
A Scalable XML Access Control System

Yue Wang Kian-Lee Tan
Department of Computer Science
National University of Singapore

Science Drive 2, Singapore 117543

fwangyue,tanklg@comp.nus.edu.sg

ABSTRACT
This paper presents the design of a scalable XML access

control system. The system has the following features.

First, it can regulate access control at a �ne graularity

(e.g., at the tag level). Second, it stores XML documents

as tables in relational databases. Third, it is eÆcient com-

pared to existing systems as it only examines the relevant

data. Fourth, it is scalable as it can handle very large

XML documents that may not �t into the main memory.

Finally, it provides very fast initial response time.

Keywords
XML, access control, relational database, scalable.

1. INTRODUCTION
In recent years,there is an increasing amount of informa-

tion being distributed and shared in XML format over co-

porate Intranets and the global Internet. As a result, it

becomes critical to de�ne and enforce access restrictions on

XML documents to ensure that only authorized users have

access to the information. Clearly, the simple method of

protecting an entire document at the �le level is unattrac-

tive (since it will limit the dissemination of information)

and unnecessary (as di�erent users may be allowed to ac-

cess di�erent portions of the document).

One promising access control model proposed in the liter-

ature is to enforce access restrictions directly on the struc-

ture and content of XML documents [1, 2]. In this way,

information in XML format can be protected at a �ner

level of graularity than the whole document, e.g., at the

tag level. As an example, a user may be blocked from ac-

cessing information tagged by XLink and XPointer, while

another may be allowed to access the entire document.

The design of an access control systems based on this

model were reported in [1, 3]. The systems essentially

represent XML documents as object trees, according to

the Document Object Model (DOM) Level 1 speci�cation

[6]. DOM provides an object-oriented Application Pro-

gram Interface (API) for HTML and XML documents. To

enforce security, the DOM tree is repeatedly traversed to

mark out nodes that should be denied access. This step is

done based on the authorization rules for the user. Finally,

the DOM tree is traversed to prune away the nodes that

are marked, and the remaining DOM structure represents

information that can be accessed by the user. This archi-

tecture has two main problems. First, it requires the entire

DOM tree to be memory resident. This problem is exacer-

bated by the fact that a DOM tree is typically much larger

(about 5 to 10 times) than its XML document. Thus, the

scheme is not scalable for large XML documents. Second,

the initial response time is long. This is because all the

steps must be completed before any answers are returned

to the user. Third, the scheme is ineÆcient. This is be-

cause the DOM tree has to be repeatedly traversed and

its nodes labeled. More importantly, a lot of unnecessary

information is also loaded (in the sense that the system

loads the entire XML document and then prune away in-

formation that should not be disclosed.). To overcome

these limitations, novel design of access control systems is

necessary.

2. XENA: AN XML SECURITY ENFORCE-
MENT ARCHITECTURE

In this paper, we present the design of an access control

system, XENA (Xml sEcurity eNforcement Arctecture),

that we are currently implementing at the National Uni-

versity of Singapore.

XENA has several characteristics that are desirable for a

secure system for XML documents:

1. From the user (end user or admininstrator) point of

view, there is only one \language" and one format.

In other words, a query is speci�ed either in a XML

query language (e.g., XML-QL [4]) or by an URL

(if an XML document is to be accessed). Similarly,

the access control administrator speci�es his access

control policies in an XML format. We note that the

access control can be de�ned on both XML instances

and XML schema. While we have adopted the ac-

cess control model in [1], we have implemented the

model so that it operates on XML schema (which

is expected to replace DTD very soon). Thus, in

XENA, every XML document has its own XML Ac-

cess Sheet (XAS) that is speci�ed in XML.

2. XML documents are stored as tables in relational

databases. This allows us to tap into the strengths of

relational databases. In particular, by storing XML

documents as tables, we only need to bring in the

necessary data { attributes that are not needed can

be projected out, and tuples that are not needed can

be also be �ltered out easily. In addition, the iterator

model of evaluating queries allow answers to be re-

turned as soon as they are produced. This facilitates

fast initial response time.

To store XML documents as tables, we need to map

the content of XML documents into tuples of tables.

In this work, we have adopted the XStorM mapping

strategy [5]. XStorM employs a data-mining strategy



to identify relations and their attributes. Note that a

single XML �le can be mapped into multiple tables.

In other words, we may need to join multiple tables

to produce the original XML document. Since our

focus is not on the mapping strategy here, and due

to space constraint, interested readers are referred to

[5] for further details.

