ComponentXchange: A Software Component
Marketplace on the Internet

V Sriram, Atul Kumar, Deepak Gupta and Pankaj Jalote
Dept. of Computer Science & Engg.
Indian Institute of Technology
Kanpur, INDIA 208016

{sriram, ak, deepak, jalote}@Qcse.iitk.ac.in

ABSTRACT

An infrastructure that allows developers to search and lo-
cate COTS (Commercial-Off-The-Shelf) software compo-
nents that best match their given requirements, from those
produced by component vendors across the world will ac-
celarate the widespread adoption of COTS Based Systems.
In this work, we describe a component exchange that pro-
vides such an infrastructure and will act as a global mar-
ketplace for software components.

ComponentXchange is modeled on trader based architec-
tures found in distributed object systems. It maintains
a repository of XML based component specifications sub-
mitted by component vendors. We propose an XML based
component specification language that allows a rich set of
aspects to be easily specified. Matchmaking is performed
by multiple matchmakers each specializing in a particular
aspect and the final output is the intersection of results
produced by these matchmakers.

ComponentXchange supports two models of component
trading. A component can be used either by downloading
it and integrating it into the client application or by ac-
cessing it remotely over the network. ComponentXchange
provides licensing support and can be easily extended to
support multiple payment models.

Keywords
COTS, Software Components, XML, Component Trading

1. INTRODUCTION

Building software systems by assembling commercial off
the shelf components (COTS) is gaining popularity as this
approach has the potential to reduce the cost of software
construction. However, currently, there is no infrastruc-
ture for searching through the COTS software components
produced by component vendors across the world, and lo-
cating the software components that best match the given
requirements.

In this work, we address this problem by building Com-
ponentXchange, an E-Exchange that will act as a global
marketplace for software components. It is advantageous
to both component vendors and developers; component
vendors gain a large audience for selling their software
components and developers gain access to a huge software
component repository which can be searched through.

To allow the component users to find the components
that best suit their requirements, we propose an XML

based component specification, that allows a rich set of
component aspects to be easily specified. These aspects
may include the syntactic interface of the component, its
functional and non-functional (such as QoS properties) at-
tributes, licensing aspects etc.[1]. The specification is ex-
tensible and can be easily extended to include other as-
pects.

2. DESIGN OF COMPONENTXCHANGE
2.1 Trader BasedAr chitecture

The overall architecture of the system is loosely modeled
on the trader architectures of distributed objects systems
like CORBA. The system architecture primarily consists
of three entities, the component provider, ComponentX-
change and the client. The component providers regis-
ter their components with ComponentXchange by submit-
ting a Component Specification Page (CSP), which is an
XML document representing the component specification.
Clients send queries to ComponentXchange specifying re-
quirements of the desired component through a web-based
interface. ComponentExchange performs matchmaking by
invoking multiple matchmakers each specializing in a par-
ticular aspect and the final output is the intersection of re-
sults produced by these matchmakers. The model ensures
that clients are provided with a list of software components
that best match their given requirements.

2.2 AccessModels

There are two ways in which a software component may
be purchased through ComponentXchange. First, the soft-
ware component may be bought and then downloaded, (it
can then be integrated into the client system by a devel-
oper). Second, the component continues to reside at the
developer site, and a buyer buys its services. The services
are accessed remotely across the network. This resembles
the Application Service Provider (ASP) model prevalent
in contemporary business computing environments.

2.3 Comprehensve Specificationof Software
Components

It has been observed that in general, it is not an easy task
to assemble software components into systems[1]. A major
issue of concern is the mismatches of the components in
the context of an assembled system [2]

As discussed earlier, we define an XML based component
specification that allows a rich set of component aspects to
be easily specified. We characterize a software component
along the following aspects.



e Syntactic interface: It includes properties and oper-
ations of the component. Additionally, it may also
include the events that the component generates or
receives.

o Constraints: It referes to the semantic constraints
imposed on the interface elements. It can be modeled
in our system by extending our component specifica-
tion schema to integrate languages like OCL(Object
Constraint Language).

e Functional properties: It refers to the set of proper-
ties that affects component’s functional behavior.

e Non-Functional attributes: Non-funtional character-
ictics of components significantly affect their overall
quality. Thus, it is important to specify the non-
functional characteristics of software components. It
includes QoS attributes such as reliability, perfor-
mance.

e Context Dependencies: In order to make the con-
text dependencies explicit, the component descrip-
tion language should specify the interfaces required
by the component. Addtionally, it should also in-
clude a description of the produced and consumed
events.

