Objectifying the Web the "light" way: an RDF-based
framework for the description of Web objects

Pasqualino “Titto” Assini
University of Essex
Wivenhoe Park
Colchester, Essex - CO4 3SQ - U.K.
+44 1206 874333

titto@essex.ac.uk

ABSTRACT

The advantages of object-oriented (OO) programming are
well-known. Nevertheless, distributed OO middleware sys-
tems (OOM) such as CORBA, DCOM or Java RMI have
not been widely adopted for the developing of Internet
applications. Developers seem to perceive OOMs as over-
complex, proprietary or incompatible with current WWW
development practices. Recognizing these difficulties more
WWW-friendly proposals based on XML are starting to
appear. This paper describes a simple OOM system that
uses RDF as its Interface Definition Language (IDL) and
HTTP as its RPC protocol. This approach provides most
of the advantages of object-orientation while mantaining
full compatibility with the existing WWW infrastructure.

Keywords
RDF, Web objects, Web services, IDL, RPC

1. INTRODUCTION

The imminent advent of the OO Web has been announced
many times in recent years. The advantages of OO pro-
gramming with respect to more traditional approaches are
so evident that most observers had assumed that it was
only a question of time before OO would become domi-
nant in the field of Internet development. Unfortunately
the large majority of developers are still sticking to more
conventional development technologies. The OO Web is
simply not happening: a simple delay or a major fail-
ure? It’s not easy to see why such a promising technology
might have failed to capture the developers’ imagination
but some of these elements might have contributed:

e There is a considerable conceptual and technical mis-
match between OOMs and traditional WWW devel-
opment techniques

e OOMs are perceived by most developers as exces-
sively complex and unsuitable for the development
of simple WWW applications

e A growing number of intranets is protected by fire-
walls that, almost invariably, will allow only email
and HTTP traffic. This is bad news for OOMs that
are based on non-HTTP protocols.

1.1 Simplify, Simplify, Simplify
Both CORBA and DCOM originate in the pre-Internet
era and lack two essential characteristics: simplicity and

compatibility with existing WWW technologies. Simplic-
ity is probably nowhere as important as in the Internet
environment. A good example is given by the WWW it-
self. At the beginning of the Nineties, when the WWW
was born, there were a number of much more sophisticated
hypertext systems available but none of them has had an
impact even remotely comparable to that of the ”humble”
WWW. We now live in a world that has been throughly
changed by the effects of the marriage of the Internet with
such a simple technology. OO development has the poten-
tial of propelling the Web to a new era but probably needs
to go through a similar process of simplification.

2. THE NEOOM FRAMEWORK

Even if the WWW is not a proper OO system it’s not hard
to impose some OO principles on it. The OOM described
in this paper, the NESSTAR Obiect Oriented Middleware
(NEOOM), aims to do exactly so: provide a distributed
OO model that it’s as simple as possible and as compatible
as possible with the existing WWW infrastructure. Its
basic characteristics are:

e its Object Model is an extension of the OO model
defined by the W3C RDF [4] and RDF Schema [5]
standards

e remote method calls are mapped to standard HTTP
calls

2.1 The Object Model
Informally the NEOOM object model can be defined as
follows:

e Each object has a unique identifier (an URL)

Each object has a type (a class)

All the objects of a given type share the same prop-
erties and methods

e A class can be a subclass of any number of other
classes

The properties are the attributes of an object. They can be
either literals such as a String or an Integer (or any other
basic type as defined by XML Schema [6]) or a reference
to another object.



A NEOOM object, just as an ordinary Web object, can
be retrieved by performing an HTTP GET at its URL.
What it’s returned is an RDF description of the object
properties plus any additional information that the server
deems suitable to transmit together with it (for example
the descriptions of objects that are linked to the requested
object to spare the client the burden of multiple requests).
As an object type is also an object it can similarly be
retrieved at its URL together with the description of its
properties and methods.