3. The system is scalable. Because operations at the

backup (XML storage) are performed on tables, the

memory requirement is independent of the size of the

XML documents. As such, XENA can handle very

large XML documents.

3. ACCESS CONTROL IN XENA
Figure 1 shows the architecture of XENA. Initially, all

XML documents are mapped into relational tables by the

XML-Relation Transformer module. The process also

maintains the mapping information in the metadata database,

including the correspondences between the XML docu-

ment objects and the relation names, and the XML doc-

ument attributes and the relation attributes. New docu-

ments are preprocessed and added in a similar manner.

(XML query language 

or URL of document)

Query

Q
ue

ry
Fo

rm
ul

at
or

Q
ue

ry
Pr

oc
es

so
r

A
cc

es
s

C
on

tr
ol

le
r

A
ns

w
er

Fo
rm

ul
at

or

Authorization 
Rules

(in XML)

Answer
(XML or HTML)

DatabaseMetadata XML-Relation

Transformer
XML documents

Figure 1: Architecture of XENA.

When a query arrives, the Query Formulator parsed

the query and maps it into an internal query. Th mod-

ule essentially examines the authorization rules and the

metadata corresponding to the requested documents, and

produces a query that will retrieve only those information

that can be accessed by the requester. For example, if the

requester is not allowed to see a certain attribute, then this

attribute will be �ltered out (by not specifying it in the

target list) so that it is not necessary to access it from the

database. Similarly, those tuples that the requester are

not allowed to access are also �ltered out (by introducing

a selection predicate to prune them away).

The internal query is then evaluated by the Query Pro-

cessor. This module accesses the data from the database

according to the internal query, i.e., only the relevant in-

formation will be accessed.

Note that the requester may still not be able to view all the

retrieved data. This is because there may be special cases

that cannot be handled by the Query Formulator. For

example, the requester may be allowed to view attributes

A, B and C. However, (s)he is not allowed to look at those

tuples whose B values are say 5, 14, 27 and 39. Note that

while we can introduce selection predicates on B, this may

be very tedious if the list of exceptions are not small and

does not follow any pattern. As such, it may be easier

to allow them to be accessed �rst, and then prune away

later. This is exactly the task of the Access Controller

module. It basically applies the set of authorization rules

that cannot be enforced by the Query Formulator.

Finally, the Answer Formulator formulates the output

in a form (e.g., XML or HTML) for the requester. We

note that XENA only allows the users to view what (s)he

is allowed to access and nothing else.

4. CURRENT STATUS AND PRELIMINARY
RESULTS

We have implemented and evaluated most of the compo-

nents independently. We expect the full system to be in-

tegrated within the next few months. Our preliminary

experience with the various components have been good.

For example, XStorM shows that storing XML documents

as tables can cut down the total response time signi�cantly

compared to accessing the entirety of the XML docuc-

ments. In particular, as soon as one answer is retrieved,

it can be returned to the requester. The access control

model can also correctly grant and deny accesses.

Acknowledgements
This work is partially supported by a research grant funded

by the National University of Singapore and the National

Science and Technology Board. We would like to thank

the authors of [1] for providing us with their source code.

This allows us to reuse a large part of the code in our

implementation while we convert to XML schema (instead

of DTD).

5. REFERENCES
[1] E. Damiani, S. Vimercati, S. Paraboschi, and P. Samarati.

Design and implementation of an access control processor
for xml documents. In Proceedings of the 9th International
WWW Conference, Amsterdam, May 2000.

[2] E. Damiani, S. Vimercati, S. Paraboschi, and P. Samarati.
Securing xml documents. In Proceedings of the 2000
International Conference on Extending Database
Technology (EDBT'2000), Konstanz, Germany, March
2000.

[3] E. Damiani, S. Vimercati, S. Paraboschi, and P. Samarati.
Xml access control systems: A component-based approach.
In Proceedings of the 14th IFIP 11.3 Working Conference
in Database Security, Amsterdam, August 2000.

[4] A. Deutsch, M. Fernandez, D. Florescu, A. Levy, and
D. Suciu. Xml-ql: A query language for xml. In
Proceedings of the Query Languages Workshop (QL'98),
http://www.w3.org/TR/1998/NOTE-xml-ql-19980819/,
1998.

[5] W.Q. Wang, M.L. Lee, B.C. Ooi, and K.L. Tan. Xstorm:
A scalable storage mapping scheme for xml data (Poster).
In WWW'10, 2001.

[6] World Wide Web Consortium (W3C). Document object
model (dom) level 1 speci�cation verison 1.0. In
http://www.w3.org/TR/REC-DOM-Level-1, 1998.


