Xyleme Query Architecture

Vincent Aguiléra, Sophie Cluet, Fanny Wattez
INRIA, projet VERSO
BP 105, 78153 Le Chesnay Cedex
France

name.surname@inria.fr

ABSTRACT

We present the implementation of a special-purpose query
operator, namely PatternScan, to support efficient eval-
uation of queries on top of Xyleme, a Web-scale XML
warehouse.

Keywords

XML, query processing, indexation, structured documents

1. INTRODUCTION

The coming of XML may radically change the face of the
Web. We strongly believe that XML will progressively suc-
ceed to HTML as the preferred publication format. One
key feature of XML is its ability to support high level
structured queries. The objective of the Xyleme project is
to be ready when the XML revolution takes place. We are
building a dynamic XML warehouse, fed by a systematic
crawling of the Web in search of all its XML documents.
Among many other features, Xyleme provides a complete
query language that mixes database with full text query
capabilities. In this paper, we briefly sketch the archi-
tecture of the system and then explain how queries are
evaluated in Xyleme.

2. XYLEME

Our main concern when designing the system was scala-
bility. To achieve that, we distribute data and meta-data
over a cluster of Linux PCs. We distinguish between three
kinds of machines. (1) Repository machines store XML
documents that are clustered together into semantic do-
mains. (2) Index machines have large memories. Each
are used to index part of one repository machine. The
partitioning insures that Xyleme indexes reside in main
memory. (3) Interface machines are connected to the In-
ternet. They are in charge of running Xyleme applications
and of dispatching tasks/processes to the other machines.
They maintain some meta-information about the reposito-
ries and indexes, so as to be able to compute and distribute
query execution plans.

3. QUERIESIN XYLEME

The evaluation of structured queries over loosely struc-
tured data such as XML has been extensively studied dur-
ing the last ten years [1]. However, query evaluation in
Xyleme is guided by requirements that are not those of
traditional database systems. We are considering here bil-
lions of documents (Google recently indexed more than
one billion HTML documents) and (hopefully!) millions
of queries per day. This impose some severe constraints,
notably maintaining as few as possible additionnal data
structures per query (this prevent for instance the use of

sort or hash-based algorithm) and returning first answers
fast.

3.1 Xyleme Query Language

Xyleme query language is an extension of OQL [3] and
provides a mix of database and information retrieval char-
acteristics. It is consistent with the requirements pub-
lished by the W3C XML Query Working Group. Since
each semantic domain potentially contains many heteroge-
neous DTDs, queries are usually formulated against some
view. Views are generated semi-automatically and con-
sist of mappings from paths in some schema to paths in
real documents. Then, they are translated into a union
of so-called concrete queries, i.e., queries against real doc-
uments. We simplify matters here and will consider two
domains, tourism and sport. The following concrete query
will be used as a running example. It returns the names
and hotels of places where one can practice tennis. Its re-
sult is an XML document with as many result elements as
answers, each having two sub-elements, name and hotel. A
document d7f in tourism may provide results if it contains
an element d/tour/stop/townDescription that references a
document d2 in sport, such that a subelement sports at
any depth in d2 contains the word tennis.

ExAmMPLE 3.1.
select s/name, s/hotel

from docl in tourism,
doc2 in sport,
s in docl/tour/stop

where s/townDescription contains url(doc2)
and doc2//sports contains ”tennis”

3.2 ThePatternScan Operator

Although we rely mainly on database optimization tech-
niques, notably the use of an algebra, we have adapted
them by introducing, as in [2], a special-purpose query
operator called PatternScan. We will see in the next
section how this operator can be efficiently evaluated us-
ing a full text index. Figure 1 shows the straightforward
algebraic translation of query 3.1. Above every operator
we see the form of its returned tuples. Evaluating this
plan as such would not be a good idea. Notably, it would
involve to retrieve from the repository every pair of docu-
ments in tourism and sport and then reject probably most
of them because they do not satisfy the Selection oper-
ation predicate. We now see how we can do better using
query rewriting techniques. Figure 2 shows the algebraic
plan computed by the optimizer for the example query 3.1.
The PatternScan operator is the key operator of Xyleme
algebra. It filters a forest of XML documents according
to some pattern and returns a set of tuples, one per tree

M
resul(@nanashotd)

\
doct] s [doc?)

