
WebMacros - a Proxy-based System for Automating
User Interactions with the Web

Alex Safonov

University of Minnesota
4-192 200 Union St SE
Minneapolis, MN 55455

1-612-626-8396

safonov@cs.umn.edu

Joseph A. Konstan
University of Minnesota
4-192 200 Union St SE
Minneapolis, MN 55455

1-612-625-4002

konstan@cs.umn.edu

John V. Carlis

University of Minnesota
4-192 200 Union St SE
Minneapolis, MN 55455

1-612-625-4002

carlis@cs.umn.edu

ABSTRACT
WebMacros is a proxy-based system for automating repetitive
user interactions with the Web by recording and replaying user
navigation. The innovations in the system include its ability to
compare HTML pages based on structure, which is used to
verify the correct playback, and the ability to remotely execute
and share macros.

Keywords
Macro, demonstration, playback, sharing, proxy

1. INTRODUCTION
Web technologies including POST forms, dynamically
generated pages, cookies, expiring session tokens etc., have
made traditional bookmarks and histories insufficient for
managing users’ personal views of the Web. Many pages do not
have a well-defined URL, but require a sequence of steps to be
retrieved; these were termed hard-to-reached pages [1].
Examples of hard-to-reach pages include citation engine
searches and airfare availability queries. The need to automate
repetitive user interactions with the Web motivated us to
develop WebMacros [4], a system for demonstrating and
playing user actions on the Web.

2. WEBMACROS FEATURES
2.1 Creating macros by recording user
actions
A user initiates recording of a macro explicitly, by navigating to
the WebMacros controls page (its URL can be bookmarked or

placed in a browser toolbar), and pressing the "Start Recording"
button. She then demonstrates the macro by the normal process
of Web navigation and form filling. Page retrieval speeds are
comparable to those when no recording occurs. When all the
steps are demonstrated, the user presses the "Stop Recording"
button and is prompted to enter macro name and description.

2.2 Support for parametric macros
As a user demonstrates a macro, she can specify the type of
INPUT and SELECT form elements by clicking on radioboxes
added by the recording system. The following parameter types
are supported: private (default for PASSWORD and inferred
username fields), constant (default for all other fields), and
variable. During playback, recorded values of constant and
variable fields are substituted into each retrieved page; constant
fields cannot be overridden by the user.

2.3 Verifying pages retrieved at playback
Since each macro step can at playback retrieve an unexpected
page (such as a login failure, or no results matching a query),
the system needs to compare the retrieved pages against the
recorded ones. However, verbatim comparison of HTML
content is insufficient for many dynamically generated pages,
since a server can populate the same HTML template with
different results based on current data and playback parameters.

To compare pages based on structure rather than content,
WebMacros represents them as sets of path expressions in the
HTML parse trees. Our experiments on eBay! and Amazon.com
data [5] indicate that a simple page structure similarity measure
reliably classifies pages into types, and can be used to verify
results of WebMacros playback.

2.4 Interactive and batch macro playback
A user can replay a recorded macro either in a batch mode, in
which the system loads in the browser only the last retrieved
page, or in an interactive mode. Interactive mode is useful when
the user is interested in pages produced by intermediate macro
steps. WebMacros provides a JavaScript-based playback control
panel with the Prev, Next, Play, and Last buttons. In the
interactive mode, WebMacros detects when the user sidetracks
from the recorded path, by matching recorded and actual URL,
form data, and page structure. The user can resume playback
later from the control panel.

2.5 Encapsulating cookie context in macros
HTTP was designed as a stateless protocol; however, the cookie
extension allows servers to store state between HTTP requests.
What page is retrieved by a user may depend on the current
cookie context. When used with the two popular desktop
browsers, Netscape Navigator and Internet Explorer (IE), the
WebMacros system optionally includes pre-existing user
cookies in a macro during recording. At playback, the user can
choose whether cookies included with the macro, or the current
ones take priority. Encapsulating cookie context in macros
allows their remote playback and sharing.

3. PROXY ARCHITECTURE
The WebMacros system is designed as a pure HTTP proxy
(Figure 1). It operates by intercepting the HTTP stream between
the user’s browser and the WWW and modifying the received
HTML. The advantages of the proxy architecture include:

• A lightweight browser is sufficient for recording and
replay.

