MCWEB: A Model-Chec king Tool for Web Site Debugging

Luca de Alfaro

Thomas A. Henzinger

Freddy Y.C. Mang

Department of Electrical Engineering and Computer Sciences
University of California at Berkeley, Berkeley, CA 94720-1770, USA

{dealfaro,tah,fmang}@eecs.berkeley.edu

ABSTRACT

We show how model checking techniques can be applied
to the analysis of connectivity and cost-of-traversal prop-
erties of Web sites.

Keywords
Web site debugging, Reliability, Model-checking, Web
analysis.

1. INTRODUCTION

The design of a Web site is an inherently error-prone pro-
cess. A Web site must be correctly designed both at a local,
and at a global level. Good design at the local level implies
that the pages contain well-formed HTML code, have the
intended visual appearance, and have no broken links. In
addition to these properties, that are local to individual
Web pages, the structure of a Web site must satisfy global
properties concerning its connectivity and cost of traversal.
Another class of global properties of Web sites concerns
the use of frames. Since each link loads only a portion
of a frame-based page, the content of a frame-based page
depends on the path followed by the browser in the site.
Indeed, in a frame-based site there are many pages that
can be reached only by following a specific sequence of
links: we call such pages secondary pages, to distinguish
them from the primary pages that can be reached simply
by typing an URL into the browser window.

Current tools for Web site debugging focus mainly on lo-
cal properties, and in particular, on the detection of bro-
ken links and errors in the HTML code [8, 9, 6, 10, 4,
7, 3, 12, 13, 5]. The only global analysis possible with
these tools consists in displaying a map of the Web site;
such maps are however of limited utility for large sites.
Moreover, current tools explore only primary pages in
frame-based sites, while our experience indicates that the
greatest number of errors occurs in secondary pages —
most likely because they are more difficult to check ex-
haustively without automated assistance. The difficulty
of debugging all secondary pages has hindered the use
of frames in high-reliability applications, such as com-
mercial Web sites. To help in the analysis of global
properties of Web sites, we have implemented a checker
called MCWEB (Model Checking the Web), that relies on
model checking techniques to verify connectivity, cost-of-
traversal, and frame-dependent properties of Web sites.

2. MODEL CHECKING THE WEB

Model checking is the name of a set of techniques that
check the correctness of a system design by exploring
the graph corresponding to the state space and transition

structure of the system [2]; these techniques have been ef-
fectively applied to the debugging of hardware designs. To
cope with the complexity of such systems, model checking
has developed a set of techniques suited for the exploration
of very large graphs, that are not given explicitly, but must
be gradually explored. Moreover, model checking has de-
veloped a rich theory for the specification of graph proper-
ties [2]. MCWEB applies model checking techniques to the
analysis of the graph formed by Web pages and their links.
The properties that can be checked using MCWEB include
the following:

e Comnnectivity structure. Given a collection of
Web pages, MCWEB can check that all the pages of
the collection are reachable from a specified start
page. Similarly, MCWEB can check that none of a
specified set A of “private” pages is reachable from
a set B of “public” pages. The above reachability
and unreachability properties are just two examples
of a general class of connectivity properties that can
be checked by MCWEB. Another example consists in
checking that every path from pages of a set A (the
“entry” pages) to pages of a set B (the “members”
pages) must contain a page in a set C' (the “autho-
rization” pages). MCWEB provides a rich query lan-
guage for the specification of connectivity properties.

e Frame structure. MCWEB also checks for errors in
the frame structure of Web pages. A common er-
ror occurs when more than one sub-frame is labeled
by the same name, making the use of the target
link attribute ambiguous. A related error is for the
same URL to be loaded into two hierarchically nested
sub-frames. MCWEB also checks for links that spec-
ify a target that does not correspond to any frame
name. These errors generally occur in secondary
pages, since link traversal can cause unforeseen com-
binations of pages to be loaded into the sub-frames
of a page; an example of such errors is given in Fig-
ure 1.

e Longest paths. MCWEB can compute the longest
and shortest paths between sets of Web pages, where
the “length” of a path can be measured either as the
number of links in the path, or as the number of bytes
that a browser must download while following the
path. In particular, the all-pair longest-path between
pages of a site can provide useful information about
bottlenecks in the navigation of the site.

|F|\e Edit View Go Communicator Help ||

H Back Forward Reload Home Search Metscape Print Security :I

v‘ qt' Bookmarks J; Location: [http.//sec eecs. berkeley. edus /|
s l Software Enabled Control

e e .

Outlines

Software Enable

2000

SEC Home

Contents [Berkeley Software
Enabled Control

Project

Home

People
Proposal a
Statement of Work | Froject Summary
Projects il
Departnent of EECS, UC Berkeley

Department of EECS, UC

| [100%

o S 2P EE 2

Figure 1: A secondary Web page with repeated
frame names, and nested sub-frames. This anoma-
lous configuration was detected by MCWEB.