2.2 Methods

The methods are the operations that can be performed on
an object. A method can take any number of parameters.
Methods and Parameters are not present in the basic RDF
model but they can be easily added by defining a Method
and a Parameter classes. Instance methods are defined as
classes that extend the basic Method class. One advantage
of defining a method as a class is that methods can have
properties and methods. These can be used to control the
execution of the method or to precise its semantic. The
Method class, as currently defined, has two methods: one
to execute the method and one to cancel it. Another ad-
vantage is that the method invocations can be represented
very naturally as instances of the method class. Param-
eters are very similar to RDF properties. They have a
domain property that specifies the method they apply to
and a range property that specifies the type of the pa-
rameter value. The result of a method call is, just as in
the case of a normal HTTP request, either an error or a
MIME document. Complex objects or set of objects can
be returned in XML or RDF format.

2.3 HTTP goes OO

The Object Model that we have briefly examined is ab-
stract and completly protocol-independent. It might eas-
ily be mapped to any RPC system such as the increasingly
popular SOAP [7]. In practice we have found little need
for SOAP’s rather extensive functionality. There is an
inherent asymmetry in client/server systems: the clients
normally make simple calls and receive complex answers.
As the calls are simple they can be mapped to standard
HTML Forms [3] calls as follows:

e the object that is the target of the method is specified
as the form ACTION property

e the method to perform is specified in a hidden pa-
rameter of name method

e every method parameter of simple type is represented
by a form input parameter of type text (or password
for passwords)

e every method parameter of binary type is represented
by a form input parameter of type file

e if there are many parameters or if one of the param-
eters is of binary type the form method must be set
to POST with an encoding type of multipart/form-
data, otherwise GET can be used

The advantages of this mapping are: extreme simplicity,
efficiency (as hardly any parsing is required to interpret
the method calls) and compatibility with existing Web
browsers and HTTP libraries.

3. SOFTWARE DEVELOPMENT

To summarize, the steps needed to deploy a NEOOM ob-
ject are the following:

1. Define the object class in RDF using the NEOOM
extensions for the methods

2. Make available the class definition at the class URL

3. Instances of classes that have properties but no meth-
ods (object that have state but no behaviour) can be
created by simply describing them in RDF and mak-
ing them available at the object URL

4. Instances of classes with methods are implemented
as server-side processes (such as CGI bin scripts or
Java Servlets) that accept HTTP calls as specified in
section 2.3

3.1 Java Software Development
In the context of the NESSTAR [2] project we have devel-
oped a simple Java SDK that provides:

e a tool to generate Java client stubs and server skele-
tons from NEOOM classes definitions

e an RDF to Java Mapper to easily convert Java ob-
jects to RDF and back

e an Object Browser to inspect and administer NEOOM
objects through an user-friendly WWW interface

4. ACKNOWLEDGEMENTS

The work reported has been done as part of the NESSTAR
[2] and FASTER [1] projects funded by the European Com-
mission’s DGXII under the 4th and 5th Framework Telem-
atics Applications Programmes.

5. REFERENCES

[1] Flexible Access to Statistics, Tables and Electronic
Resources (FASTER) Project.
http://www.faster-data.org.

[2] NEtworked Social Science Tools And Resources
(NESSTAR) Project. http://www.nesstar.org.

[3

HTML 4.01 Specification - Forms.
http://www.w3.org/ TR /htmld/interact /forms.html,
December 1999.

[4

Resource Description Framework (RDF) Model and
Syntax Specification.

http://web4.w3.org/ TR/REC-rdf-syntax/, February
1999.

[5

Resource Description Framework (RDF) Schema
Specification 1.0.
http://web4.w3.org/ TR /rdf-schema/, March 2000.

[6] XML Schema Part 2: Datatypes.
http://www.w3.org/TR/xmlschema-2/, October
2000.

[7] Erik Christensen, Francisco Curbera, Greg Meredith,
and Sanjiva Weerawarana. Simple Object Access
Protocol (SOAP) 1.1.
http://www.w3.org/TR/SOAP/, May 2000.