Selection
docz//sjorg‘ contains "tennis"
S/townDescription contains url(doc2)

\
Join
sport [doc2]

DJoin

el
tourism [docl] docl/tour/stop [¢]

Figure 1: A straightforward algebraic plan

structure in the forest that matches the pattern. The pat-
tern trees contain two kinds of edges (corresponding to the
/ and // operators). It also features three kinds of nodes
representing respectively (i) document roots (e.g., docl);
(ii) elements or attributes (e.g., tour), some of which are
framed because they are part of the query result (e.g.,
stop); and (iii) keywords (e.g., tennis). Assuming that

r&m’vlta(ﬁh)

|

DJoin

=

PatternScan[sport , @ PatternScan[tourism ,]

sports tour
I s [5op]
“tennis" P D "
n;j lownDescription
(o8] i i p

url(doc2)

Figure 2: Algebraic rewriting using PatternScan

PatternScan can be evaluated efficiently, this plan is far
better than the previous one since we need to acces the
repository only for selected tuples.

4. INDEXING STRUCTUREDDOCUMENTS

In Xyleme, pattern filtering is applied to huge collections
of heterogeneous documents. Given the fact that it is the
most frequent and, in practice, the most expensive oper-
ation that has to be evaluated, it is crucial to evaluate it
fast. We believe that this can only be achieved by using
indexes residing in main memory. We rely on the fact that,
notwithstanding links or intra-document references, XML
documents can be modeled as trees. The idea is to encode
simply the structural position of each word, element or at-
tribute in a document. We then use a full text index in
the following way: to each word occurrence in the index is
associated (i) its kind (element, attribute or simple word),
(ii) the document in which it appears, and (iii) its position
in this document.

4.1 Wordsencoding

The idea of the encoding presented here is to capture the
interval defining each internal node of a document. Then,
the descendant relationship can be deduced by interval
inclusion. Figure 3 shows, in the upper part, a small doc-
ument, called d1, annotated with prefix-postfix encoding,
computed during a left-deep traversal of the tree: every
time we enter (resp. exit) a node, we give it a number rep-
resenting its prefix (resp. postfix). In the lower part, we
give a partial image of the full text index associated to the

level 0
st st
level 1
T N T
narme hotel townDescription name hotel townDescription
‘ 7 7 ‘ level 2
(o] [5I2] [F]4] [mof7 J[e2]e] [a]21][15]24]
Paris Crillon bla Rome Regina bla link
level 3
hotel | [(d1,4,3,2),(d1,11,10,2) href
name| [(d1,2,1,2),(d1,9,8,2)] Nevel 4
stop | [(d1,1,6,1),(d1,8,16,1)]
tour | [(d1,0,17,0)]
o urrll Vleve|5
urll | [(d1,17,12,5)]
[-]

Figure 3: Indexing a Document in Xyleme

tourism collection after this document has been entered.
We know that the first occurrence of hotel is a descen-
dant of stop because it belongs to the same document, its
prefix is larger and its postfix smaller. Note that, in the
full text index, we add to each word occurrence its level in
the document tree so as to be able to differentiate a child
from a descendant.

4.2 ImplementingthePatternScan Operation
Let us now come back to pattern filtering and see how
full text indexes are used to evaluate PatternScan opera-
tions (we call this implementation FTIScan). The inputs
of an FTIScan are the index corresponding to a collec-
tion of documents and a pattern tree. The output of the
operation is a collection of tuples with one attribute per
extracted item of information. Let us take as an example
the evaluation of the PatternScan on the domain sport
(left part of figure 2). Let Isport denote the index for
this domain, Ip0.¢(w) the set of occurences in this index
for the word w. Let I, (resp. I:) denote Isport(sports)
(resp. Isport(tenmis)). A document d matches the given
pattern if there exists a couple (s,t) in Iy x I, such that
t is a descendant of s and s and ¢ belong to d. Typi-
cally, this can be evaluated by a join between I; and I;.
Assuming that I; and I; are sorted, this join requires at
most (Card(I;)+ Card(I;) comparisons. Similarly, a more
complex PatternScan, as the one on the right part of fig-
ure 2 can be seen as a sequence of joins. We are currently
implementing a heuristic that allow to evaluate such join
sequences with a worst case complexity of N x M where
N is the number of nodes in a pattern tree p and M the
average number of occurences of words in p.

5. REFERENCES

[1] Serge Abiteboul, Peter Buneman, and Dan Suciu.
Data on the web: from relations to semistructured
data and XML. Morgan Kaufmann Publishers, Los
Altos, CA 94022, USA, 1999.

[2] Vassilis Christophides, Sophie Cluet, and Jérome
Siméon. On wrapping query languages and efficient
XML integration. In Proceedings of the ACM
SIGMOD Conference on Management of Data,
Dallas, Texas, May 2000.

[3] Sophie Cluet. Designing OQL: Allowing objects to be
queried. Information Systems, 23(5):279-305, 1998.