Every Software Component is associated with an XML
document (Component Specification Page) that describes
the Component in terms of the different aspects listed
above. We have designed an XML schema for the same
purpose.

2.4 Matchmaking

Matchmaker is a component that takes client query as in-
put and determines the components that best match the
given query.

Requirements Matchmaking: Here we refer to matchmak-
ing of syntactic interface of the component, its semantic
constraints and its functional properties. Constraints on
the syntactic interface of the required component are ex-
pressed by partially specifying the desired interface ele-
ments of the required component. Property predicates are
used to represent the functional properties that the client
is interested in. These are represented as an XML string
and matchmaking is performed based on this input. The
results of matchmaking returns those components that are
most similar to the client requirements. This matchmak-
ing can be enhanced by adding matchmakers for seman-
tic constraints and domain specific matchmakers for func-
tional properties.

QoS Matchmaking: To characterize the QoS properties of
components and to enable QoS-Matchmaking, an XML
schema has been designed which borrows concepts from
QML (QoS Modeling Language)[5]. This has been inte-
grated with the component specification schema. A Com-
ponent is characterized by a set of Contracts (e.g. Reliabil-
ity, Performance, etc), the Contract itself being specified
by a set of constraints along multiple dimensions. The
client requirement is also expressed as set of Contracts
and the QoS-Matchmaker applies an algorithm to deter-
mine the set of components whose Contracts Conform to
the client requirement Contracts.

2.5 Domian-specificTrading Communities
In closed distributed object systems, all parties in trading
(Client, Server and Trader) share a common type model.
Althogh it is practically impossible to impose such a shared
type model over open systems like the Web, we envisage
the development of vocabularies that standardize opera-
tional signatures and constraints in specific domains. This
can be used for run-time discovery of components by ap-
plications without human intervention, thus allowing evo-
lution of domain-specific Trading Communities.

2.6 Licensing Support

In ComponentXchange, licensing support will be provided
through a licensing server. A sold component interacts
with licensing server to ensure that the licensing terms are
being met. The interaction is through a standard API that
is similar to CORBA licensing service. The sold software
components periodically send messages about their usage
to ensure that client does not use the component in an
unauthorized manner. Based on the usage information,
we can implement different payment models like pay-per-
use Or a pay-per-user.

3. IMPLEMENT ATION STATUS AND
FUTURE WORK

We have developed an XML schema for comprehensive
specification of software components. We have developed
matchmakers for matching syntactic interface, functional
and non-functional attributes of components. Currently,
we are integrating the licensing model into the system. A
web-based interface to the system (using servlets) exists
for component providers and developers to interact with
ComponentXchange. Our model can be enriched by ex-
tending our component specification to include more com-
ponent aspects and developing matchmakers for those as-
pects.

4. REFERENCES
[1] Jun Han. An Approach to Software Component
Specification: In proceedings of 1999 International
Workshop on Component-Based Software
Engineering

2

D. Garlan, R. Allen and J. Ockerbloom.
Architectural Mismatch: Why reuse is so hard.
IEEE Software, 12(6): 17-26.

[3] OMG CORBA Trader Object Service. Version 1.0.
[4] OMG CORBA Licensing Service. Version 1.0.

[6] Svend Frolund and Jari Koistinen. QML: A
language for quality of service specification.
Technical Report HPL-98-10, Hewlett-Packard
Laboratories, February 1998

[6] XML Schema Part 0:Primer, W38C Candidate
Recommendation 24 October 2000
http://www.w3.org/ TR /xmlschema-0/