3. THE QUERY LANGUAGE

Model-checking is based on the analysis of a graph
structure. We model the Web as a graph with
webnodes for vertices. A webnode is a hierarchical
frame structure, generated by the grammar webnode :=
URLpage (name webnode)*, where an URLpage is the re-
sult of fetching a given URL from the Web with a GET
method, and each pair (name webnode) consists of the
name of a subframe, and of the subframe content. The
edges of the graph correspond to links between Web pages;
the destination webnode is obtained by updating the frame
structure as specified by the HTML standard [11]. Taking
webnodes, rather than URLpages, as vertices of the graph
enables an accurate representation of the frame structure
of pages. Moreover, since webnodes correspond to pages as
displayed by a browser, they lead to a natural connectivity
analysis of the Web.

The model checking algorithms are phrased in terms of
operations applied to sets of webnodes; this is similar to
the approach of symbolic model checking [2]. Operating
on sets of nodes is efficient, since all the links from a set of
webnodes can be followed in parallel by a multi-threaded
implementation. If @ is an URL, and S, T are two known
sets of webnodes, we can perform the following operations:

e (GetWeb(a) returns the singleton set consisting of the
webnode corresponding to URL a.

e Post(S) returns the set of webnodes reachable by fol-
lowing one edge from webnodes in S, and Pre(T, S)
returns the subset of webnodes in T that have an
edge leading to S.

e For any webnode property P, we can compute the
subset S | P = {s € S|s|= P} of webnodes that
satisfy P. The webnode properties considered by
MCWEB include text inclusion, sub-frame structure
well-formedness, and errors in fetching URLpages.

e We can compute SNT, SUT, and S\ T.

MCWEB enables us to write queries that combine the above
operators in a fixpoint calculus called p-calculus [1]. For

example, consider the property that all paths from a set
A of public pages to a set B of private pages must contain
a page in a set C of authorization pages. Assume that
the pages in A, B, C can be distinguished by predicates
Py, Pp, and Pc (based e.g. on text inclusion). Let h be
the URL of the home page of the Web site, and let Pp
be a predicate that is satisfied only by pages of the site
being debugged. Then, the following query with output 2z
computes the webnodes that violate the above property:

pxr = GetWeb(h) U (Post(z) | Pp)

py = (z | Pa) U (Post(y) | (Pp A ~FPo))

wz=y|Pp
Here, z, y, and z are variables corresponding to sets of
webnodes. Each line computes the smallest set of webn-
odes that satisfies the given equality. Thus, the first line
computes the set = of webnodes that are reachable in the
site from the home page. This set is computed iteratively
by setting zo = @ and zx+1 = GetWeb(h)U(Post(zx) | Pp)
for £ > 0. The computation terminates when we reach
n > 0 such that £,+1 = z,, at which point we let x = xn.
Similarly, the second line computes the set y of webnodes
reachable in the site from xNA without visiting C. Finally,
z consists of y N B, and hence, of the webnodes in B that
can be reached in D from A without visiting C — which
is the desired answer. MCWEB is written in Python, and
makes heavy use of multi-threading. Furthermore, MCWEB

employs model checking techniques to optimize query eval-
uation.

4. REFERENCES
[1] G. Bhat and R. Cleaveland. Efficient model checking
via the equational p-calculus. In Proc. 11th IEEE
Symp. Logic in Comp. Sci., pages 304-312, 1996.
[2] E.M. Clarke, O. Grumberg, and D.A. Peled. Model
Checking. MIT Press, 1999.

[3] Electronic Software Publishing Co. Linkscan.
http://www.elsop.com/linkscan/.

[4] Watchfire Co. Linkbot.
http://www.watchfire.com/products/linkbot.htm.

[5] Voget Selbach Enterprises GmbH. Link tester.
http://vse-online.com/link-tester/.

[6] Tilman Hausherr. Link sleuth.
http://home.snafu.de/tilman /xenulink.html.

[7] Biggbyte Software Inc. Infolink.
http://www.biggbyte.com/infolink/index.html.

[8] Link Alarm Inc. Link alarm.
http://www.linkalarm.com/.

[9] NetMechanic Inc. Html toolbox.
http://www.netmechanic.com/.

[10] InContext. Web analyzer 2.0.
http://www.incontext.com/WAinfo.html.

[11] D. Raggett, A. Le Hors, and I. Jacobs. HTML 4.01
specification, 1999. W3C Recommendation 24
December 1999.

[12] Internet Software Services. Theseus.
http://www.matterform.com/theseus/.

[13] DACPro Computer Solutions. Webtester.
http://awsd.com/scripts/webtester/.