As Web access is brought to PDAs and other wireless devices,
Web clients other than IE and Navigator must be considered.
Web clients for this class of devices are likely to be simple and
lightweight; they may not have a built-in JVM needed for the
recording and playback applet.

• A proxy does not need "security clearance".
For the applet to read/write local files and modify pages, the
user must confirm its file and browser access privileges. A
proxy does not have this limitation, and can be configured site-
wide without user intervention.

• A proxy enables remote use and sharing of Web macros
If a trusted third-party server hosts the recording and playback
proxy, users can access macros they recorded from multiple
computers, and can also share macros.

• A proxy does not depend on the browser for page
retrieval.

Since a proxy does not use the browser to retrieve macro steps,
the proxy can display in the browser only the page retrieved on
the last step. In an interactive playback mode, a client-based
playback implementation cannot easily determine if the browser
has completed loading.

The proxy architecture has also certain drawbacks compared to
a client-based one. First, a proxy does not have access to HTML
dynamically generated in the browser. In the case of JavaScript,
a proxy can either do a partial analysis of scripts (in particular,
scan scripts for inline object references), or have a full-fledged
JavaScript interpreter. Second, the proxy must provide its own
HTML parser for rewriting HTML, since it cannot use the parse
tree built by the browser. Third, if the proxy is not installed
locally, extra HTTP traffic is generated. Finally, a client-based
system for recording and playing macros provides better privacy
to users, at the cost of making sharing and remote use more

difficult. We believe that the advantages of a proxy solution
outweigh its drawbacks, and selected it for our implementation.

4. SYSTEM IMPLEMENTATION
HTML rewriting is the fundamental model used in WebMacros,
both to detect user actions that must be recorded as macro steps,
and to augment pages with interfaces for controlling recording
and playback. When a page is retrieved by a proxy, its HTML
parse tree is constructed using the WebL [3] HTMLParser class.
During recording, all links and form actions are rewritten to
special URLs intercepted by the WebMacros proxy. For
example,

is transformed to:
<a href="http://webmacros/do?_action=record&
_URL=http://online.lib.umn.edu/ovidweb/login.html&
_type=link&_domindex=2">

If the user then clicks on this link, the proxy records the _URL
parameter, its type (link vs. form or not-on-page URL), and the
Document Object Model (DOM) index on page (2nd link on
page in this case) as the next macro step, converts the URL to
its original form, and passes it to the Web.

Since a proxy observes all HTTP traffic between the user’s
browser and the Web, it must distinguish user-initiated requests
from those for inline objects, such as images and frames. The
WebMacros proxy achieves this by appending unique tokens to
inline object references in the incoming HTML, and building a
hash of these references. An HTTP request not found in the
hash is considered user-initiated and is recorded as the next
macro step.

During macro playback, the system reads the URL, DOM
information and form field values of each step from a relational
database. It then generates a one-line WebL script passed to the
WebL interpreter for execution. WebMacros uses a set of
heuristic rules similar to the one proposed in WebVCR [1] to
account for page modifications between recording and playback
time, and to ensure correct macro play

5. FUTURE WORK
We have started testing the system with users to evaluate the
convenience and speed of the recording and playback interfaces.
The undo/redo features for macro demonstration are being
implemented. We are working on detecting iteration during
macro demonstration, by looking for similarities in links and
forms the user accesses. Intelligently merging multiple pages
produced by iteration is another challenge we face.

6. REFERENCES
[1] J. Freire, V. Anupam, B. Kumar, D. Lieuwen. Automating

Web Navigation with the WebVCR. Proceedings of the
9th International World Wide Web Conference,
Amsterdam, Netherlands, May 2000.

[2] T. Kistler and H. Marais. WebL - A Programming
Language for the Web. Proceedings of the 7th
International World Wide Web Conference, Brisbane,
Australia. April 1998.

[3] A. Safonov, J. Konstan, and J. Carlis. Towards Web
Macros: a Model and a Prototype System for Automating
Common Tasks on the Web. Proceedings of the 5th
Conference on Human Factors & the Web, 1999.

[4] A. Safonov, H. Marais, and J. Konstan. Automatically
Classifying Web Pages Based on Page Structure.
Submitted to ACM Hypertext 2001.

