
Visual SQL-X: A Graphical Tool for Producing XML
Documents from Relational Databases

Renzo Orsini Massimo Pagotto
Dipartimento di Informatica, Università di Venezia

Via Torino, 153 – 30173, Mestre
Italy

{orsini, pagotto}@dsi.unive.it

ABSTRACT
The Visual SQL-X system is presented to generate arbitrarily
complex XML documents from a graphical query on a
relational database. The query describes the structure of the
resulting document through a tree-like representation of its
structure. The system generates the XML document through
the synthesis of a SQL query and a “summarization”
algorithm on the resulting table.

Keywords
Visual SQL-X, XML, Visual Query Languages.

1. INTRODUCTION
An increasing need is emerging in the development of XML-
enabled systems for tools which allow a fast and simple
conversion of data from various sources into XML formats.
For the vast majority of cases, such data come from existing
relational databases. Academic researchers and software
companies are actively addressing such a need, mostly with
the design of query languages or extraction languages from
relational databases.

At the University of Venice, the Visual SQL-X tool has been
developed to produce, with a graphical interface, a query
against a relational database which generates an XML
document of arbitrary complexity. The novelty of the
approach is that the user is not required to learn the syntax
and semantics of yet another query language, but to use a
simple interface which allows the construction of a tree,
which defines the structure of the expected result.

2. THE TREE MODEL OF A SQL-X
QUERY
The language SQL-X [1] is an extension of SQL which
provides a set of operators to compose queries against a
relational database, which produce complex XML
documents, with a style reminiscent of report generation
languages.

A query is represented by a tree with the following kind of
nodes (for an example, see fig. 1):

1. <Root> is the tree root, and represents the whole
document, containing a set of elements corresponding
either to tuples or to group of tuples.

2. <Rel> represent a database relation (obtained in general
through an SQL query), whose tuples are converted into
elements of its immediate container.

3. <Att> (child of <Rel>), represents a column, a value of
which is used as element of its container,

4. <Nest> represents the tuples of a relation which are
associated, with a join operation, to a tuple of its
container, and which will become roots of subtrees.

5. <Group> represents the grouping of the tuples of a
child node by some expression: each group is an
element containing the tuples of the group as elements.

Moreover, the user can specify if tuple fields are converted
to attributes, instead of elements, the ordering of sequences,
as well as other details of the conversion process.

3. OVERVIEW OF THE SYSTEM
After selecting a database, which is then analyzed to collect
its metadata, the user is presented with the query editor.

Fig. 1 The query editor

The panel shown in fig.1 allows the construction of the
query tree, by selecting a node and then applying an
operator. In this case, the tree represents a query which
returns a set of clients. They are grouped by country, and
each client contains an element with its name, and another
one with the sequence of the product code and date of its
orders. When a node is selected, the right panel shows the
associated information, which depends on the node:

• for <Root>, the ordering of its elements,

• for <Rel>, the fields which are the elements’ attributes,

• for <Nest>, the join condition, the ordering of its
elements, and possibly other conditions on the tuples
corresponding to the subelements,

• for <Group>, the grouping condition (e.g. the field
‘Country’ of ‘Clients’), an ordering for its subelements,
and the group’s element attributes.

For instance, the definition of the node corresponding to the
set of orders for each client is shown in fig.2.

Fig.2. Editing a node

The system facilitates the task of the user by providing a set
of panels for composing conditions and other expressions
(e.g. with aggregation functions) during the construction of
the tree.

In the prototype, the user can follow, with a set of panels, all
the phases of the evaluation of the query: the conversion in
SQL and the resulting relation, the tree which is the result of
the data extraction, and the final document. For instance, the
query of the example is translated into the following SQL
query:

SELECT Clients.Name, Orders.ProductCode, Orders.Date
FROM Clients, Orders
WHERE (Clients.Code = Orders.ClientCode)

while in fig.3 the structure of the resulting XML document i s
shown (only a few elements are expanded).

Figure 3 Resulting document

In any phase of the evaluation, the user can go back and
change its definition, for instance to experiment different
grouping and nesting strategies. For the lack of space, the
final documents, together with its DTD, is not shown here.

3.1 Implementation
The approach taken in translating the query into SQL is that
of collecting all the necessary data into a single relation,
which is then read only once for producing the resulting
XML document. The example previously shown is in effect a
very simple query: all the work is made in the final phase,

which, through a visit of the query definition tree, generates
an intermediate tree containing all the data, which can be
directly mapped to the DOM representation of the document.
(the details of the approach can be found in a forthcoming
paper [2]).

4. USE OF VISUAL SQL-X
The main use of the system is envisioned in generating
programs which extract automatically XML documents from
a relational database, with a simple and friendly interface.

A typical use could be for generating XML pages to be
published on the Web, or transferred to some other
application: many tools currently available are limited by
the fact that the queries which get the data can be expressed
in SQL, so that the result is always “flat”: this leads to
complex programming if there is a need for structuring the
data inside the page. With our tools, SQL programmers could
easily provide complex content without resorting to a
specialized (and not so easy) new query language.

5. RELATED WORKS
Of the many languages proposed to query XML, very few of
them take a visual approach. An example is [3], which allows
the direct manipulation of a tree representation of the
documents’ DTD. Our approach, in contrast, attempts to
build a bridge between the relational data model and the
XML data model, with an approach similar to that, for
instance, to that of SilkRoute [4] and PENELOPE[5], which,
on the other hand, provide the user only with textual
languages.

6. CONCLUSIONS AND FUTURE WORK
We are now experimenting the prototype on real cases, and
trying different strategies to evaluate the query. A
symmetrical tool is being developed which allows
graphically the population of database relations with data
extracted from XML documents, with an analogous
approach.

This system is intended to be one of a set of tools in a
workbench for data exchange, through XML, among different
data sources and applications, developed inside the
framework of the Data-X project (home page:
http://www.difa.unibas.it/dataX).

7. ACKNOWLEDGMENTS
This work has been carried in the Data-X Project, sponsored
by the Italian MURST.

8. REFERENCES
[1] R. Orsini, A Preliminary Proposal for SQL-X, A

Language to Extract XML Documents from Relational
Databases, SEBD 5, L’Aquila, Italy, June 2000.

[2] R. Orsini and M.Pagotto. Visual SQL-X: The system and
its implementation. University of Venice, Technical
Report, 2001.

[3] K. Munroe, Y. Papakonstantinou, BBQ: A Visual
Interface for Browsing and Querying XML, in Visual
Database Systems (VBD 2000).

[4] D. Suciu, M.Fernandez, and Wang-Chiew Tan.
SilkRoute: Trading between relations and XML. In Proc.
9th World Wide Web Conference, 2000

[5] P. Atzeni, G. Meccca and P. Merialdo, To weawe the web,
in Proc. 23rd Int. Conf. on VLDB (VLDB’97), 1997.

