
An expressive and efficient language for
XML information retrieval

Taurai Chinenyanga Nicholas Kushmerick
Smart Media Institute, Department of Computer Science, University College Dublin

{taurai.chinenyanga, nick}@ucd.ie

www.smi.ucd.ie/elixir

Existing XML query languages do not support ranked
query results based on textual similarity. For example,
Fig. 1 shows an XML database containing books and CDs.
We are interested in information-retrieval-style queries such
as “order the items by similarity to the phrase ‘traditional
Ukrainian”’ or “find books and CDs with similar titles.

Unlike similar efforts, our expressive and efficient language
for XML information retrieval (ELIXIR) allows such queries.
ELIXIR extends XML-QL [3] with a textual similarity op-
erator. Fig. 1 shows an ELIXIR query Q1 that finds books
and CDs with similar titles. Some related query languages
(e.g. [5, 7]) provide only boolean keyword filtering, not
ranked retrieval based on textual similarity. Other lan-
guages (e.g. [9, 6]) permit similarity comparisons only
between a data value and a constant, but not similarity
joins across two data values, and thus cannot express Q1.

A more complicated ELIXIR query is shown in Fig. 2.
As can be seen from the output, this query finds recent
SIGMOD Record publications, New Testament verses, and
lines from Macbeth that are similar.

Similarity joins are not merely of theoretical interest.
For example, in data integration applications involving
reconciling heterogeneous textual identifiers, similarity joins
can eliminate the need for either common domains or hand-
crafted normalization routines.

A naive implementation of a similarity join between two
variables would generate the full cross product of the vari-
able bindings, and then compute the similarity of every
pair. Our ELIXIR query processing algorithm avoids this
pitfall by:

1. rewriting an ELIXIR query Q1 into a series of XML-
QL Qi2 queries that generate intermediate relational
data;

2. invoking WHIRL [2] to efficiently evaluate Q1’s sim-
ilarity predicates on this intermediate data; and

3. translating WHIRL’s output into the XML structure
specified by Q1 with a final XML-QL query Q4.

Note that ELIXIR queries XML data in its native format,
without the potentially expensive operation of flattening
it into relations [4, 8].

Fig. 1 shows how the ELIXIR query processing would
rewrite Q1 into a series of XML-QL queries Qi2, a WHIRL
query Q3, and a final XML-QL query Q4. Also shown are
the intermediate data that would be passed between the
queries, and the final XML output. The algorithm first
generates two XML-QL Qi2 queries. Q1

2 retrieves books
from the XML database, and Q2

2 retrieves CDs. Note that
ELIXIR retrieves these items separately to avoid comput-
ing the cross product of book/CD pairs. The algorithm

then generates the WHIRL query Q3, which applies Q1’s
similarity predicate. Q3’s output is the desired result, but
it is transformed into XML format by executing Q4.

ELIXIR’s query rewriting algorithm runs in time poly-
nomial in the size of the query, and thus ELIXIR’s addi-
tional functionality adds negligible overhead to the cost
of the underlying XML-QL and WHIRL implementations.
Experiments with our ELIXIR prototype demonstrate that
our query processing algorithm scales reasonably well with
respect to the size and complexity of an ELIXIR query, the
size of the intermediate data generated by WHIRL, and
the number of similarity-join predicates.

Our implementation of ELIXIR extends XML-QL, but
we are currently exploring ways of extending the ELIXIR
algorithm to other XML query languages such as Quilt
[1]. Another area of future research is query optimization.
The ELIXIR query processor follows a strict three-stage
policy for rewriting the original query, but this may be
sub-optimal in some cases. We are exploring techniques
for automatically searching the space of query rewritings in
order to find one that is optimal with respect to standard
metrics such as intermediate data sizes.

References
[1] D. Chamberlin, J. Robie, and D. Florescu. Quilt: An XML

query language for heterogeneous data sources. In Proc.
SIGMOD/PODS Workshop on the Web and Databases,
2000.

[2] W. Cohen. Integration of heterogeneous databases without
common domains using queries based on textual similarity.
In Proc. SIGMOD, pages 201–211, 1998.

[3] A. Deutsch, M. Fernandez, D. Florescu, A. Levy, , and
D. Suciu. XML-QL: A query language for XML. In Proc.
8th Int. World Wide Web Conf., 1999.

[4] A. Deutsch, M. Fernandez, and D. Suciu. Storing
semistructured data with STORED. In Proc. SIGMOD,
1999.

[5] D. Florescu, I. Manolescu, and D. Kossmann. Integrating
keyword search into XML query processing. In Proc. 9th
Int. World Wide Web Conf., 2000.

[6] N. Fuhr and K. Großjohann. XIRQL: An extension of
XQL for information retireval. In SIGIR Workshop on
XML and Information Retrieval, 2000.

[7] I. Macherius, G. Huck, and P. Fankhasuer. XQL
extensions in the GMD-IPSI XQL Engine, 1999.
http://xml.darmstadt.gmd.de/xql/extensions.

[8] J. Shanmugasundaram, K. Tufte, G. He, C. Zhang,
D. DeWitt, and J. Naughton. Relational databases for
querying XML documents: Limitations and opportunities.
In Proc. Int. Conf. Very Large Databases, 1999.

[9] A. Theobald and G. Weikum. Adding relevant to XML. In
Proc. SIGMOD/PODS Workshop on the Web and
Databases, 2000.

Figure 1: The ELIXIR query processor efficiently generates an answer to a query Q1 (“find books and
CDs with similar titles”) by rewriting Q1 into a series of XML-QL queries Qi2, a WHIRL query Q3, and a
final XML-QL query Q4. Color indicates which parts of QB are used to generate the intermediate queries.

<results> {
CONSTRUCT <similar><t>$t</><v>$v</><l>$l</></>

(a) WHERE <SigmodRecord.issue><volume>$vol</><articles.article.title>$t</></> in "SR.xml",
<tsts.bookcoll.book.chapter.v>$v</> in "NT.xml",
<PLAY.ACT.SCENE.SPEEC.LINE>$l</> in "MB.xml",
$vol > 24, $t ∼ $v, $t ∼ $l

} </>

<results>
<similar><t>Opportunities in Information Management and Assurance.</>

<v>And from that time he sought opportunity to betray him.</>
<l>But yet I’ll make assurance double sure,</></I>

<similar><t>Size Separation Spatial Join.</>
(b) <v>But he that is joined unto the Lord is one spirit.</>

<l>To Ireland, I; our separated fortune</></>
<similar><t>Where Will Object Technology Drive Data Administration?</>

<v>And there are differences of administrations, but the same Lord.</>
<l>Where?</></>

...
</>

Figure 2: An ELIXIR query to retrieve recent SIGMOD Record articles, verses from the New Testament,
and lines from Macbeth that are all similar (a), and some of the answers discovered by ELIXIR (b).

