
Media Browser: An Example of Metadata-Based
Browsing

Alison Lennon, Daniel Lloyd-Jones, Ernest Wan, Ken Yap, Michael Anderson, Belinda Yee
Canon Information Systems Research Australia (CISRA)
3 Thomas Holt Drive, North Ryde, NSW, 2113, Australia.

Telephone: 61-2-9805 2970
alison@research.canon.com.au

ABSTRACT
Current methods for finding relevant content, especially in
media-rich web environments, suggest that metadata is
critical for accurate and efficient information retrieval. We
describe a Media Browser tool, which enables users to
access content by visually browsing and searching metadata
that is stored in a distributed fashion over the web. The basic
constraint imposed by the Media Browser tool is that the
distributed metadata can be represented in XML which uses
XLink semantics (and preferably defined with XML
Schema). The Media Browser tool enables users to access
content from a single interface from which they can maintain
their own information landscapes, which comprise links to
metadata of interest to the user.

Keywords
Metadata, Information Retrieval, Multimedia, Information
Landscape, XML Schema.

1. INTRODUCTION
Currently we use web browsers to explore and view text-
based content in which links have been manually authored,
and search engines to locate and explore content that has not
been explicitly linked. This information retrieval process has
evolved based on text-based content and is not necessarily
well-suited to media rich web environments where the only
means for finding non-textual content is using metadata and
specific tools for accessing that metadata. We describe a
general-purpose multimedia browsing and searching tool,
called Media Browser. This tool integrates the current
concepts of browsing and searching in a single rich
browsing and searching visual interface in which the entity
being browsed is metadata. Only when users have
established from the metadata that they wish to view/play
the content is the content accessed. Playing/viewing of the
content is then enabled using media-specific plug-ins. The
metadata used by Media Browser can be stored in disparate
repositories on the web and must contain navigable links to
the relevant content. It is preferable, though not essential,
that the structure and semantics of the metadata are defined
using XML Schema. Media Browser does not require prior
knowledge of the schemas that define the metadata.

Media Browser visually represents metadata to users for the
purposes of browsing and searching. It achieves this by
differentiating between those components of the metadata
(descriptors) which represent structural information about
the content (e.g., a component which describes a clip of a
video) from those descriptors that represent properties or
index information (e.g., the date an image was captured).
The structural descriptors typically contain links to either
further structural descriptors or to content and are used to
construct a browsable Table of Contents (TOC). The index

descriptors are used to enable searching for content. The
motivation behind this separation into a TOC and an index
is that people are generally familiar with this concept. Also
metadata creators, either consciously or unconsciously, often
use this concept in their design of metadata schemas.
Although the general concept of metadata-based browsing is
not new, we believe our method of generating a visual
representation of available metadata for the purpose of
browsing and searching using a TOC and index is novel.
Also the ability to enable users to browse metadata which
has been defined using schemas of which Media Browser
has no prior knowledge is a valuable capability.

Media Browser attempts to visually represent any XML
metadata that uses W3C recommended XLink [1] semantics.
However, it can provide a higher level of interpretation and
thus functionality for metadata defined using XML Schema
[2] for the following reasons. First, Media Browser can use
the type extension/restriction and element substitution
information of XML Schema to infer relationships between
descriptors and thus provide more useful search results.
Second, descriptor definitions in schemas can be used to
provide lists of possible index descriptors for TOC
descriptors. These lists can be used to construct structured
query expressions and to enable metadata editing. Finally
the datatype functionality of XML Schema can be used to
constrain metadata editing.

Each XML metadata object fetched by Media Browser is
firstly transformed into a native Media Browser description
with its descriptor components being defined as either TOC
or index descriptors. The transformation can be achieved by
using an XSLT [3] stylesheet for commonly used metadata
standards (e.g., Dublin Core [4], MPEG-7 [5] and DIG [6]).
Alternatively, the transformation can be performed
dynamically using a set of interpretation rules that we have
defined. These rules use linking semantics (e.g., the
xlink:href attribute) to infer whether a descriptor should be
treated as part of the TOC or index for a description. The
transformation step enables Media Browser to visualize
metadata using a wide range of vocabularies and thus act as
a general-purpose metadata-based browser.

Media Browser allows users to access legacy metadata
repositories in a standards-compliant manner. The
mechanism requires the content provider, or owner of the
legacy database, to provide a module called a metadata
server. This server receives requests for metadata using a
request syntax that is based on XPath [7]. It then responds
by effectively translating the stored metadata which is
relevant to the request into dynamically-generated XML
metadata (defined using XML schema). This means that
Media Browser users can include items in their TOCs that
contain links to a metadata server, the links identifying
particular metadata item(s) of interest in a legacy database.

Some general-purpose media browsers exist, perhaps the
best known of which is Windows Media Player 7 [8].
However typically with such browsers, the entity being
browsed is local workstation content, the metadata available
is limited because it is often extracted directly from the
content, and the accessible media types are usually limited
because of the tight coupling between content and metadata.
Media Browser removes these limitations by allowing the
user to browse metadata directly and by using media-specific
plug-ins for the viewing/playing of content. Media Browser
also provides some advantages over existing search engines
by providing a general-purpose integrated browsing and
searching interface and by allowing users to access remote
and disparate metadata repositories.

