, the nodeys is labeled”A” for clarity. In the encoding
schemeis implementedas the number”1” with a marker
bit setto indicatethis numberefersto acommonnodeand
not an edgeidentifier Commonnodesare given numbers
which areuniquewithin the subgraph being encoded. This
is generallysubstantiallysmallerthan the total numberof
suchnodeswithin the entire graph. (Thus, for example,a
differentcommonnodemay alsobeidentifiedas”A” in a
differentsubgraph).

The entire encodingfor the subgraphof all pathsfrom
therootto y- is thereforegivenby:
1.2—-A.A1.1.-B.2.1-5B.B.1.—A Given that each of
thesenumbersare representedn the minimum possible
spacethe entiresubgraphs representeth only 48 bits.

3. CONCLUSIONS

This extendedabstracsummarizedhe methodthatwe pro-

posedfor implementinga fast, efficient proximity search
in nearlinear time. The encodingschemeis focusedon

compressingheinformationasmuchaspossiblewhilst at

the sametime facilitating proximity determination.This is

aidedby the datastructurewe emplgy, which utilises bit-

wise operationsand optimisationsto substantiallyreduce
thetime taken by thealgorithmin practice.
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