2. Media Browser Implementation
Media Browser is implemented as a client-server application
using a standard web server (Apache) and browser. The
client is implemented using Flash. The server is
implemented using JServ, servlets, and Swift Generator [9],
with the Swift Generator tool being used to dynamically
generate Flash objects from templates. The (media) content-
dependent tasks of Media Browser are achieved using media
tools plug-ins. Standard web browser plug-ins can be used
or specific tools can be developed.

Media Browser can operate as either an intranet or internet
service. In both scenarios users are required to subscribe to
the service to be able to access their personal links to
metadata. The Media Browser server stores a TOC and a set
of stacks (collections of links to descriptors) for each
subscribed user. A user's TOC consists of a tree of TOC
descriptors. Each TOC descriptor is a node of an XML
document that either contains child nodes or a link to a
further XML document node or metadata server. The user
can add or remove descriptors to their TOC and thus it
comes to represent their personal information landscape,
which selectively identifies internet or intranet metadata
which refer to content of interest to the user. Stacks are used
to store collections of links to descriptors of interest. Stacks
are also used to contain the results of searches.

The predominant feature of the user interface is a browse
window, which contains a grid of visual identifiers for the
child descriptors of the currently-selected TOC descriptor.
The visual identifiers are indicative of the linked content and
may represent thumbnails or key frames, or can be generated
automatically using a textual identifier (which may have
been inferred as part of the metadata transformation
process). The user interface provides two methods for users
to navigate through their TOC. First, they can use the
standard method of simply double clicking on visual
identifiers in the browse window to display any child
descriptors of the selected descriptor. Second, we provide a
"breadcrumb", which is composed of a hierarchical sequence
of TOC descriptors. Within each level of the breadcrumb
users can select to pull down a menu showing the child TOC
descriptors of the selected parent at that level of the
breadcrumb. The main advantage of the latter navigation
approach over the standard tree-based method is that it is
simple to exit from one sub-tree and directly enter another
without having to navigate up and down the tree.

Users can search the metadata contained in one or more
descriptors from their TOC. Simple text-based and

structured queries are possible. For structured queries, users
are presented with a list of all the possible index descriptors
that have been defined for either the selected TOC
descriptor(s) or their TOC children. Currently, this requires
the presence of XML Schema definitions and therefore this
functionality is only available to that metadata that has been
defined using XML Schema. On presentation of the list of
index descriptors, the user can then specify required
constraints for particular descriptors.

Index descriptors that apply to a selected TOC descriptor
(and thus refer to an item or a collection of items of content)
can also be viewed and edited. Editing requires that a
schema definition for the descriptor exists so that the
datatype of that descriptor can be appropriately constrained
and that the descriptors for the item are defined to editable.
Lists of relevant descriptors for the item can be obtained
using the method described above for structured queries.
Creation or editing of metadata is particularly useful in cases
where personal media content is being accessed (e.g.,
personal digital images and video).

2.1 Conclusions
Any method of browsing that is suited to media-rich web
environments must use metadata. It is difficult to believe
that a single metadata vocabulary is sufficient to express all
the concepts one would like to convey with multiple media
types. However, it is possible that much metadata may
eventually be represented using, or translated into, a well-
accepted standard that is both easy to use and sufficiently
powerful to express the desired concepts. The Media
Browser tool that we describe is just one such method of
browsing. By being technically based on the powerful
evolving markup language, XML Schema, and by
attempting to enable access to existing distributed metadata
and metadata repositories, we believe that Media Browser is
a step in the right direction.

3. REFERENCES
[1] S. DeRose, E. Maler & D. Orchard, XML Linking

Language (XLink) Version 1.0, W3C Proposed
Recommendation, 20 December 2000,
http://www.w3.org/TR/2000/PR-xlink-20001220/

[2] D. C. Fallside, XML Schema Part 0: Primer, W3C
Candidate Recommendation 24 October 2000,
http://www.w3.org/TR/xmlschema-0/

[3] J. Clark, XSL Transformations (XSLT) Version 1.0,
W3C Recommendation 16 November 1999,
http://www.w3.org/TR/xslt

[4] Dublin Core Home Page, http://purl.org/DC/
[5] MPEG-7, The Multimedia Content Description

Interface, http://www.cselt.it/mpeg/
[6] Digital Imaging Group Home Page,

http://www.digitalimaging.org/
[7] J. Clark and S. DeRose, XML Path Language (XPath),

Version 1.0, W3C Recommendation 16 November
1999, http://www.w3.org/TR/1999/REC-xpath-
19991116

[8] Windows Media Player 7,
http://www.microsoft.com/windows/windowsmedi
a/en/software/Playerv7.asp

[9] Swift Generator, http://www.swift-tools.com

http://www.w3.org/TR/2000/PR-xlink-20001220/
http://www.w3.org/TR/xslt
http://purl.org/DC/
http://www.digitalimaging.org/

	INTRODUCTION
	Media Browser Implementation
	Conclusions

	REFERENCES

